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Abstract

Inspired by the human immune system, we explore the development of a new Multiple-Detector Set Artificial
Immune System (mAIS) for the detection of mobile malware based on the information flows in Android apps.
mAISs differ from conventional AlSs in that multiple-detector sets are evolved concurrently via negative selection.
Typically, the first detector set is composed of detectors that match information flows associated with malicious
apps while the second detector set is composed of detectors that match the information flows associated with
benign apps. The mAIS presented in this paper incorporates feature selection along with a negative selection
technique known as the split detector method (SDM). This new mAIS has been compared with a variety of
conventional AlSs and mAISs using a dataset of information flows captured from malicious and benign Android
applications. This approach achieved a 93.33% accuracy with a true positive rate of 86.67% and a false positive rate

of 0.00%.
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1 Introduction

Mobile and embedded devices have proliferated through
contemporary society at an exponential rate. The num-
ber of mobile devices in use will grow from over 11 bil-
lion in 2016 to over 16 billion by 2020 [1]. The Android
operating system, specifically, accounts for 82.8% of
current smartphones in use for 2015 Q2 [2]. Android
encompasses a broad and far-reaching range of users
and retailers, with its appeal being convenience, low
cost, and customization. With the Android OS, and mo-
bile industry in general, experiencing a meteoric rise,
mobile malware has become a significant threat.

Mobile malware has undergone a large increase in
sheer number and a diversification in type. Android mal-
ware accounts for nearly 97% of all mobile malware [3].
As of February 2014, over 10 million malicious Android
apps have been released [4] to the public through vari-
ous official and unofficial mediums. As of 2014,
SophosLabs has recorded well over 650,000 individual
pieces of malware for Android [5].

Through the use of malware on mobile devices, cyber-
criminals can steal private user information. Mobile
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malware is also capable of tracking user GPS and WiFi
location and capturing contact data. Cyber criminals also
aim to deconstruct and decompile popular apps like
Angry Birds and publish versions with embedded mali-
cious code for free download. Unfortunately, many users
fall victim to this sort of repackaging attack.

Typically, mobile malware is designed to target a spe-
cific vulnerability in the OS to attack and exploit. Com-
mon vulnerabilities exploited by malware developers on
the Android platform include:

Over-granting permissions
Insecure transmission
Insecure data storage
Leakage through logs

IPC endpoint vulnerabilities

These vulnerabilities make end-users prone to previ-
ously discovered as well as zero-day [6] mobile malware.
Therefore, to address the growing threat of Android
malware, we developed a Multiple-Detector Set Artificial
Immune System (mAIS) and a validation scheme. The
mAIS is a variant of the AIS, where a detector set for
“non-self” detection is also generated, much the same as
the standard AIS. The key difference between mAIS and
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standard AIS is that the mAIS generates an additional

detector set for “self” detection. The outputs from both

the non-self detector set and self detector set are then

used for classification. For Android malware detection,

we were able to achieve 93.33% accuracy with a true

positive rate of 86.67% and a false positive rate of 0.00%.
The contributions of this research are as follows:

e The development of a Multiple-Detector Set Artifi-
cial Immune System model for Android app classifi-
cation into malicious or benign categories.

e Training, validation, and testing of mAIS classifier
using k-fold validation with variable fold sizes to
generalize our results across our dataset.

e A comparative study of the classification
performances of different variants of mAIS.

The paper is organized as follows: in Section 2, we
present review of related works, Section 3 describes our
mAIS' implementation, and Section 4 is an overview of
our system model. Our dataset and experiments are de-
tailed in Section 5. In Section 6, we present the results.
Conclusions drawn and future work are explained in
Section 7.

2 Related work

2.1 Malware detection techniques

A common approach for malware detection is pattern rec-
ognition, where a malicious entity is detected by compar-
ing deterministic patterns found in previously discovered
malware. Popular antivirus software such as Avast [7] and
McAfee [8] primarily use pattern recognition for com-
puter security. Patterns could include coding techniques
unique to a particular family of apps or malicious devel-
oper, third-party libraries, or suspicious code obfuscation
techniques. A major drawback of this approach is its in-
ability to identify previously unrecognized malware or
zero-day malware. Since pattern recognition relies upon
analysis of pre-existing malware, new malware samples
which have not been discovered have the potential to go
undetected.

Machine learning techniques are widely used for mal-
ware detection. These techniques are specifically de-
signed to differentiate between benign software and
malware by identifying discriminating features [9-12].
The key difference between each literature example is
the features used during the training and classification
phase of their model generation. API calls, permissions,
flows, etc. are commonly used features from which re-
searchers capture from an app through static code ana-
lysis or dynamic runtime analysis. Once these features
are extracted, a two-class classification algorithm, such as
Decision Tree, Naive Bayes, Bayesian Networks, k-Means,
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Deep Learning, and Logistic Regression, is applied to
dataset.

2.2 Overview of Artificial Inmune Systems

AISs are biologically inspired problem-solving methods
modeled after the human immune system [13, 14]. AISs
have been used to solve real-world complex problems in
the areas of cybersecurity, robotics, fraud detection, and
anomaly detection [15], just to name a few. AISs are ro-
bust, self-healing, and self-contained problem-solving
solutions, with an ability to dynamically adapt to its en-
vironment. These traits led us to the AIS, and other so-
lutions derived from it, as a potential solution for mobile
malware detection.

The standard AIS [16] is typically used to solve two-
class classification problems (0/1, self/non-self, etc.). The
standard AIS is composed of a set of detectors and em-
ploys an evolutionary process [17] as follows. Initially, a
set of detectors is randomly generated. These detectors
are called immature detectors and undergo a process
known as the negative selection [16, 17]. During negative
selection, each immature detector is checked to see if
they match a “self” instance. If this occurs, the immature
detector is replaced by a randomly generated immature
detector. Those immature detectors that fail to match a
“self” instance are promoted to being a mature detector.
Mature detectors are given a lifetime of t; e and must
match at least mp e Nnumber non-self instances during
their lifetime. Mature detectors that match the requisite
number of non-self instances over their lifetime are pro-
moted to being memory detectors and are assigned a
lifetime of tmemory Where tmemory > > tmature: This com-
position of immature, mature, and memory detectors
make AISs well suited for dynamic environments be-
cause memory and mature detectors ensure detection of
previously encountered non-self, and immature detec-
tors afford relative protection from unseen non-self.

Since the development of the standard AIS, a number
of AIS variants have been developed. In [18, 19], Hou
developed an mAIS that evolved three detector sets in
an effort to solve user authentication and identification
through iris recognition. In [20, 21], Idris and
Muhammed developed mAISs for solving e-mail spam
classification problem. The spam detection was a two-
class classification problem; however, Idris and
Muhammed used a standard set of detectors for detect-
ing non-self (spam) instances and used a second de-
tector set for detecting self (good e-mail) instances. The
net effect was that the mAIS was just as good at detect-
ing spam and did so with a dramatically lower false posi-
tive rate.

An advantage of artificial immunity over pattern rec-
ognition and other machine learning techniques are as
follows: (1) an AIS’ aim is not to explicitly search for
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discriminating features between two-classes but to im-
plicitly find those salient features through negative selec-
tion and (2) a robust, dynamic, and self-healing solution
which can easily be applied in real-time environments.
Typically, AISs have been applied to traditional desktop
computer environments to protect against internet-
based attacks, such as the work of Ramakrishnan and
Srinivasan [22], where they reviewed several AIS-based
security systems. In [23], Zhao applied an AIS for smart-
phone malware detection in a dynamic environment.
Log preprocessing and system API access were dynamic-
ally captured and used as training features. They were
able to achieve an 87.7% true positive rate with an 8.2%
false positive rate. The differences between Zhao’s and
our approach lie in feature extraction and the use of
multiple-detector sets. Instead of dynamically capturing
features, our approach utilizes static flow analysis. When
using dynamic analysis, the app is treated as a black box.
Therefore, an app can inconspicuously hide its true be-
havior using advanced obfuscation techniques. In static
flow analysis, app behavior is much harder to obfuscate
because the static analysis algorithm tracks data-flow
through offline code analysis and simulated runtime en-
vironment behavior.

3 Multiple-Detector Set Artificial Inmune System
False positives (FPs), type I errors occur when a be-
nign app is misclassified as malicious, creating confu-
sion and unnecessary hassle for users. False negatives
(EN), type II errors, pose a greater threat to user data
security and privacy because this occurs when a mali-
cious app is classified as benign. Therefore, a mali-
cious app is able to gain access to the user’s device
without impediment or detection. Our results show
the standard AIS has the ability to detect malicious
apps with a true positive rate (TPR), correct classifi-
cation rate, of 80.00%. Unfortunately, the standard
AIS also resulted in a false positive rate (FPR), benign
app misclassified as malicious rate, of 73.33% and a
true negative rate (TNR), malicious app misclassified
as benign, of 20.00%. The goal of this research is to
increase the TPR and decrease FPR and TNR, which
would signify a robust and optimal model. As evi-
denced in Idris and Muhammed [20] for e-mail spam
identification, the mAIS is proficient at detecting
“non-self” instances and significantly reducing FPs
and FNs. Therefore, we applied the mAIS to the An-
droid malware detection problem. When used with
the Split Detector Method (SDM) [24] and Genetic
and Evolutionary Feature Selection (GEFeS) [5], the
mAIS outperformed the standard AIS with a TPR of
86.67% and a FPR and FNR of 0.00% and 13.33%,
respectively.
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3.1 Detector set generation

To develop the mAIS, two independent detector sets are
generated: one detects “non-self” app instances and the
other detects “self” app instances. During detector set
generation, the non-self detector set is trained similarly
to the standard AIS. During negative selection, if an im-
mature detector matches a “self” app instance, it is dis-
carded, if SDM is wused, the detector is split.
Theoretically, this results in a detector set which only
detects “non-self”. This is shown in Fig. 1. For the self
detector set generation, “self” is replaced by “non-self”
during training. Therefore, if an immature detector
matches a “non-self” instance, it is either discarded or
spilt. This is shown in Fig. 2. Detectors that survived
negative selection during the generation of non-self de-
tectors and self detectors are considered mature non-self
detectors and mature self detectors, respectively.

3.2 Proportion-based classification

The two detector sets are used in a proportion-based
classification method to detect unknown instances. If
the proportion of non-self detectors that match an in-
stance is greater than the proportion of self detectors
that match the instance, the instance is classified as
“non-self”. Likewise, if the proportion of self detectors
that match are greater than the proportion of “non-self”
detectors, the instance is classified as “self”. Since FNs
have the potential to cause significantly more damage
than FPs, in the rare occurrence that the proportions of
the two detector sets are equal, the instance is classified
as “non-self”.

Randomly
Generate
Immature

Detector

Does Detector
Match Self

Yes No

/

Add to Non-

self Mature
Detector Set

Discard

Fig. 1 Non-self detector set generation
- J
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Discard

Fig. 2 Self detector set generation

3.3 Any-r interval matching rule

The any-r interval matching rule is used to determine if
a detector matches an instance (app). Each detector is
composed of 590 intervals, where each interval corre-
sponds to a specific feature from the dataset feature vec-
tors. To determine if a detector matches an instance,
first, an r value is selected. If 27, from the particular in-
stance, are contained in the detector’s intervals, the de-
tector matches.

3.4 Variations

GEFeS and SDM were used to create four variations of
the mAIS. Our results show that the use of GEFeS in
conjunction with SDM improves the performances of
the standard AIS and mAIS. The techniques tested and
compared in this paper are as follows:

e GEFeS—GEFeS only was used as the baseline
approach. GEFeS evolves a subset of salient features
(feature mask) which reduces computational
complexity and increases accuracy. Feature masks
are evolved to identify and select optimal/near-
optimal features from a training set and eliminate
irrelevant or redundant features, which create a
well-defined distinction between self (benign) and
non-self (malicious) apps. To evaluate a feature
mask, the k-nearest neighbor, where k =1, is used to
classify an app using the Manhattan Distance as the
similarity score. During the Manhattan Distance cal-
culation, a feature mask is applied. The equation
with a feature mask applied is shown in Fig. 3 where
m represents a feature mask and X and Y represent
apps within the dataset. GEFeS aims to reduce the

n-—1
d(X,Y) = ) myx | = i
i=0

Fig. 3 Manhattan distance calculation with a feature mask

number of classification errors, which produces an
optimal/near-optimal feature mask.

A Steady-State Genetic Algorithm was used as the
evolution algorithm. The parameters were as such: a
population size of 20 candidate feature masks, Tourna-
ment Selection, BLX-0.0 crossover, Gaussian Mutation
where y =0 with a standard deviation of 20% of the
range (upper and lower bounds) of an associated feature.
GEFeS was run 30 times on the 30-28 dataset where
training set consisted of 20 feature vectors associated
with 10 benign and 10 malicious apps, the validation set
consisted of 19 feature vectors associated with 10 benign
and 9 malicious apps, and the test set also consisted of
19 feature vectors associated with 10 benign and 9 mali-
cious apps.

e SDM—During the negative selection training
process for the standard AIS and the non-self
detector set for the mAIS, SDM requires that if a
detector matches a self instance, instead of being
discarded, it is split into upper- and lower-bound
detectors. The two resulting detectors undergo a
negative selection but are not split again. For the self
detector set during mAIS negative selection, if a
detector matches a non-self instance, it is split into
upper- and lower-bound detectors, which, subse-
quently, undergo negative selection without a split.
This process increases search space coverage, by
generating detectors which wrap tighter around
non-self hypothesis space for self detector set gener-
ation and self hypothesis space for standard AIS and
non-self detector set generation.

With a computational complexity for detector set gen-
eration of O(n®), where 1 = the initial detector set size,
SDM requires significantly more resources than the
standard AIS and mAIS without SDM, where detector
set generation has a computation complexity of O(n).
Although, SDM can increase true positive rates, it can
also adversely increase false positives, which reduces the
overall accuracy of the system. This is another drawback
of the SDM. In our experiments, we were able to combat
this by combining SDM with GEFeS, due to GEFeS’ abil-
ity to clearly discriminate between “self” and “non-self.”
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GEFeS and SDM were applied to the standard AIS and
mAIS, therefore, creating four variants:

e (-SDM, —GEFeS)—Neither SDM nor GEFeS were
applied.

e (+SDM, ~GEFeS)—SDM only.

e (-SDM, +GEFeS)—GEFeS only.

e (+SDM, +GEFeS)—Both SDM and GEFeS were
applied.

4 System model overview

We used static flow analysis to capture information
flows in Android apps. Based on the flows, we create a
feature vector of all the information flows captured in
each app. This process is outlined in the following
subsections:

A. Flow extraction. The first step involves static flow
analysis on an app’s code. This is used to capture the
flows from an app, which are then used for feature
vector creation.

B. Feature vector development. A feature vector is a set
of all flow combinations (i.e., source-to-sink combi-
nations) possible in an app. Each index inside the
feature vectors is the sum of each individual flow
found in the app. Therefore, if a flow is found to
exist inside the app, the corresponding index in the
feature vector is incremented. The feature vectors of
flows are used for malicious app classification.

4.1 Flow extraction

Flow extraction is the process of gathering source-to-
sink connections (flows) from an app. A source is a java
method which can access and return sensitive user or
device information, e. g., getContacts() returns contact
data stored in a user’s mobile device. A sink is a java
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method which can relay sensitive information from a
source method, e.g., sendSMS(). The connection be-
tween a source method and a sink method is called a
flow. FlowDroid [25] was used for flow analysis on the
dataset.

1. FlowDroid results: FlowDroid is a combination of
various Java archive (.jar) files, which are
consolidated into a single command prompt.
FlowDroid results give source-to-sink connections in
a particular app. Figure 4 shows a truncated Flow-
Droid report which describes the captured flows
from an app.

4.2 Feature vector development

The FlowDroid results are parsed to find all flows in
a particular app, which will then be used to create a
unique feature vector. This section describes: (1)
how flows are mapped into a matrix and (2) how
they are then copied into a one-dimensional feature
vector.

1. Flow matrix creation: Firstly, the list of all sources
and sinks that can be found in an Android app’s
source file are gathered from a predefined text file,
which was downloaded from the FlowDroid GitHub
repository. These sources and sinks are then inserted
into two individual vectors. The two vectors are
combined into a single two-dimensional matrix.
Each position within the matrix represents a unique
source-to-sink connection (flow) dependent on the
corresponding positions of the source’s and sink’s in
their original respective vectors.

2. Feature vector creation: For each individual app, we
create a copy of the matrix. The two-dimensional
matrix is populated with extracted flows from the

sink are on the dashed lines underneath

Fig. 4 Sample FlowDroid results for Adobe Reader App. Sinks are shown on lines beginning with “Found a flow..."” and sources that flow to the

Java.lang.String b -
n <OOM.8aMOD.android.sds.abi boolean a(android.os.Busdle)>
<oom.admob.android.sds.x! boolean a(android.os.Buadle)>

1a59.5tring) > ("0%) (10 <OOM,admOb.android.ads.ab! boolean

5 COOM.MAmOD.Android.eds.n! boolean a(android.os.Busal

<Oom. admob . android. ads.,
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FlowDroid results. Each position within the matrix
represents a sum of that particular flow within the
app. The process is as follows and delineated in

Fig. 5.

e Let (so; sk,) represent a unique source-to-sink
connection or flow in app ap. For every individual
connection (so;, sky) in ap, the correlating count
¢, is incremented by one.

e ¢, is inserted into a two-dimensional matrix tdm
at index [, t].

e This is repeated for each unique (so,, sk,) where
0 < i< N(source) and 0 < t < N(sink). N(source) and
N(sink) are the total number of the sources and
sinks, respectively.

e Vector v is initialized, and the contents of tdm
are transferred to v in a row-major order.

inspect
Application

Source to Sink
connection

incrementin
r.1aUI A

Create Feature
Vector

Fig. 5 Feature vector creation with flows
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Suppose a particular flow f occurs 15 times in an app.
Let the index of flow f in the two-dimensional matrix
tdm be (5, 4), and therefore, tdm [1, 4] contains the
number 15. When vector v is created, the index of flow f
will be 20, in accordance with the row-major order.
Therefore, index 20 of vector v will contain 15.

4.2.1 Feature vector truncation

All of the generated vectors (one per app) are appended
into a two-dimensional matrix. Each row is a feature
vector of an app. If a flow is not present in any of the
apps’ feature vectors, its corresponding column is re-
moved from the matrix. This is repeated for every flow
that was not present in any of the apps. The truncation
removes approximately 21,000 placeholders for possible
flows that are not present in our dataset. The resulting
matrix is written out to a file. Each row is given a new
line to represent an independent app feature vector. The
feature vectors are subsequently used during detector
set generation (Section 3.1) to create real-valued
detectors.

5 Dataset and experiments

Our dataset consists of 30 benign apps gathered from
the Google Play Store and 28 malicious apps obtained
from the Android Malware Genome Project [26]. The
Android Malware Genome Project is a repository of
1200+ malicious Android apps, organized in families of
related apps. Our primary focus was to gather as many
apps as possible and extract their features; therefore, we
were unable to explicitly target specific family of apps.
Due to Flowdroid’s increased runtime for larger apps, we
decided to only use apps <1 MB. Dataset collection was
conducted over the course of several weeks, 24 h a day.
Flowdroid was given 24 h to analyze an app. If the ana-
lyses process took longer than 24 h, the process was can-
celed and the app was discarded. The process ran on a
2.3 GHz Intel Xeon server with 120 GB of RAM. This
server contained the largest amount of RAM we were
able to solely dedicate to our experiments.

Initially, our dataset contained 30 malicious apps but
during feature vector similarity scoring using the
Manhattan Distance metric, we discovered the existence
of two malicious apps that consistently yielded a
Manhattan Distance of 0.0 with multiple benign apps. In
other words, the two malicious apps are identical to
multiple benign apps. These ambiguous apps adversely
affect the two-class identification process employed in
this research. Therefore, we chose to remove them from
our dataset for further study. For this research, the re-
moval of the two apps resulted in a dataset of 30 benign
apps and 28 malicious apps.

Six initial parameters were set before conducting each
experiment: number of malicious apps, number of
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benign apps, initial detector set size, width of detectors,
Tao (SDM only), r,s, and 7. Initial detector set size spe-
cifies the initial number of immature detectors to gener-
ate for negative selection. This applies to both non-self
detector sets and self detector sets. The width of detec-
tors specifies the interval for each range within a de-
tector. Tao is used for SDM only and signifies the
number of standard deviations away from the mean a
detector should be split. Lastly, r,s and 7, signify the r
values for non-self detector set and self detector set
negative selection, respectively. Each parameter and their
corresponding values can be seen in Table 1.

Limitations of our approach are as follows: (1) a lack
of an extensive dataset for experimentation and (2) a
lack of categorical information for collected data per-
taining to family designations. We were forced to use a
relatively small sample size for experimentation because
of processing and time constraints. This has limited our

Table 1 Parameters used for AIS and mAIS development
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ability to determine the scalability and adaptability of the
AIS and mAIS for real-world applications. We were un-
able to label the sample size collected with the appropri-
ate family tag because of our current processing power.
This will be remedied when we are able to upgrade our
server configuration to analyze the larger and more
complex apps.

6 Results

For the standard AISs and mAlISs, a sixfold cross-
validation was used where the training set consisted of
38 feature vectors associated with 20 benign and 18 ma-
licious apps, the tuning set consisted of 10 feature vec-
tors associated with 5 benign and 5 malicious apps and
the test set also consisted of 10 feature vectors associ-
ated with 5 benign and 5 malicious apps similar to the
setup used in [27].

Parameter Model Description Value/range
Number of malicious apps AlS, mAIS The number of malicious apps in our test set. 5
Number of benign apps AlS, mAIS The number of benign apps in our test set 5
Initial detector set AlS, mAIS Number of detectors randomly generated 1000
Width of detector AlS, mAIS The range for each interval during 1.0
detector generation
Tao AIS, mAIS Number of standard deviations to add 1
or subtract from the mean when
detectors are split
ms AlS, mAIS The r value for the “non-self” identifying +GEFeS (1...100)
detector set —GEFeS (100...200)
rs mAIS The r value for the “self” identifying +GEFeS (1...100)
detector set —GEFeS (100...200)
Non-self detector set size AIS, mAIS The number of non-self mature detectors. (1...40000)°
Self detector set size mMAIS The number self mature detectors (1...40000)°
Number of malicious AIS, mAIS Standard AIS: The number of malicious (0...5)
apps detected apps the mature detector set matched.
mAIS: the number of malicious apps our
committee machine was able to successfully
classify.
Number of benign AlS, mAIS Standard AlS: The number of benign apps (0...5)
apps detected the mature detector set did not match.
mAIS: The number of benign apps our committee
machine was able to unsuccessfully classify.
Accuracy AlIS, mAIS Percentage of correctly classified apps. (0...100%)
True positive rate AlS, mAIS Percentage of malicious apps correctly classified (0...100%)
as malicious
True negative rate AlS, mAIS Percentage of benign apps correctly classified (0...100%)
as benign
False positive rate AlIS, mAIS Percentage of classified benign apps incorrectly (0...100%)
classified as malicious
False negative rate AlS, mAIS Percentage of malicious apps incorrectly (0...100%)

classified as benign

2+GEFeS denotes a variation that used GEFeS, —GEFeS denotes a variation that does not use GEFeS

PThe maximum number for split detectors is 2 x n x d where n = training set size and d = initial detector set size. Therefore, 2 x 20 x 1000 = 40,000
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The cross-validation training was as follows. For the
first fold, the training, tuning, and test sets were as ex-
plained earlier and the standard AISs and mAISs were
30 times. On a particular run, a sweep of the r values,
for the self and non-self detector sets, was used to dis-
cover the best r value, for the any-r intervals matching
rule (where the self and non-self detector sets have their
own independent r value). For a particular r value, the
two detector sets were randomly generated and exposed
to the self and non-self training instances. Those detec-
tors that failed to match an instance were promoted to
mature detectors. The mature detectors of each detector
set were exposed to their respective instances of the tun-
ing set. The best-performing self r value/detector set
pairing and the best-performing non-self r value/de-
tector set pairing on the tuning set were retained. They
were retained to be exposed to the test set as a propor-
tion based. After being exposed to the test set, the statis-
tics, such as accuracy, TPR, FPR, TNR, and FNR were
recorded.

After the recording of the statistics for the first
fold, the 10 instances from the test set were removed
and appended to the training set. The 10 instances
from the tuning set became the new test set. The first
five self and five non-self instances (five benign, five
malicious apps) were removed from the training set
and appended to the tuning set. After the sets have
been modified/rotated, the second fold begins using
the same training method explained earlier. This
process is completed for the third, fourth, fifth, and
sixth folds, where the standard AISs and mAISs were
a total of 30 times for each fold, resulting in a total
of 180 runs.
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Table 2 presents the performances of the nine classifi-
cation methods on the 30-28 dataset. In Table 2, the first
column represents the methods, the second column rep-
resents the accuracies associated with each method. For
GEFeS, the top number represents the best performance
of the 30 runs while the number in parenthesis repre-
sents the average performance of the 30 runs. For the
standard AISs and mAISs, the top number represents
the average of the best performance on each of the six
folds and the number in parenthesis represents the aver-
age performance of the 180 runs.

In Table 2, the best performances given a particular
statistical measure are italicized. The best performance
for a statistical measure was determined by first looking
at the best individual performance of a method for a
particular statistical measure. In the event of a tie be-
tween two methods, the average performances of the
methods were used to break the tie. In terms of selecting
an overall best-performing method, we used accuracy. In
Table 2, one can see that all of the mAISs outperform
GEFeS and all of the standard AISs in terms of accuracy
with the mAIS,spam . geres having the best accuracy at
93.33%. One can see also that GEFeS alone outperforms
all of the standard AISs in terms of accuracy as well. In
terms of TPR and FNR, the AIS, spa .Geres has the best
performance, and for FPR and TNR, GEFeS has the best
performance.

The mAIS was able to outperform GEFeS only and the
standard AIS variants because of its ability to explicitly
generate detector sets which identify with a single class.
Unlike the standard AIS, where only one class is consid-
ered during training, the mAIS is able to capitalize on
training using both “self” and “non-self” and create

Table 2 The results of comparing the nine methods on the 30-28 dataset

Method Accuracy TPR TNR FPR FNR
GEFeS 70% 40% 100.0% 0.00% 60.00%
(53.67) (14.00%) (93.33%) (6.67%) (86.00%)
AlS_sop—ceres 53.33% 80.00% 26.67% 73.33% 20.00%
(35.39%) (49.00%) (21.78%) (78.22%) (51.00%)
AlS wsop—Geres 50.00% 80.00% 20.00% 80.00% 20.00%
(33.50%) (46.11%) (20.89%) (79.11%) (53.89%)
AlS_spw, +GEFes 51.67% 83.33% 20.00% 80.00% 16.67%
(32.11%) (42.44%) (21.78%) (78.22%) (57.56%)
AlSysom, +Geres 56.67% 93.33% 20.00% 80.00% 6.67%
(32.82%) (43.56%) (22.07%) (77.93%) (56.44%)
MAIS.spw, —Geres 88.33% 76.67% 100.00% 0.00% 23.33%
(66.72%) (46.00%) (87.44%) (12.56%) (54.00%)
MAIS.spm, —Geres 86.67% 73.33% 100.00% 0.00% 26.67%
(64.39%) (44.22%) (84.56%) (15.44%) (55.78%)
MAIS_sp, +Geres 86.67% 73.33% 100.00% 0.00% 26.67%
(60.72%) (41.11%) (80.33%) (19.67%) (58.89%)
MAIS,son, +ceres 93.33% 86.67% 100.00% 0.00% 1333%
(60.29%) (42.86%) (77.71%) (22.29%) (57.14%)

The best performances given a particular statistical measure are italicized



Brown et al. EURASIP Journal on Information Security (2017) 2017:7

corresponding detector sets. This creates a more distinct
difference between “self” and “non-self” within the hy-
pothesis space. Coupled with GEFeS, which adds more
distinction, and SDM, which fills in potential holes, the
mAIS was able to increase accuracy, TPR and TNR,
while also decreasing FPR and FNR.

7 Conclusions

In this paper, we introduce the Multiple-Detector Set
Artificial Immune System (mAIS). The mAIS is a modi-
fied version of the standard Artificial Immune System
(AIS) introduced by Hofmeyr [16]. Instead of producing
a single-detector set for identifying “non-self”, the mAIS
generates two detector sets, one for identifying “self”
and one for identifying “non-self.” The two detector sets
are used in a proportion-based classification technique.
The classification technique uses an “exclusive or” model
based on the proportion of fired detectors per set. The
mAIS approach produced a true positive rate of 88.33%.

We extended the mAIS further with two variants:
Genetic and Evolutionary Feature Selection (GEFeS), to
eliminate redundant and irrelevant features, and a vari-
ant of the negative selection algorithm called Split De-
tector Method (SDM). Both of these modifications
improved accuracy while reducing the FNR; however,
the FNR still remained relatively high. Our best results
occurred when both GEFeS and SDM were applied with
the mAIS simultaneously. This produced an accuracy of
93.33% with a true positive rate of 86.67% and a false
positive rate of 0.00%.

The results show the importance of using a self de-
tector set in reducing the FPR and FNR. This was ob-
served by [20, 21]. In essence, the self detector set
guards against potential autoimmune responses in that
its detectors represent instances belonging to “unknown”
self. This is similar to the “non-self” detectors represent-
ing instances of “unknown” non-self.

The results show that the AISs seem to have relatively
high FNRs. One solution to this can be found in [18, 26]
where Hou and Dozier use a genetic algorithm to search
for “holes” within an AIS. These holes are then patched
with additional non-self detectors. This requires poten-
tially a human in the loop or at least another system that
has a better understanding of “unknown” non-self.
Equipping AISs with the ability to work with humans in
an effort to reduce the FNR is critical in that “self” as
well as “non-self” can change over time.

In the future, we plan to pursue research with a human
in the loop AIS and apply this to the mAIS. With a human
in the loop, this would allow us to incorporate the full de-
tector set generation scenario detailed in Hofmeyr [17],
where a detector set consists of immature, mature, and
memory detector. In a dynamic environment, the human
in loop would determine the promotion of a detector from
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mature to memory. We could also explore imple-
menting lifespans to corresponding detectors, where
lifespan  timmature < tmature < tmemory- Lhis would allow
for a progressively diverse set of detectors as the
model evolves. Currently, our implementation only al-
lows for immature detectors with unlimited lifespan
in a static environment. Immature detectors are gen-
erally less accurate at differentiating between “self”
and “non-self” than mature and memory detectors.
With the inclusion of mature and possibly memory
detectors, we should expect an increase in classifica-
tion accuracy as a result.

We also plan to continue increasing our dataset size.
Our goal is to have a dataset which consists of 500 mali-
cious app samples and 500 benign app samples. With a
larger dataset size, we will be able to test the scalability
and portability of the mAIS. A larger dataset size not
only increases the number of mobile app samples, but it
could also increase the dimensionality of our problem
and each app feature vector. This could occur because
the number of features in each feature vector is deter-
mined by the existence of a particular feature across the
entire dataset, as explained in Section 4. Empirical evi-
dence is needed to determine if an increase in dataset
will significantly increase the computational complexity
of the mAIS. To accomplish this goal, we will continue
to run data collection and increase the computation pro-
cessing power available to us, which should aid in our
ability to gather larger mobile apps. With this increased
runtime and potential to analyze larger apps, we also
plan to reorganize the mobile apps into their appropriate
families, to determine if there is a significant difference
in detection.

8 Endnotes

'A lowercase “m” was used in the spelling of mAIS to
signify the similarity the mAIS shares with the Standard
Artificial Immune System (AIS).
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