
Real-Time Syst (2017) 53:45–81
DOI 10.1007/s11241-016-9258-z

Real-time scheduling algorithm for safety-critical
systems on faulty multicore environments

Risat Mahmud Pathan1

Published online: 20 September 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract An algorithm (called FTM) for scheduling of real-time sporadic tasks on a
multicore platform is proposed. Each task has a deadline by which it must complete
its non-erroneous execution. The FTM algorithm executes backups in order to recover
from errors caused by non-permanent and permanent hardware faults. The worst-case
schedulability analysis of FTM algorithm is presented considering an application-
level error model, which is independent of the stochastic behavior of the underlying
hardware-level fault model. Then, the stochastic behavior of hardware-level fault
model is plugged in to the analysis to derive the probability of meeting all the dead-
lines. Such probabilistic guarantee is the level of assurance (i.e., reliability) regarding
the correct functional and timing behaviors of the system. One of the salient features
of FTM algorithm is that it executes some backups in active redundancy to exploit
the parallel multicore architecture while other backups passively to avoid unnecessary
execution of too many active backups. This paper also proposes a scheme to determine
for each task the number of backups that should run in active redundancy in order to
increase the probability of meeting all the deadlines. The effectiveness of the proposed
approach is demonstrated using an example application.

Keywords Real-time systems · Fault-tolerant systems · Global multiprocessor
scheduling · Schedulability tests · Probabilistic analysis

B Risat Mahmud Pathan
risat@chalmers.se

1 Department of Computer Science and Engineering, Chalmers University of Technology, 412-96
Göteborg, Sweden

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81923368?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-016-9258-z&domain=pdf

46 Real-Time Syst (2017) 53:45–81

1 Introduction

The demand for more functions and comfort features in today’s prevailing computer-
ized systems is increasing. The types and varieties of different functions or services
determine the competitiveness of computerized systems—e.g., portable devices, cars,
aircrafts—in themarket. Amodern passenger car, now-a-days equippedwith dozens of
processors, does not only provide functions related to vehicle control but also supports
services related to comfort and safety.Moreover, such safety-critical systems also have
certain important design constraints, for example, real-time and fault-tolerant con-
straints. Integrating more functions while satisfying such design constraints requires
more computation power. Luckily, contemporary multicore processor provides such
computation power.

Multicore processors are and will be the main enabler to meet the growing demand
of computing power for many embedded and safety-critical systems, e.g., in the auto-
motive and aerospace domains. Two of themain advantages of multicore processor are
higher computation power and the ability to execute programs in parallel. These bene-
fits of multicore (unlike uniprocessor) result in shorter response time for time-critical
application by allowing independent parts of the application to execute in parallel.

This paper considers safety-critical applications (e.g., control and monitoring) that
are modeled as a collection of sporadic tasks with hard real-time constraints, i.e., com-
putation of each task must be completed by some pre-specified deadline. In addition,
the correct output of such tasks has to be guaranteed. In order to avoid catastrophic
consequences (e.g., injury or death), one of the major challenges during the design
of safety-critical real-time systems is to guarantee that correct output is generated
before deadline even in the presence of faults. The design and analysis of a multicore
scheduling algorithm to meet the hard deadlines of an application while making the
algorithm robust with fault-tolerance capability is the focus of the research presented
in this paper.

Each sporadic task potentially releases infinite number of instances, called jobs,
such that consecutive jobs are separated by a minimum inter-arrival time (often called,
the period of the task). Each task τi has a relative deadline Di which is less than or
equal to its period (i.e., constrained-deadline sporadic task model is considered).
Tasks are assumed to be independent, i.e., the only resource they share is the CPU
time. However, the proposed approach of this paper can be extended for other shared
resources, for example, based on abort-and-restart model of computation (Wong and
Burns 2014; Ras and Cheng 2010). The real-time constraint is that if a job of task
τi released at time r , then the job must generate its output before its deadline which is
at time (r +Di). The fault-tolerant constraint is that the correct output of each job has
to be generated by recovering from any possible occurrence of error during execution.

According to Avižienis et al. (2004), a fault is a source of an error which is an
incorrect state in the system that may cause deviation from correct service, called
failure. When some core of a multicore platform ceases functioning (i.e., fails), such
faulty behavior is characterized as a core failure. By a core failure, we mean that one
core of the multicore chip is faulty; not that the entire chip is damaged. When all the
cores fail, then the entire chip is considered to be permanently faulty. On the other
hand, when the behavior of a job of a task is incorrect (e.g., wrong output or wrong

123

Real-Time Syst (2017) 53:45–81 47

path) while the core executing that job is non-faulty, such behavior is characterized as
a job error, not as a job failure, because the aim of this paper is to mask job errors to
avoid job failures.

This paper proposes the design and the analysis of a Fault-TolerantMulticore (FTM)
scheduling algorithmbased on time-redundant execution of backups tomask job errors
and tolerate core failures. The job errors and core failures are assumed to occur due
to non-permanent and permanent hardware faults, respectively. By non-permanent
hardware faults we mean temporary malfunctioning of computing unit, for example,
due to hardware transient faults. By tolerating core failures, we do not mean that
a faulty core becomes functional again or repaired; rather we mean that the job of
the task that was executing on the faulty core still meets its deadline by completing
execution on some other (non-faulty) core.

The main contribution of this work is the derivation of closed-form expression that
can be applied offline (i.e., before the system is put in mission) to compute probabilis-
tic schedulability guarantee of an application hosted on a multicore platform. Such
probabilistic guarantee is the level of assurance regarding the correct functional and
timing behaviors of the system. Safety-critical (e.g., automotive) systems require such
offline guarantee. If the level of assurance (computed in terms of probabilistic schedu-
lability guarantee in this paper) is low with respect to some standard, then the design
of the system is considered to be unsafe and the system may need to be redesigned.
This paper presents a complete methodology to evaluate such level of assurance of
safety-critical system regarding its ability to generate timely and correct output.
Fault-Tolerant Real-Time Scheduling There are two main approaches to real-time
scheduling on multicores: partitioned and global approach (Carpenter et al. 2004). In
partitioned scheduling, each task of an application is allocated to some core during
design time and its jobs are allowed to execute only on that core at run-time (i.e., a
job of a task cannot migrate to another core). In global scheduling, a job of a task
is allowed to execute on any core even when it is resumed after preemption (i.e., a
task canmigrate to another core). The strict non-migratory characteristic of partitioned
multiprocessor scheduling is relaxed in so called semi-partitioned scheduling inwhich
some tasks are allowed tomigrate to a different processor (Andersson et al. 2008; Kato
and Yamasaki 2009; Lakshmanan et al. 2009; Pathan and Jonsson 2010a). A recent
survey on (non-fault-tolerant) multiprocessors real-time scheduling can be found in
Davis and Burns (2011).

In fault-tolerant real-time scheduling, each task is considered to have one primary
and one ormore backups that apply to its jobs. There are several works on fault-tolerant
scheduling based on partitioned and global approaches for multiprocessors (Oh and
Son 1994; Bertossi et al. 1999; Hashimoto et al. 2000; Chen et al. 2007; Kim et al.
2010; Berten et al. 2006; Girault et al. 2003; Liberato et al. 1999; Pathan and Jonsson
2011a; Huang et al. 2011). In partitioned fault-tolerant scheduling, a task-allocation
algorithm assigns the primary and backups of each task to distinct processors1 at
design time. In case of a job error or a processor failure is detected, the output of a

1 The terms “core” and “processor” are used synonymously in this paper.

123

48 Real-Time Syst (2017) 53:45–81

backup that is non-erroneous and assigned to some other processor is chosen as the
output.

One of the limitations of the previously proposed task-allocation algorithms (Oh
and Son 1994; Bertossi et al. 1999; Chen et al. 2007; Kim et al. 2010;Girault et
al. 2003) is that these algorithms do not make any distinction between job errors and
processor failures. Most of the earlier works considered mainly partitioned scheduling
to tolerate particularly permanent faults, which (implicitly) can also tolerate transient
faults; but at the expense of space redundancy since all backups of a task are allocated
to distinct cores. In otherwords, job errors aremasked by pessimistically assuming that
the processor on which the corresponding task is assigned has failed. This pessimism
requires a relatively higher number of processors to successfully assign all the primary
and backups even when only job errors are to be masked. Such over provisioning of
the computing resources in the partitioned approach is costly for resource- and cost-
constraint embedded systems. Moreover, finding an optimal assignment of tasks to
processors is NP-hard (Garey and Johnson 1979).

The main motivation for this work is to design a resource-efficient scheduling
algorithm to tolerate core failures and propose particular mechanisms to mask job
errors. Coming up with a resource-efficient scheduling algorithm to mask job errors is
important since job errors are more frequent due to the rising trend of non-permanent
hardware faults in computer electronics, as it was pointed out by Baumann (2005),
Srinivasan et al. (2004), and Borkar (2005). This paper considers tolerating both
non-permanent and permanent faults using global scheduling that does not need any
(offline) allocation of backups, which can reduce the number of required cores. In
global scheduling, the primary and backups are not statically allocated to any core;
rather the primary and the backups are dispatched for execution on any free core
even after preemptions. Unlike the abort-and-restart model of computation (Wong
and Burns 2014; Ras and Cheng 2010), the preempted tasks continue their execu-
tion once higher priority tasks complete execution2. The proposed FTM algorithm in
this paper is designed based on the following two simple strategies applied to global
multicore scheduling:

• Tomask job errors caused by non-permanent faults, the global scheduling approach
during run-time can simply schedule a backup of the faulty job to any core even to
the core on which the job error was detected. This is because, due to the transient
nature of non-permanent faults, tolerating a job error does not restrict a backup to
be executed on a fixed (pre-allocated) core.

• To tolerate core failures caused by permanent hardware faults, the global schedul-
ing approach during run-time simply considers that the job which was executing
on the faulty core has encountered a job error. In other words, a core failure can be
viewed from themigratory scheduler’s point of view as a job error. Then, tolerating
a core failure is same as tolerating a job error, i.e., the scheduler simply dispatches
the backup of the affected job to any non-faulty core.

2 In abort-and-restart model (Wong and Burns 2014; Ras and Cheng 2010), a preempted (lower priority)
task is aborted and starts as a new task when higher priority tasks complete execution.

123

Real-Time Syst (2017) 53:45–81 49

Our proposed algorithm, called FTM, is designed based on global preemptive fixed-
priority (FP) scheduling approach to tolerate both job errors and core failures. The
detail dispatching policy of FTM algorithm is presented in Sect. 3.
Time Redundancy Achieving fault-tolerance in computer systems requires employ-
ing redundancy either in space or time (Koren and Krishna 2007). The use of time
redundancy to tolerate both job errors and core failures is advocated in this paper
considering the size, weight and power constraints in many embedded systems. We do
not address the problem of tolerating the failure of an entire multicore chip or system
software (e.g., RTOS), which can be addressed using space redundancy, for example,
by replicating all the channels using triple modular redundancy (TMR). In this paper,
errors are assumed to be detected using some existing hardware- or software-based
error detection mechanisms that are already available on the target platform (Meixner
et al. 2008; Al-Asaad et al. 1998; Jhumka et al. 2002; Hiller 2000).

The FTM algorithm employs time-redundant execution of multiple backups to tol-
erate multiple errors. A backup can be the re-execution or a different implementation
of the primary. The term “error” in general in this paper is used to specify both job
errors and core failures. Multiple errors, for example, due to burst of non-permanent
hardware faults, may affect the same job in such a way that the primary and multiple
backups of that job may become erroneous. To deal with such scenarios, FTM consid-
ers the use of multiple backups for each task (in particular, for each of its jobs). No
single primary/backup can execute on more than one core at any given time instant in
FTM scheduling. However, different primaries and backups may execute on different
cores in parallel, as is explained in next paragraph.

Each backup of a job is categorized either as an active or passive. In FTM scheduling,
when a job of a task is released, all of its active backups always become ready for
execution along with its primary. Therefore, the primary and the active backups have
the potential to execute in parallel on different cores. In contrast, the passive backups
of a job become ready for execution one-by-one if the primary and all the previously-
dispatched backups (active or passive) of that job have been detected to be erroneous.
If the primary or any of the active backups completes execution without an error being
detected, no passive backup is executed. Note that wemay abort the execution of active
backups as soon as the primary or any of the active backups completes successfully.
Such abortion of active backups will definitely avoid unnecessary execution. In many
works on mixed-criticality scheduling, low-critical tasks are aborted when some high-
critical task risk missing its deadline (Baruah and Fohler 2011; Baruah et al. 2011;
Pathan 2014). An interesting future work is to extend this work by applying analysis
similar to that of mixed-critical systems to abort active backups. In this paper, we
assume that all the active backups are executed till completion (i.e., no active backup
is aborted).

An active backup can execute in advance (i.e., pessimistically assuming that errors
will be detected later on) even though no error is ultimately detected. Active redun-
dancy may consume more processing resource (hence, energy) but provides better
fault-tolerance for low-laxity (shorter deadline) tasks. In contrast, passive redundancy
may consume less processing resource but may not provide enough fault-tolerance for
the low-laxity tasks. One of themajor challenges addressed in this paper is determining
how many backups of a task should be active whenever a job of that task is released.

123

50 Real-Time Syst (2017) 53:45–81

In particular, a heuristic is proposed to determine the number of active backups for
each task so that the system has higher likelihood of meeting all the deadlines even in
the presence of faults.
ContributionsTo take advantages of both active and passive redundancy,FTM executes
a fixed number of backups for any job of a particular task in active redundancy and
other backups in passive redundancy. Combining active and passive redundancy in
FTM scheduling has the following benefit: multiple active backups and the primary
have the potential to execute in parallel on the multicore architecture and executing
other backups passively avoids unnecessary execution of too many active backups if
too many errors are unlikely.

The exploitation of time to achieve fault tolerance in hard real-time systems must
not lead jobs to miss their deadlines. In order to ensure that the deadlines of the jobs of
each task are met even in the presence of faults, the worst-case schedulability analy-
sis of FTM algorithm is presented. This analysis is based on a simple but powerful
application-level error model but independent of the stochastic behavior of any partic-
ular hardware-level fault model. The outcome of the analysis is that, for each task, the
maximum number of errors that each of its job can tolerate is derived. Note that this
maximum is same for the all jobs of the same task and could be different for jobs of
different tasks since the maximum duration for which jobs of different tasks execute
(i.e, remain active) are different.

The “separation” of the stochastic behavior of a particular fault model from the
application-level error model has the following advantage. The stochastic behavior
of any fault model can be plugged in to the analysis later in order to determine the
probability of “actual” number of errors during run-time not being larger than the
maximumnumber of tolerable errors for each job. To this end, a closed-formexpression
to compute the probabilistic schedulability guarantee, i.e., all deadlines are met with
certain probability, considering the stochastic behavior of two particular fault models
is derived. Coming up with such probabilistic guarantee during the design and the
analysis is important to demonstrate adequate confidence in safety-critical system’s
correct timing and functional behavior, for example, for system certification.

The two hardware-level fault models considered in his paper are called (i) the B
fault model, and (ii) the R fault model. The B model considers that non-permanent
hardware faults occur randomly as well as in Bursts whereas the R model considers
that such faults occur onlyRandomly. The failure rate of non-permanent faults during
a bursty period is much higher than that of during non-bursty period. However, both
B and R fault models consider that permanent hardware faults occur only randomly.
Note that theRmodel is a specialization of the B model with no bursty period. The B
model is same as the fault-burst model recently used by Short and Proenza (2013) for
uniprocessor fault-tolerant scheduling. We extend the analysis of this model to apply
in the multicore context.

Finally, a heuristic that can be used by the system designer to determine the number
of active backups for each task is proposed. Rather than arbitrarily configuring some
backups of each task as active and others as passive, this heuristic presents a systematic
approach to determine the number of active backups for each task so that the probability
of meeting all the deadlines for a given fault model is increased. The effectiveness of
the proposed approach in this paper is demonstrated using an example application.

123

Real-Time Syst (2017) 53:45–81 51

Organization This paper is organized as follows. Section 2 presents the error, fault and
application models. Section 3 presents the FTM algorithm. The worst-case schedula-
bility analysis of FTM scheduling algorithm to determine the maximum number of
tolerable errors for each task is performed in Sect. 4. Then, the probabilistic analy-
sis of FTM algorithm is presented in Sect. 5 considering the stochastic behavior of
fault models. A heuristic to determine the number of active backups for each task is
presented in Sect. 6. The results of sensitivity analysis using an example application
is proposed in Sect. 7. Related works are presented in Sect. 8 before we conclude in
Sect. 9.

2 Error, fault and application model

This paper considers the scheduling of a set of sporadic tasks on a multicore platform
consisting of M homogeneous cores. The normalized speed of each core is 1. The error,
fault and application model are presented in this section.
Error Model Algorithm FTM considers tolerating both job errors and on-chip core
failures. The application-level error model is very general in the sense that errors can
be detected in the primary and even in the backups of any job of any task, at any
time and in any core. The error model does not put any separation restriction between
occurrences of consecutive errors or does not assume any probability distribution of
the errors. Considering such a general application-level error model provides us the
“power” to keep the stochastic behavior of hardware-level fault model separate during
the worst-case schedulability analysis of FTM algorithm. Considering the separation
between the error model and fault model is reasonable because the way hardware
faults are manifested as application-level errors depends on many factors, like error-
detection mechanisms, the schedule of the tasks, the type and frequency of faults,
etc.

Errors are assumed to be detected using some existing hardware/software based
error-detection mechanisms, for example, built-in error detection capabilities in mod-
ern processors (Meixner et al. 2008; Al-Asaad et al. 1998) or executable assertions
(Jhumka et al. 2002; Hiller Hiller:2000), etc. The analysis presented in this paper is
not changed for undetected errors. Errors that bypass the detection at the multicore
chip level need to be tolerated using space redundancy at the system level and is not
addressed in this paper.
Fault Model The job errors and core failures are assumed to occur due to hardware
faults that are non-permanent and permanent, respectively. The type of non-permanent
faults that may cause task not to generate correct output (called, value failures) are
considered in our fault model. Value failures can be arbitrary, i.e., produces different
results at different run. Since we rely on effective error-detection mechanisms, such
arbitrary faults can also be tolerated using our proposed scheme whenever the corre-
sponding errors are detected. To tolerate f arbitrary faults, we do not need 3 f + 1
backups as is required in distributed consensuswithmalicious nodes [known asByzan-
tine agreement problem Jalote (1994)]. This is because malicious nodes in Byzantine
problem are not identifiable by the non-malicious nodes. In contrast, this paper con-
siders that value failures are detected (i.e., identifiable) using some error-detection

123

52 Real-Time Syst (2017) 53:45–81

mechanism. The type of non-permanent faults that may cause task not to generate out-
put by its deadline [characterized as timing faults or omission faults Jalote (1994)] are
considered in our fault model. Such faults may be detected using watchdog timer and
can be tolerated using our proposed fault-tolerant scheduling policy. Since we rely on
effective error-detection mechanisms, we can tolerate any type of faults as long as the
corresponding error is detected and a non-erroneous execution meets task’s deadline.

The errors/failures may be detected during the execution of any task at any time,
even during the execution of backups. By a core failure, we mean that one core of the
multicore chip is faulty; not that the entire chip is damaged [known as crash failure
Jalote (1994)]. When all the cores are permanently faulty, then the entire chip is con-
sidered to be permanently faulty. A permanent core failure is assumed to be caused
by some permanent fault in the hardware, for example, failure of an ALU in some
core. We consider fail-stop cores: each core is either working correctly or ceases func-
tioning.Many interesting architectural techniques, for example, configurable isolation
(Aggarwal et al. 2007), are proposed for fault containment at core level (i.e, one core
failure does not cause other cores on the same chip to fail).

A core failure is tolerated in FTM algorithm by executing the backup of the affected
job on other (non-faulty) core. This paper considers the scenario inwhich themulticore
exhausts the cores over time. Such core-exhaustion will cause the schedulability of
the jobs to become worse over time since a relatively less number of non-faulty cores
will be available due to such architecture deterioration. To account for such scenario,
as will be evident later, the schedulability analysis of the jobs of a task is performed
by varying the number of non-faulty cores ranging from M to 0.

A job error can be caused by random non-permanent faults that are temporary mal-
functioning of the computing unit that happens for a short time and then disappear
without causing a permanent damage. Hardware transient fault is a well-known exam-
ple of random non-permanent faults. The main sources of transient faults in hardware
are environmental disturbances like power fluctuations, electromagnetic interference
and ionization particles. Transient faults are the most common, and their number is
continuously increasing due to high complexity, smaller transistor sizes and low oper-
ating voltage for computer electronics (Shivakumar et al. 2002;Baumann 2005;Borkar
2005). Job error due to such fault can be masked by re-executing the job because it
is expected that the same fault would not reappear. Multiple random non-permanent
faults may cause multiple job errors.

Multiple job errors can also be caused by bursts of non-permanent faults. Fault
burst may occur when the system is exposed to very harsh environment and the rate
of faults during a burst period is much higher in comparison to that of rate of faults
during non-bursty period. For example, electromagnetic interference (EMI) caused by
lighting strikes may cause incorrect computation and bit flips in architectural registers.
Other examples are automotive and avionics systems exposed to higher EMI levels
when passing airport radar or communication facilities (Many and Doose 2011).

In a study by Ferreira et al. (2004), it is found that 90 % of the errors in the CAN
network are due to burst of faults with an average burst length of 5 µs. The length
of fault burst is also found to be bounded due to voltage (Joseph et al. 2003) and
temperature fluctuations (Sherwood et al. 2003). To that end, fault burst is assumed to
be non-permanent since the length of a bursty period is generally bounded but fault

123

Real-Time Syst (2017) 53:45–81 53

burst may reappear, for example, when the system enters again in the high EMI field.
Although burst of faults can be avoided using shielding (e.g., in space shuttles), the
cost of shielding each critical hardware could be quite high for relatively low-cost
safety-critical systems, for example, automotive. Therefore, cost-constrained safety-
critical systems need alternative mechanism to mitigate the affect of burst of faults.
This paper exploits the computation power of multicore processor to tolerate bursts of
faults using time redundancy. Job errors due to random/burst of non-permanent faults
can be masked by executing backups of the corresponding task.

This paper considers stochastic behavior of two different faults models: (i) B fault
model, and (ii)R fault model.
(i)BModelThis model is a derivative of the Gilbert–Elliott’s fault-burst model (Elliott
1963) as used by Short and Proenza (2013) in the context of fault-tolerant scheduling.
The B model is represented using five parameters: λc, λb, λr , LG and LB having the
following interpretations.

The B model considers that non-permanent faults occur in bursts as well as ran-
domly during so called bursty and non-bursty states, respectively. The expected (mean)
gap between two consecutive fault bursts is LG and the expected (mean) duration of
one fault burst is LB where both LG and LB has geometric distribution. In other words,
the expected inter-arrival time of fault bursts is (LG + LB).

Permanent hardware faults are assumed to occur only randomly. Permanent hard-
ware faults in the multicore occur at constant failure rate λc. The non-permanent
hardware faults in each core occur with constant failure rates λb and λr during bursty
and non-bursty states, respectively. Note that the failure rates of non-permanent faults
apply to each core. This is because we consider the situation where some external
condition that causes non-permanent faults to occur at a rate λb or λr may affect all
the cores. In other words, fault propagation is considered as follows: if a multicore
chip suffers non-permanent faults at a rate λb or λr , then each core is assumed to suffer
non-permanent faults at a rate λb or λr . This is depicted in Fig. 1.

Note that the stochastic behavior of this fault model does not force any temporal
distribution regarding the actual occurrences of the faults. The actual faults may occur
at any time and there is no assumption regarding the inter-arrival time of consecutive
faults. The stochastic behavior of a fault model is used to reason about the actual faults
that occur at run-time.
(ii)R model This model is a specialization of the B model with no fault burst. TheR
model considers that both permanent and non-permanent hardware faults occur only
randomlywith constant failure rateλc andλr , respectively. The detail stochastic behav-
ior of these two fault models will be presented when the probabilistic schedulability
analysis of FTM algorithm is presented in Sect. 5.
RelationshipBetweenError andFaultModel The faultmodel represents the frequency,
type and nature of actual faults that affect the hardware, for example, transient faults
arriving at a constant rate. The manifestation of faults as job errors or core failures at
the application level is captured in the error model. The error model is the application-
level view of the underlying hardware-level fault model.

In this paper, the worst-case schedulability analysis of FTM algorithm is performed
considering the error model and without any concern regarding the stochastic behavior
of any particular fault model. For example, if the occurrences of two hardware faults

123

54 Real-Time Syst (2017) 53:45–81

Fig. 1 Stochastic behavior of non-permanent faults where LB and LG are respectively the expected (mean)
length of bursty and non-bursty states where both LG and LB have geometric distribution. The expected
(mean) gap between two consecutive bursts is LG and the expected (mean) duration of a fault burst is LB .
The expected inter-arrival time of fault bursts is (LG + LB). Non-permanent faults occur at rate λb and λr
during bursty and non-bursty periods, respectively

are separated by a certain distance, then the detection of the corresponding errors
(given that these faults lead to errors) may not be separated by the same distance
at the application level. This is because the way hardware faults are manifested as
application-level errors depends on many factors, like error-detection mechanisms,
error-detection latency, the schedule of the tasks, and so on.

The independence of the error model from the underlying fault model enables us to
perform the probabilistic schedulability analysis by plugging in the stochastic behavior
of any particular fault model to the analysis of the FTM algorithm. As will be evident
later that due to such “separation of concern” between the fault and error models,
different probabilistic schedulability guarantee for the same application is derived for
different fault models.
Application Model This paper considers real-time application modeled as a collection
of sporadic tasks. The tasks of the application are scheduled on a multicore platform
havingM cores.Anapplication is a collectionofn sporadic tasks in setΓ = {τ1, . . . τn}.
Each sporadic task τi is characterized by a 4-tuple < Ti , Di ,

−→
Bi , hi > where

• Ti is theminimum inter-arrival time of the jobs of task τi . The parameter Ti is often
called the period of the task.

• Di is the relative deadline of each job of task τi such that Di ≤ Ti .

• −→
Bi is a vector < E0

i , E
1
i , E

2
i . . . > where E0

i is the (WCET) of the primary and
Eb
i , for b ≥ 1, is the WCET of bth backup of τi . The size of this vector is finite

since each task can execute only a finite number of backups before its deadline.
• hi is the number of active backups that each job of task τi execute in active
redundancy. In other words, total hi backups for each job of task τi become ready
along with the primary regardless whether an error is detected or not.

123

Real-Time Syst (2017) 53:45–81 55

The task-level parameter hi , which represents the number of active backups of task τi ,
is set by the system designer to take advantages of both active and passive backups.
Section 6 presents a heuristic to determine the value of hi for each task τi such that
the probability of missing any deadline is reduced in comparison to the case where
all the backups of each task are passive. Note that different tasks may have different
number of active backups. This is because some low-laxity task may not complete
the execution of its backups if such backups are configured as passive. Therefore, the
number of active backups for such low-laxity tasks may be higher in comparison to
the tasks that have relatively higher laxity. For example, some high-laxity task may
have all its backups configured as passive backups whereas some other low-laxity task
may have all its backups as active backups.

A sporadic task τi generates an infinite sequence of jobs with consecutive arrivals
separated by at least Ti time units. If a job of task τi is released at time r , then this job
must complete the execution of its primary and backups before deadline d = (r+Di).
And, the next job of task τi is released no earlier than (r + Ti). In this paper, all time
values (e.g., WCET, relative deadline, time length) are assumed to be non-negative
integer. This is a reasonable assumption since all the events in the system happen only
at clock ticks.

Themultiple backups of task τi are ordered in vector
−→
Bi based on system designer’s

preference, i.e., the output of the primary is preferred over the first backup which in
turn is preferred over the second backup, and so on. A backup can be the re-execution
or a different implementation of the primary. Therefore, the WCET of a backup may
be smaller, greater or equal to the WCET of the corresponding primary.

For each job of task τi , the number of backups that execute in active redundancy
(configured by the system designer) is hi . If f errors affect the same job of task
τi during run-time, then at most max{hi , f } backups of that job need to complete
execution to mask f errors. We denote C f

i the sum of WCET of the primary and
backups of a job of task τi that needs to mask f errors at run-time, and is calculated
as follows:

C f
i = E0

i + E1
i + . . . + Emax{hi , f }

i (1)

Equation (1) computes the total workload of the primary and backups of task τi when
a job of τi suffers f errors. Although Eq. (1) is the sum of the primary andmax{hi , f }
backups of task τi , it does not imply that the primary and backups are executed sequen-
tially; the primary and active backups can execute in parallel on different cores. We
denote ̂C f

i the sum of WCET of the passive backups of a job of task τi that needs to

mask f errors at run-time. Since Chi
i is the total WCET of the primary and hi active

backups according to Eq. (1), ̂C f
i is calculated as follows:

̂C f
i = C f

i − Chi
i (2)

Note that if f is less than hi , then no passive backup needs to be executed to mask f
errors, and therefore, ̂C f

i = 0. Since passive backups are executed one at a time, the

execution of ̂C f
i time units is completed sequentially. Next we present an example

application which will be used as the running example throughout this paper.

123

56 Real-Time Syst (2017) 53:45–81

Table 1 Five tasks of instrument control application

Task’s name (τi) E0
i E1

i Eb
i for b ≥ 2 Di Ti hi

Mode management (τ1) 25 18 25 70 100 1

Mission data management (τ2) 10 12 10 80 200 0

Instrument monitoring (τ3) 5 10 5 100 250 1

Instrument configuration (τ4) 40 42 40 120 200 0

Instrument processing (τ5) 25 15 25 150 300 1

All values are in milliseconds (ms)

Example 1 Consider a real-time application, called “Instrument Control (IC)”, that
is responsible for managing the onboard instruments in some safety-critical systems
used for some specific mission (for example, the instruments used for collecting and
analyzing diagnostic information of the electrical and electronic components in a
modern truck or car). Also consider that this application is modeled as a collection of
five real-time tasks given in Table 1. The first backup of each task has different WCET
than that of the corresponding primary. Also assume that the WCET of bth backup for
b ≥ 2 is equal to that of the primary, i.e., Eb

i = E0
i for b ≥ 2.

The number of backups that are executed in active redundancy for each job of task
τi is hi (given in the last column of Table 1). For example, each job of Instrument
monitoring task (τ3) executes h3 = 1 backup in active redundancy. The WCET of the
primary, first and second backups of a job of τ3 are E1

3 = 5, E1
3 = 10 and E2

3 = 5,
respectively.

If a job of task τ3 is affected during run-time by f = 2 errors, then at most
max{ f, h3} = 2 backups of task τ3 need to execute to mask f = 2 errors. The sum
of WCET for the primary and two backups of this job to mask 2 errors is C f

i = C2
3 =

∑2
z=0 E

z
3 = 5 + 10 + 5 = 20 according to Eq. (1). And, the total WCET due to

the passive backups (there is only one passive backup) for this job is ̂C f
i = ̂C2

3 =
C2
3 − C1

3 = 20 − 15 = 5 using Eq. (2).

The tasks are assumed to be independent in the sense that the only resource they
share is the processor platform. The cost of different kinds of overhead, for example,
context switch, preemption and migration, error detection are assumed to be included
in the WCET of each task. This is because, to the best of our knowledge, at least for
now, there is no analytical method available to calculate the cost of such overheads
for sporadic task systems considering different processors architecture and operating
systems. Although we do not address such issues in this paper, one can rely on exper-
imental studies (similar to Brandenburg et al. 2008) to measure these overhead costs
considering the application, operating system and the target hardware platform.

Priority Without loss of generality, a task with lower index is assumed to have
higher fixed priority (i.e., τ1 is the highest and τn is the lowest priority task). The set
of higher priority tasks of τk is denoted as hp(k). The primary and all backups of task
τi ∈ hp(k) have higher priorities than the priority of the primary and all backups of
τk . And, the priority ordering among the primary and backups of the same job of each

123

Real-Time Syst (2017) 53:45–81 57

task τi is based on the ordering of backups in
−→
Bi , i.e., primary has higher priority

over the first backup which in turn has higher priority over the second backup, and
so on. Such fixed-priority ordering respects the designer’s preference of ordering the
primary and backups for each task.

3 Algorithm FTM: tasks dispatching policy

In this section, the tasks dispatchingpolicy for FTM algorithm is presented.Weconsider
that there are total M cores available only for executing the tasks. All jobs that are
released but have not yet completed their execution are stored in a common ready
queue and dispatched by FTM as follows:
1© The primary and hi (active) backups of a job of τi are stored in the ready queue
whenever a new job of τi is released.
2© If a core fails, then no job is dispatched on that core.
3© The primaries/backups from the ready queue are dispatched based on preemptive
global FP scheduling approach. If some (non-faulty) core is idle, then the highest-
priority primary/backup from the ready queue is dispatched for execution on that
core. If all the cores are busy executing jobs, then a higher-priority primary/backup in
the ready queue is allowed to preempt a currently-executing relatively lower-priority
primary/backup. The preempted primary/backup may later resume its execution on
any core.
4© If the primary or any backup of a job of task τi completes execution without
signaling an error, then the corresponding output is selected as the job’s output. If the
primary and all the active backups of a job of task τi are erroneous, then one-by-one
additional backup of task τi (which was passive so far) becomes active/ready.

In summary, the FTM scheduler executes the primary and all the hi (active) backups
of each job of task τi using preemptive global FP scheduling policy. If the primary or
a backup of task τi generates non-erroneous output, then this output is selected as τi ’s
output. If the primary and all the backups of τi are erroneous, then one-by-one passive
backup becomes active until the error is masked.

It is considered that an error is detected at the end of execution of the primary
or backup. This is the worst-case scenario for error detection because it corresponds
to having a relatively closer job’s deadline than that of the case when the error is
detected earlier. The worst-case schedulability analysis of FTM algorithm is presented
inSect. 4 to determine for each task themaximumnumber errors that eachof its jobs can
tolerate. In Sect. 5, the probabilistic schedulability analysis is presented considering
the stochastic behavior of fault models.

4 Worst-case schedulability analysis of FTM algorithm

This section presents the schedulability analysis of FTM algorithm to derive, for each
task τk ∈ �, themaximumnumber of task errors that any of its job can tolerate between
its release time and deadline by assuming that exactly ρ cores fail during run-time.
The analysis of this section [particularly Eq. (12) of Theorem 2] is applied to each

123

58 Real-Time Syst (2017) 53:45–81

Fig. 2 Scheduling window of an arbitrary job Jk of task τk

task to find the maximum number of task errors that any job of the task can tolerate.
The parameter ρ captures the effect of core-exhaustion over time due to permanent
faults. The value of ρ can range from 0 to M (where ρ = 0 specifies that all the cores
are non-faulty and ρ = M specify that all cores are faulty).

The schedulability condition (i.e., whether all jobs’ deadlines are met) for each task
τk is derived based on the worst-case analysis of an arbitrary job of this task. Consider
an arbitrary job, denoted by Jk , of task τk where rk and dk are the release time and
deadline of job Jk such thatdk = (rk+Dk). The interval [rk, dk) is called the scheduling
window of Jk (as is depicted in Fig. 2). The worst-case schedulability analysis of
FTM algorithm in this scheduling window is performed to determine whether job Jk
meets its deadline. Without loss of generality, job Jk is considered as a generic job of
task τk in the sense that if Jk meets its deadline, then all other jobs of τk also meet their
deadlines. It will be evident later from the schedulability analysis that we do not need
to know where in the schedule this generic job Jk is released. Since Jk is an arbitrary
job, all other jobs of τk are guaranteed to meet their deadlines if Jk meets its deadline.

Since FTM algorithm is based on fixed-priority dispatching policy, whether a job
Jk meets its deadline or not depends on the FTM schedule of the tasks only in set
hp(k)∪{τk} and the number of errors that affect the these tasks in [rk, dk). We denote
HJk the set of jobs of the higher priority tasks in set hp(k) that are eligible to execute
in [rk, dk).

We denote jek the maximum number of job errors in [rk, dk). We also assume that
exactly ρ cores fail in [rk, dk)where 0 ≤ ρ ≤ M.While ρ specifies the number of faulty
cores, the value of jek specifies the number of maximum job errors in the scheduling
window of Jk . We denotêM as the number of non-faulty cores and ek as the number
of errors (task errors and core failures) in [rk, dk) where

̂M = (M − ρ) (3)

ek = (jek + ρ) if jek ≥ 0 and ρ ≥ 0 (4)

Our aim is to derive the largest value of jek considering ρ number of faulty cores in
the scheduling window of Jk . For some given ρ, if Jk cannot be guaranteed to meet
its deadline even when there is no task error, then we set jek = −∞ to specify that
Jk cannot tolerate ρ number of core failures even when there is no job error3.

To find the largest value of jek considering ρ core failures, we have to consider
the worst-case that all (jek + ρ) errors affect the jobs in set HJk ∪ {Jk} because

3 The value of jek is set to −∞ under the assumption that exactly ρ cores are faulty. Although ek = −∞
when jek = −∞ according to Eq. (4), it does not mean that Jk cannot tolerate a number of core failures
smaller than ρ. Also notice that if jek = −∞ for a given ρ, then jek is −∞ for a number of core failures
larger than ρ. The schedulability analysis (presented later) never computes ek by adding jek and ρ.

123

Real-Time Syst (2017) 53:45–81 59

algorithmFTMmasks both task errors and core failures using time-redundant execution
of backups. Whether Jk can meet its deadline depends on the workload of the jobs in
HJk . Theworkload of the higher priority jobs is the cumulative amount of time during
which the jobs of the tasks in set HJk execute in [rk, dk).

Finding the exact amount of workload of jobs of sporadic tasks in an interval
requires to consider all possible release times of all the tasks, which is computationally
infeasible. Instead, an upper bound on the workload of the jobs in set HJk is computed.
We denote Wc(HJk) the upper bound on the actual workload of the jobs in set HJk such
that these jobs in set HJk suffer at most c errors in [rk, dk). Note that 0 ≤ c ≤ ek since
the c errors are part of the ek errors that can occur in [rk, dk).

Organization of This Section The sketch of the worst-case schedulability analysis
of FTM algorithm to find the largest jek for some given ρ, where 0 ≤ ρ ≤ M, is as
follows. First, we determine the set HJk in Sect. 4.1. Second, the workload of the jobs
in set HJk that suffer at most c errors in [rk, dk), i.e., value of Wc(HJk), is computed
in Sect. 4.2. Since there are at most ek errors in [rk, dk) where c of these errors affect
the higher priority jobs, there are at most (ek −c) errors that can exclusively affect the
primary and backups of job Jk . Based on this observation, a schedulability condition
to determine whether job Jk can meet its deadline is derived in Sect. 4.3 based on (i)
the value of Wc(HJk), (ii) the possible parallel execution of the primary and hk active
backups of job Jk on the non-faulty cores, and (iii) the non-parallel execution of the
passive backups of Jk . And, the maximum value of jek for some given ρ is determined
based on this schedulability condition (i.e., Eq. 12).

4.1 Finding set HJk

Set HJk is computed by finding the maximum number of jobs of each higher priority
task τi ∈ hp(k) that are eligible for execution in [rk, dk). The idea to compute HJk is
inspired from the schedulability analysis of (non-fault-tolerant) global fixed-priority
scheduling for which the critical instant is not known (Pathan and Jonsson 2011b). Not
knowing the critical instant is the main difficulty in determining the exact number of
high-priority jobs in [rk, dk). This problem is avoided by finding an upper bound on the
number of higher-priority jobs that are eligible to execute in [rk, dk). The maximum
number of jobs of task τi that are eligible to execute in [rk, dk) is determined by
considering two cases: Case (i) Dk < (Ti − Di), and Case (ii) Dk ≥ (Ti − Di).

Case (i) Dk < (Ti − Di): After the deadline of each higher priority job of τi , there
is forced to be an interval of length (Ti −Di) during which no new job of τi is released
since the minimum inter-arrival time of the jobs of τi is Ti . Therefore, there is at most
one job of τi that can execute in [rk , dk) for this case because (d−r) = Dk < (Ti−Di),
which implies the length of the scheduling window is smaller than (Ti − Di). Without
loss of generality, assuming that job J 1i is the first job of τi that is eligible to execute
in [rk, dk), i.e., J 1i ∈ HJk .

Case (ii) Dk ≥ (Ti − Di): For this case, the number of jobs of task τi that are
eligible to execute in [rk, dk) is at most 	 Dk−(Ti−Di)

Ti

 + 1. This is because, after the

deadline of the first job J 1i that is eligible to execute in [rk, dk), there are at most

	 Dk−(Ti−Di)
Ti

 jobs of task τi that can be released (as compactly/early as possible) in

123

60 Real-Time Syst (2017) 53:45–81

the interval [rk, dk). Therefore, there are at most 	 Dk−(Ti−Di)
Ti

 + 1 jobs of task τi that
can be executed in the interval [rk, dk).

From these two cases, the maximum number of jobs of task τi , denoted by N (i),
that may execute in the interval [rk, dk) of length Dk is given as follows:

N (i) =
⌈

max{0, Dk − (Ti − Di)}
Ti

⌉

+ 1 (5)

Equation (5) is combines both cases as follows. Fromcase (i), when Dk < (Ti−Di),
we have Dk − (Ti − Di) < 0. Therefore, max{0, Dk − (Ti − Di)} = 0 and N (i) =
	max{0,Dk−(Ti−Di)}

Ti

 + 1 = 1. Remember from case (i) that there is at most one job of

task τi that can be executed in interval [rk, dk). From case (ii), when Dk ≥ (Ti − Di),
we have Dk − (Ti − Di) ≥ 0. Therefore, max{0, Dk − (Ti − Di)} = Dk − (Ti − Di)

and N (i) = 	max{0,Dk−(Ti−Di)}
Ti

 + 1 = 	 Dk−(Ti−Di)
Ti

 + 1. Remember from case (ii)

that there are at most 	 Dk−(Ti−Di)
Ti

 + 1 jobs of task τi that can be executed in interval
[rk, dk).
Set HJk is the collection of N (i) jobs of each task τi ∈ hp(k). Therefore, the set HJk is
given as follows:

HJk = ∪
τi∈hp(k)

{J 1i , J 2i , . . . J N (i)
i } (6)

4.2 Computing workload Wc(HJk)

To compute Wc(HJk) we have to consider the worst-case occurrences of c errors that
affect the jobs of set HJk so that the total CPU time requirement due to these jobs is
maximized in [rk, dk). Computing the value of Wc(HJk) exactly requires to consider all
possible releases of the jobs of set HJk within the scheduling window of Jk and there
are potentially exponential number of possible releases of these jobs in the scheduling
window. To overcome this problem, we rely on sufficient analysis as described as
follows. The value of Wc(HJk) is recursively computed using Eqs. (7) and (8). The
basis of the recursion is given in Eq. (7), for each J p

i ∈ HJk , as follows:

W f ({J p
i }) = C f

i (7)

for f = 0, 1, . . . c where C f
i is computed using Eq. (1). The value of W f ({J p

i })
in Eq. (7) is the workload of each job J p

i ∈ HJk such that f errors exclusively
affect the job, 0 ≤ f ≤ c. By assuming the values of W(c− f)(A) are known for
(c − f) = 0, 1, . . . c, where A = (HJk − {J p

i }) for some J p
i ∈ HJk , we recursively

compute Wc(HJk) as follows:

Wc(HPk) = c
max
f=0

{

W f ({J p
i }) + W(c− f)(A)

}

(8)

123

Real-Time Syst (2017) 53:45–81 61

Fig. 3 The worst-case occurrence of c errors affecting the jobs in set HJk = A ∪ {J p
i }. The release time

and deadline of job J xi are denoted respectively by r xi and dxi for x = 1, 2 . . . N (i)

The value on the right-hand side in Eq. (8) is maximum for one of the (c+1) possible
values of f where 0 ≤ f ≤ c. The value of f is selected such that if f errors
exclusively affect job J p

i ∈ HJk and (c − f) errors affect the other jobs in set A =
(HJk − {J p

i }), then Wc(HJk) is at its maximum for some f , 0 ≤ f ≤ c. This is
depicted in Fig. 3. By considering one-by-one higher priority job in set HJk , the value
of Wc(HJk) can be computed using O(c2 · |HJk |) comparison and addition operations
(i.e., workload computation in Eq. (8) has pseudo-polynomial time complexity in the
representation of the system).

Example 2 Consider the taskset in Table 1. Also, consider the scheduling window of
length D3 = 100 for an arbitrary job J3 of task τ3. We have hp(3) = {τ1, τ2} since
task with lower index is assumed to have higher fixed priority.

Based on Eq. (5), at most N (1) = 	max{0,100−30}
100
 + 1 = 2 jobs of τ1 and N (2) =

	max{0,100−120}
200
+1 = 1 job of τ2 can execute in the scheduling window of J3. Based

on Eq. (6), HJ3 = {J 11 , J 21 , J 12 }. Assume that jobs in HJ3 suffer c = 2 errors. We now
show how to find W2(HJ3).

First, we compute W f ({J p
i }) for each job J p

i ∈ HJ3 using Eq. (7) for f = 0, 1, 2.
The results are shown in Table 2.
Nowwewill compute W f ({J 11 , J 21 }) for f = 0, 1, 2. LetA = {J 11 , J 21 }−{J 11 } = {J 21 }.
The values of W f ({J 11 }) andW f (A)=W f ({J 21 }) are known for f = 0, 1, 2 fromTable 2.
Value of W2({J 11 , J 21 }) is computed using Eq. (8) as follows:

Table 2 Value of W f ({J p
i }) for

each job J p
i ∈ HJ3 for

f = 0, 1, 2

W f ({J11 }) W f ({J21 }) W f ({J12 })
f = 0 43 43 10

f = 1 43 43 22

f = 2 68 68 32

123

62 Real-Time Syst (2017) 53:45–81

W2({J 11 , J 21 }) = 2
max
f =0

{W f ({J 11 }) + W(2− f)(A)}

= 2
max
f =0

{W f ({J 11 }) + W(2− f)({J 21 })}
= max{43 + 68, 43 + 43, 68 + 43} = 111

Similarly, W1({J 11 , J 21 }) = 86 and W0({J 11 , J 21 }) = 86. And, based on the values of
W f ({J 11 , J 21 }) and W f ({J 12 }) for f = 0, 1, 2, the value of W2({J 11 , J 21 , J 12 }) can be
computed.

4.3 Determining the schedulability of job Jk

In this subsection, we determine whether job Jk can meet its deadline on̂M non-faulty
coreswhere the higher-priority jobs in setHJk suffer c errors and job Jk suffers (ek−c)
errors in [rk, dk) for any c, 0 ≤ c ≤ ek . Remember that theek errors in [rk, dk) include
jek task errors and ρ core failures.
The primary and hk active backups of job Jk can execute in parallel on themulticore

processor because they become ready at the same time in FTM scheduling. And, each
of the passive backups of Jk executes one-by-one. The total WCET of the passive
backups of Jk is ̂C (ek−c)

k according to Eq. (2).
Theorem 1 (proof is given in the appendix) determines the total CPU time that

needs to be allocated for completing the execution of the primary and all hk active
backups of Jk . This total CPU time is computed based on the observation that the
primary and the hk active backups can execute in parallel by exploiting the parallel
multicore architecture. Based on this total CPU time required by the primary and hk
active backups of Jk (given in Theorem 1) and the workload of the higher priority jobs
(derived in Sect. 4.2), we determine the minimum amount of sequential CPU time
available for the passive backups of job Jk in [rk, dk). And, a schedulability condition
for Jk is derived.

Theorem 1 The total CPU time that need to be allocated for the primary and all hk
active backups of job Jk in FTM scheduling on̂M non-faulty cores is (̂M · sk,̂M) such that

sk,̂M = hk
max
z=0

{

Ez
k +

∑z−1
b=0 E

b
k

̂M

}

(9)

where Ez
k is the WCET of the zth backup4 of Jk for z = 0, 1, . . . hk.

In Theorem 1, the value of (̂M · sk,̂M) is an upper bound on the sufficient amount of
CPU time required to complete the execution of the primary and all hk active backups
of Jk . In Eq. (9), the first term on the right-hand side of the max function ensures that
the zth active backup with WCET Ez

k executes on at most one core at any time instant,

4 For ease of discussion, the primary is called the “0th backup” in Eq. (9). When z = 0, we consider
∑z−1

b=0 E
b
k = 0 in Eq. (9).

123

Real-Time Syst (2017) 53:45–81 63

where z = 0, 1 . . . hk . And, the second term considers that the primary and different
active backups of Jk are allowed to execute in parallel on̂M cores.

If the active backups are executed without any parallel execution (i.e., configured
as passive backups), then the primary and all the hk active backups of job Jk may need
at most ̂M · ∑hk

z=0 E
z
k execution time across all the cores. This is because when Ez

k
executes in one core, then we have to make the worst-case assumption that all the other
(̂M − 1) cores are idle. Since

∑hk
z=0 E

z
k ≥ sk,̂M, Theorem 1 implies that the total CPU

time required for executing hk number of backups actively is lower than that of the case
when these hk backups are executed passively. The following example demonstrates
why executing certain backups in active redundancy is beneficial in reducing the
worst-case workload that needs to be considered for the analysis of FTM algorithm.

Example 3 Consider that a job J of task τ3 (given in Table 1) is affected by 2 errors at
run-time. Assume that there arêM = 2 non-faulty cores. Since h3 = 1, the primary and
the active backup can run in parallel. Based onEq. (9), the total execution time required

for the primary and the active backup iŝM · sk,̂M = 2 · s3,2 = 2 ·max{E0
3 , E

1
3 + E0

3
2 } =

2 · max{5, 10 + 5/2} = 25.
The total execution time requirement due to passive backup of J is ̂C2

3 = 5 time
units according to Eq. (2). However, when a passive backup executes in one core, the
other coremay be idle inFTM scheduling. Consequently, theworst-case total CPU time
need to be allocated during the execution of the passive backup is 2 · ̂C2

3 = 2 · 5 = 10
time units. Therefore, total (25+ 10) = 35 CPU time units are required in the worst-
case for the primary and all (active and passive) backups of job J3.

In contrast, if all the backups of J3 are passive (i.e., h3 = 0), then one core may be
idle in the worst-case when the primary and the passive backups are executed on the
other core. Therefore, the total CPU time that may need to be allocated for the primary
and passive backups tomask 2 errors iŝM·(E0

3+E1
3+E2

3) = 2·(5+10+5) = 40 CPU
time units. This shows that active redundancy requires less CPU time (i.e., 35 time
units) than that of in pure passive redundancy (i.e., 40 timeunits) inFTM scheduling.On
the other hand, if there is at no error during run-time and h3 = 1, then only the primary
and one active backup execute, and the total CPU time required is ̂M · (E0

3 + E1
3) =

2 · (5 + 10) = 30. This shows the power of passive redundancy that FTM exploits.

Based on the analysis in Sect. 4.2 and Theorem 1, if there are c errors that affect
the jobs of set HJk , then at most (Wc(HJk) +̂M · sk,̂M) units of CPU time are allocated
for the higher priority jobs, the primary, and hk backups of Jk . Since each core has
speed 1, total (Wc(HJk) +̂M · sk,̂M) units of execution can be completed on̂M cores in
at most 	(Wc(HJk) +̂M · sk,̂M)/̂M
 time units. This implies the two following crucial
observations:

Fact 1: The primary and all the active backups of Jk complete no later than
time instant (rk +	(Wc(HJk)+̂M · sk,̂M)/̂M
) in FTM scheduling, where rk is the
release time of job Jk .

123

64 Real-Time Syst (2017) 53:45–81

Fact 2: All thêM cores are simultaneously busy executing jobs in set HJk ∪ {Jk}
except the passive backups of Jk for at most 	(Wc(HJk) + ̂M · sk,̂M)/̂M
) time
units in [rk, dk).
The passive backups of Jk can start execution in FTM scheduling only after the

primary and all active backups of Jk are detected to be erroneous. From Fact 1, the
maximumdelay in detecting that the primary and all active backups of Jk are erroneous
is at time (rk + 	(Wc(HJk) + ̂M · sk,̂M)/̂M
). And, from Fact 2, there is at least one
core available for executing the passive backups of Jk in [rk, dk) for at least (Dk −
	(Wc(HJk)+̂M · sk,̂M)/̂M
) time units after the primary and all active backups of Jk are

detected to be erroneous. The passive backups of Jk needs ̂C (ek−c)
k units of sequential

execution according to Eq. (2). Given that jobs in HJk are affected by c errors and
the job Jk is affected by (ek − c) errors in [rk, dk) for some given c, job Jk meets its
deadline if

	(Wc(HJk) +̂M · sk,̂M)/̂M
 + ̂C (ek−c)
k ≤ Dk (10)

Since c can vary between 0 and ek , by considering the worst-case occurrence of
ek errors in [rk, dk) so that the value on the left-hand side of Eq. (10) is maximized,
job Jk meets its deadline if

ek
max
c=0

{

	(Wc(HJk) +̂M · sk,̂M)/̂M
 + ̂C (ek−c)
k

}

≤ Dk (11)

FromEqs. (3)–(4), we havêM = (M−ρ) andek = (jek+ρ). Therefore, Equation (11)
can be re-written as:

(jek+ρ)
max
c=0

{⌈

Wc(HJk)

(M − ρ)
+ sk,(M−ρ)

⌉

+ ̂C
(jek+ρ−c)
k

}

≤ Dk (12)

Equation (12) essentially considers the worst-case occurrences of (jek + ρ) errors
where the higher priority jobs suffer c errors in [rk, dk) and job Jk suffers (jek +ρ−c)
errors for any c where 0 ≤ c ≤ (jek + ρ). Eq. (12) is a sufficient schedulability
condition to check whether an arbitrary job of τk meets its deadline where there are
at most jek job errors and exactly ρ core failures in [rk, d − K). In the left-hand
side of Eq. (12) and inside the max function, the term inside the ceiling function
Wc(HJk)
(M−ρ)

+ sk,(M−ρ) is related to possible parallel execution of the primary and the

active backups of job Jk and its higher priority jobs, and the second term ̂C
(jek+ρ−c)
k

is related to sequential execution of the passive backups of Jk . In order determine the
probability of meeting all the deadlines of all the tasks, Eq. (12) has to be evaluated
for each task τk ∈ �. We have the following theorem (proof follows directly from the
analysis presented in this subsection):

Theorem 2 Consider a system of n sporadic tasks Γ = {τ1, τ2, . . . τn} according to
the task model defined in Sect. 2. Each job of task τk ∈ Γ can tolerate jek task errors
for a given ρ number of core failures if Eq. (12) is satisfied.

Remember that our aim is to find the largest jek that satisfies Eq. (12) for each task
τk ∈ Γ . No job of τk ∈ Γ can tolerate more that Dk · (M− ρ) task errors. The largest

123

Real-Time Syst (2017) 53:45–81 65

jek that satisfies Eq. (12) can be searched linearly (or using bisection search) in the
range [0, Dk · (M − ρ)]. Given some ρ, if Eq. (12) is not satisfied even for jek = 0,
then τk cannot be guaranteed to meet all the deadlines on (M − ρ) cores even when
there is no job error. In such case, we set jek = −∞. Since workload computation
has pseudo-polynomial time complexity, Eq. (12) can also be computed to find the
largest jek in pseudo-polynomial time.

Note that Theorem 2 for the assumed fault model of this paper is not a system level
schedulability condition that can be used to determine whether all the tasks meet their
deadlines or not5. Theorem 2 is used to determine the maximum number of task errors
that each job of a particular task can tolerate for a given number of core failures. Based
on this maximum number, we determine in next section the probability of meeting
deadline of all jobs of each task. Finally, the probability of meeting deadline of all
the tasks is computed, which is the system-level schedulability guarantee [please see
Eq. (15) of Theorem 3].
Bookkeeping for Probabilistic Analysis For each task, the number of job errors that
each of its jobs can tolerate in its scheduling window depends on how many cores
are non-faulty. The maximum number of errors that can be tolerated by any job of a
task decreases as the number of faulty cores increases. The schedulability condition in
Eq. (12) captures this fact by considering the parameter ρ that can take values ranging
from 0 to M, where M is the number of maximum cores of the multicore processor. For
each value of ρ, the maximum number of job errors that each job of a task can tolerate
is determined using Eq. (12).

We find the largest jek for each (k, ρ) pair where k ∈ {1, 2, . . . n} and ρ ∈
{0, 1 . . .M} using Eq. (12). And, these n × (M + 1) values are stored (for probabilistic
schedulability analysis) in a n × (M + 1) matrix, called the S chedulability matrix,
denoted by S. The schedulability matrix is used to store the information regarding the
maximum number of job error that any job of a task can tolerate for different num-
ber of faulty cores. The entry Sk,ρ in matrix S is interpreted during the probabilistic
schedulability analysis as follows:

• If Sk,ρ = −∞, then some job of τk cannot guaranteed to be schedulable when
ρ cores fails in [rk, dk) even if there is no job error.

• If Sk,ρ ≥ 0, then some job of τk cannot guaranteed to be schedulable on (M − ρ)

cores if the number of job errors between the release and deadline of the job (i.e.,
in an interval of length Dk) exceeds Sk,ρ given that exactly ρ cores are faulty.

Example 4 Consider the FTM scheduling of n = 5 tasks in Table 1 on M = 4 cores.
Task with lower index has higher priority. We computed the schedulability matrix S
of size (5 × 5) based on Eq. (12). The result is shown in Table 3.

5 If a fault model considers that any job can suffer at most a fixed number of task errors and a fixed number
of core failures, then Eq. (12) is applicable to determine whether all the tasks meet their deadlines or not.
The fault model that we consider in this paper allows that jobs of different tasks may suffer different number
of maximum errors.

123

66 Real-Time Syst (2017) 53:45–81

Table 3 Schedulability matrix S for the tasks of the Instrument Control application in Table 1 for M = 4

Task’s name Number of core failures

ρ = 0 ρ = 1 ρ = 2 ρ = 3 ρ = 4

Mode management (τ1) 2 1 0 −∞ −∞
Mission data management (τ2) 4 2 0 −∞ −∞
Instrument monitoring (τ3) 11 6 2 −∞ −∞
Instrument configuration (τ4) 1 0 −∞ −∞ −∞
Instrument processing (τ5) 3 1 −∞ −∞ −∞
Number of faulty cores, i.e, value of ρ ranges from 0 to M = 4 to capture the effect increasing number of
permanent core failure. Each cell in the matrix specifies the maximum number of job errors that any job of
each task τk (given in each row) can mask when there are exactly ρ core failures (given in each column)

5 Probabilistic schedulability analysis

The schedulability analysis in the previous section is based on application-level error
model (i.e., considering job errors and core failures) and is independent of the under-
lying hardware-level fault model. Based on this schedulability analysis, the maximum
number of job errors that any job of a task can tolerate (i.e., deadline of the job is
met) for a given number of core failures is derived and captured in the schedulability
matrix S. However, some faulty environment may cause too many job errors and/or
core failures that jobs may miss their deadlines. In other words, the “actual” number
of faults at run-time may cause a number of errors that is larger than the maximum
number of errors that a job of some task can tolerate. In such case, the schedulability
is not guaranteed.

The question is what is the probability that the number of actual errors during run-
time is larger than themaximum number of errors that a job can tolerate. The answer to
this question depends on the hardware-level fault model. By considering the stochastic
behavior of specific fault model, the schedulability of an application can be derived
with a probabilistic guarantee, i.e., the likelihood of the number of actual errors being
not larger than the maximum number of job errors and core failures that any job of
any task can withstand.

In this section, we first derive a general closed-form expression considering an
arbitrary fault model to compute the probability of meeting all the deadlines (i.e.,
probabilistic schedulability guarantee). Then, the stochastic behavior of B andR fault
models are used to compute the probability of meeting all the deadlines based on this
general expression.

In order to find the probability of meeting all the deadlines of all the tasks, we first
determine using Theorem 2 the maximum number of task errors a job of a task can
tolerate for a given number of core failures. Second, the probability that one job of a
task meets its deadline is computed by considering the probability that the number of
task errors for a given number of core failures does not exceed the maximum tolerable
number of task error for a job of the task [please see Eq. (13)]. Then, the probability
that all the jobs of a task meet their deadlines is computed by considering the prob-

123

Real-Time Syst (2017) 53:45–81 67

ability that one job of the task meets its deadline [please see Eq. (14)]. Finally, the
probability that all jobs of all the tasks meet their deadlines is computed by consid-
ering the probability that all jobs of each individual task meet their deadlines [please
see Eq. (15)]. The following notations are used in this section:

• CFk : a random variable that counts the number of permanent hardware faults in
an interval of length Dk . This variable captures the number of cores failures in an
interval of length Dk .

• J Ek : a random variable that counts the number of non-permanent hardware faults
in an interval of length Dk . This variable captures the number of job errors in an
interval of length Dk .

• Pr(X) : probability of occurring an event X . For example, Pr(CFk = ρ) is the
probability that exactly ρ core fail in an interval of length Dk .

• Pr Fk,ρ : probability that some job of task τk cannot guaranteed to be schedulable.
The value of Pr Fk,ρ will be computed based on two scenarios under which some
job of τk may miss the deadline: (i) regardless of how many job errors are there in
an interval of length Dk , the job misses its deadline if exactly ρ cores are faulty,
and (ii) when exactly ρ cores are faulty, the job misses its deadline if the number of
actual job errors is larger than the maximum number of errors that can be tolerated
by the job (available from the schedulability matrix) in its scheduling window.

• Pr S: the probability that all the jobs of all the tasks meet their deadlines, i.e.,
Pr S is the probabilistic schedulability guarantee of the system of all tasks.

• LT : the lifetime of the mission of the system.

It is assumed that each permanent hardware fault leads to exactly one core failure.
However, there might be source of permanent (fault-triggering) event such that one
such event causes permanent fault in all the cores. We do not address fault tolerance
for the entire multicore chip, which needs to be tackled using hardware redundancy
(e.g., TMR multicore chips).

Similarly, there might be source of non-permanent (fault-triggering) event such
that one such event may cause non-permanent faults in all the cores (known as fault
propagation).We address such scenarios bymapping the failure rate of non-permanent
(fault-triggering) faults to each core of the multicore chip. In other words, if the rate of
occurring non-permanent fault-triggering event at the multicore chip level is λ, then
we consider that non-permanent faults in each core occur at rate λ.

Finally, we assume that each non-permanent hardware fault in one core causes
exactly one job error executing on that core. This is reasonable under the assumption
that there is no error propagation across jobs. However, if error propagation across
jobs is likely, then a job error in turn may cause additional (propagated) job errors.
The number of such propagated job errors due to one non-permanent fault depends
on the number of jobs that are currently in the preempted state. This is because jobs
that are not released or has not yet started their execution are not affected due to
fault propagation and thus cannot cause the workload due to be increased. Therefore,
the workload due to fault propagation can be increased by the amount equal to the
sum of execution time of all lower priority (preempted) jobs of task τk . Extending
the probabilistic analysis assuming error propagation therefore does not pose any
fundamental challenge and its complete analysis is left as a future work. In summary,

123

68 Real-Time Syst (2017) 53:45–81

each permanent and each non-permanent fault causes exactly one core failure and
exactly one job error, respectively.

Now consider the FTM schedule of an application. All the different cases for which
some job of task τk of the application may miss its deadline are available from
the (M + 1) columns of the kth row in the schedulability matrix S, i.e., in entries
Sk,0,Sk,1 . . .Sk,M. Given that one fault causes one error, the probability Pr Fk,ρ that
some job of task τk misses its deadline when exactly ρ cores fail is determined based
on Sk,ρ as follows:

• If Sk,ρ = −∞, then some job of task τk cannot tolerate ρ core failures in its
scheduling window. Consequently, the probability that some job of task τk misses
its deadline is equal to the probability that there are exactly ρ permanent hardware
faults in an interval of length Dk regardless of the number of job errors in that
interval. And, this probability is Pr(CFk = ρ).

• If Sk,ρ ≥ 0, then some job of task τk cannot tolerate more than jek = Sk,ρ

job errors in an interval of length Dk given that there are exactly ρ core failures.
Consequently, the probability that some job of task τk misses its deadline is equal
to the probability that there are exactly ρ permanent hardware faults and there are
more than Sk,ρ non-permanent hardware faults in an interval of length Dk . And,
this probability is equal to the product of Pr(J Ek > Sk,ρ) and Pr(CFk = ρ).
This is because the sources of faults that cause core failures and job errors are
assumed to be independent: the former is caused by permanent hardware faults
while the latter is caused by non-permanent faults.

Therefore, the probability Pr Fk,ρ that some job of task τk misses its deadline when
exactly ρ cores fail in FTM scheduling is computed based on Sk,ρ as follows:

Pr Fk,ρ =
{

Pr(CFk = ρ) if Sk,ρ = −∞
Pr(J Ek > Sk,ρ) · Pr(CFk = ρ) if Sk,ρ ≥ 0

(13)

where the value of Sk,ρ is obtained from the schedulability matrix that is derived using
the schedulability condition in Eq. (12). The probability that some job of task τk misses
its deadline for any number of core failures is

∑M
ρ=0 Pr Fk,ρ . Therefore, the probability

that a job of task τk is guaranteed to meet its deadline is (1 − ∑M
ρ=0 Pr Fk,ρ).

There are at most 	 LT
Tk

 jobs of task τk that may be released during the mission’s

lifetime LT . The task τk is guaranteed to be schedulable in FTM scheduling if all 	 LT
Tk

jobs are schedulable. Since the scheduling windows of different jobs of task τk do not
overlap in time (these scheduling windows are separated by at least (Tk − Dk) time
units), the event that a job of task τk is erroneous is independent of the event that
another job of the same task is erroneous. So, the probability that all the jobs of task
τk meet their deadlines is given as follows:

⎛

⎝1 −
M

∑

ρ=0

Pr Fk,ρ

⎞

⎠

	 LT
Tk

(14)

123

Real-Time Syst (2017) 53:45–81 69

Finally, the probability Pr S that all the jobs of all the n tasks of an application meet
their deadlines in FTM scheduling is given (proof follows directly from the discussion
presented above) in the following Theorem 3:

Theorem 3 Consider a system of n sporadic tasks Γ = {τ1, τ2, . . . τn} according to
the task model presented in Sect. 2. The probability of meeting deadlines of all the
jobs of all the tasks in set Γ is:

Pr S =
n

∏

k=1

⎛

⎝1 −
M

∑

ρ=0

Pr Fk,ρ

⎞

⎠

	 LT
Tk

=
⎛

⎝1 −
M

∑

ρ=0

Pr F1,ρ

⎞

⎠

	 LT
T1

×

⎛

⎝1 −
M

∑

ρ=0

Pr F2,ρ

⎞

⎠

	 LT
T2

× · · · ×
⎛

⎝1 −
M

∑

ρ=0

Pr Fn,ρ

⎞

⎠

	 LT
Tn

(15)

The value of Pr S in Eq. (15) is the probabilistic schedulability guarantee of the appli-
cation. In order to find Pr S using Eq. (15), we have to find Pr Fk,ρ for each possible
(k, ρ) pair where k ∈ {1, 2, . . . n} and ρ ∈ {0, 1, . . .M}. According to Eq. (13), the
value of Pr Fk,ρ can be computed based on Pr(CFk = ρ) and Pr(J Ek > Sk,ρ).
Eq. (15) is the general closed-from expression that can be used to find the proba-
bilistic schedulability guarantee by computing Pr(CFk = ρ) and Pr(J Ek > Sk,ρ)

considering the stochastic behavior of any fault model. We conclude this section by
showing how to compute the values of Pr(CFk = ρ) and Pr(J Ek > Sk,ρ) consid-
ering the stochastic behavior of B andR fault models. Finally in Sect. 7, the value of
Pr S is computed for the Instrument Control application given in Table 1 to show the
applicability of the research presented in this paper.
Computing Pr(CFk = ρ) for B and R Model Permanent hardware faults in both
B and R fault models are assumed to occur randomly at constant failure rate λc.
The inter-arrival time of permanent hardware faults has exponential distribution. The
probability of occurring exactly ρ permanent hardware faults in an interval of length
Dk can be determined using Poisson process with rate λc as follows:

Pr(CFk = ρ) = e−(λc·Dk) · (λc · Dk)
ρ

ρ! (16)

Since Poisson process has stationary and independent increments, the probability of
occurring exactly ρ permanent faults in the scheduling window of each job of τk is
equal because all jobs of task τk have the same length of schedulingwindow.Therefore,
Pr(CFk = ρ) is equal for all the 	 LT

Tk

 jobs of τk that may be released during the

lifetime.
Our assumption that the probability of permanent hardware faults follows a Poisson

process is fairly a standard in many hardware literature (Koren and Krishna 2007).

123

70 Real-Time Syst (2017) 53:45–81

This assumption is reasonable for many practical multicore systems that are subjected
to a particular fault model, i.e., where one core failure does not lead other cores to
fail. For example, if the ALU of a core becomes faulty, then such a failure may not
lead other cores of a multicore processor to fail. In such case, our assumption that
consecutive failures are independent is valid since other cores could operate normally.
Computing Pr(J Ek > Sk,ρ) for B model The B model considers that non-permanent
faults occur in bursts aswell as randomly during bursty and non-bursty periods, respec-
tively. Fault-burst model is well-studied for error structure in data transmission, for
example, using Gilbert–Elliott model (Elliott 1963). The B model for non-permanent
faults is essentially the Gilbert–Elliott model applied to fault-tolerant uniprocessor
scheduling by Short and Proenza (2013). We extend this model for multicores in this
paper. Short and Proenza computed an upper (hence, pessimistic) bound on the num-
ber of errors in an interval for a given probability. In contrast, we want to compute the
probability of exceeding a certain number of faults, i.e., value of Pr(J Ek > Sk,ρ), in
an interval of length Dk .

To better understand the B model for multicores, we first present how the Gilbert–
Elliott model is used by Short and Proenza for uniprocessor and then show how
we extend its analysis for multicores. It will be evident shortly that the number of
non-permanent faults in an interval of particular length under the B fault model is a
random variable, denoted byΥ , having Poisson Binomial distribution. The cumulative
distribution function (CDF) of Υ can be computed based on the technique proposed
by Barlow and Heidtmann (1984) to find the probability that there are at most Sk,ρ

non-permanent faults in an interval of length Dk . And, 1 minus this probability is
Pr(J Ek > Sk,ρ), i.e., the probability that number of non-permanent faults in an
interval of length Dk is larger than Sk,ρ .
Gilbert–Elliott Model (Elliott 1963) This model is represented by a Markov model
with two states G and B that represent ‘non-bursty/good’ and ‘bursty/bad’ states,
respectively. Short and Proenza (2013) used this model for fault-tolerant uniprocessor
scheduling using four parameters: λb, λr , LG , and LB . We use these parameters for
multicores as follows.

The non-permanent faults in each core occur at constant failure rates λr and λb
when the system is in state G and B, respectively. The expected (mean) inter-arrival
time of non-permanent faults in both states have geometric (discrete equivalent of
exponential) distribution since faults are assumed to affect tasks at integer time instants.
The expected inter-arrival time of fault bursts is (LB + LG) where LB and LG (see
Fig. 1) are respectively the expected length of bursty and non-bursty periods, both
having geometric distributions.

The probability that the system transits from state G to B (denoted by PGB) is equal
to 1/LG . The larger is the expected length of non-bursty period LG , the smaller is the
probability PGB that the system transits to bursty(B) state. The probability that the
system transits from state B to G (denoted by PBG) is 1/LB . The two-state Gilbert–
Elliott Markov model for each core is shown in Fig. 4.

We need to analyze the Markov model in Fig. 4 to compute the probability
Pr(J Ek > Sk,ρ). Short and Proenza (2013) modeled the probability of a fault
occurrence at each time instant t using an independent and non-identically distrib-
uted Bernoulli variable It . We now extend this concept for multicore. For simplicity

123

Real-Time Syst (2017) 53:45–81 71

Fig. 4 Gilbert–Elliott Markov
model for fault bursts in a core.
When the system is in state G
and B, the non-permanent faults
in each core occurs at rate λr
and λb , respectively

of presentation, we denote rk and dk simply as r and d. We consider the scheduling
window [r, d) of an arbitrary job Jk of task τk in FTM scheduling where (d−r) = Dk .
Note that there arêM = (M − ρ) non-faulty cores when computing Pr(T Ek > Sk,ρ).

Without loss of generality, we order thêM non-faulty cores as 1st , 2nd , . . .,̂Mthcore.
Unlike uniprocessor, multiple non-permanent faults can affect different cores at the
same time instant. Since the primary and active backups of a job can execute in parallel,
multiple job errors may be detected to be erroneous on different cores at the same time
instant. Our consideration of the failure rate of non-permanent faults at the individual
core level rather than at the multicore chip level takes this fact into account.

We consider total (̂M · Dk) independent and non-identically distributed Bernoulli
variables I ν

t to model the probability of a non-permanent fault occurrence at time
instant t in the νth core, where t = r, r + 1, . . . (d − 1) and ν = 1, 2, . . .̂M. In other
words, I ν

t ∼ Bernoulli(pν
t), where pν

t = Pr(I ν
t = 1) is the probability that there is

a non-permanent fault at time t on the νth core. The value of pν
t for each time instant

can be computed as follows (Short and Proenza 2013):

pν
t = λb · mt + λr · (1 − mt) (17)

where mt and (1 − mt) are the probabilities that the system is in state B and state G
at time t , respectively. And, λb and λr are the failure rates of non-permanent faults in
each core in state B and G, respectively. The probability mt (i.e., the system is in state
B) can be computed by solving the Markov model in Fig. 4 for some given initial state
at time t = r . The worst-case initial state [as explained in Short and Proenza (2013)]
is mr = 1, i.e., the system starts in a bursty state at time r with probability 1. This
worst-case ensures that the number of non-permanent faults in any interval of length
Dk is maximized. Assuming mr = 1, the value of mt+1 for t = (r + 1), . . . (d − 1)
is computed recursively as follows:

mt+1 = (1 − PBG) · mt + PGB · (1 − mt) (18)

where PBG = 1/LB and PGB = 1/LG . The probability pν
t for each t = r, (r +

1), . . . (d − 1) and each ν = 1, 2 . . .̂M can be computed using Eqs. (17) and (18)
based on the four parameters of the B model: λb, λr , LG and LB .

Given the probabilities pν
t for t = r, (r+1), . . . (d−1) and ν = 1, 2, . . .̂M, our aim

is to compute the probability ofmore thanSk,ρ faults in [r, d).We denoteΥ the random
variable that counts the number of non-permanent faults in [r, d). The variableΥ is sum

123

72 Real-Time Syst (2017) 53:45–81

of (̂M ·Dk) non-identical Bernoulli variables I 1r , . . . I 1d−1, I
2
r , . . . I 2d−1, . . . I

̂M
r , . . . ÎMd−1

and has Poisson Binomial distribution (Hong 2013). Given the probabilities pν
t for

t = r, (r +1), . . . (d −1) and ν = 1, 2, . . .̂M, our aim is to compute the probability of
more than Sk,ρ faults in [r, d). We denote Υ the random variable that counts the num-
ber of non-permanent faults in [r, d). The variable Υ is sum of (̂M · Dk) non-identical
Bernoulli variables I 1r , . . . I 1d−1, I

2
r , . . . I 2d−1, . . . I

̂M
r , . . . ÎMd−1 and has Poisson Bino-

mial distribution (Hong 2013).
The CDF ofΥ , denoted by FΥ (x), is the probability of having at most x faults in the

interval [rk, dk)where 0 ≤ x ≤ (̂M ·Dk). Hong (2013) proposed technique to compute
FΥ (x)basedon the probabilities p1r , . . . p

1
d−1, p

2
r , . . . p

2
d−1, . . . , p

̂M
r , . . . , p̂M

d−1 (Hong
2013) has an easy-to-understand description of FΥ (x)). After computing FΥ (Sk,ρ)

based on the work by Hong (2013), the probability of more than Sk,ρ faults in an
interval of length Dk for the B model is

Pr(T Ek > Sk,ρ) = 1 − FΥ (Sk,ρ) (19)

Computing Pr(J Ek > Sk,ρ) for R model The R model is a specialization of the
B model with no bursty period. We set mr = 0, (1 − mr) = 1 and PGB = 0 in
Eq. (18) so that the system starts in non-bursty state and never transits to bursty state.
Consequently, the B model is now equivalent to R model where λr is the constant
failure rate of non-permanent faults in each core in state G. The value of Pr(T Ek >

Sk,ρ) is computed using Eq. (19) based only on parameter λr .
By computing the values of Pr(CFk = ρ) and Pr(T Ek > Sk,ρ) respectively using

Eqs. (16) and (19) for each entry of the matrix S, the value of Pr S, i.e., probability
of meeting all deadlines of an application can be computed according to Eq. (15).
Since the considered window has length Dk and because the schedulability matrix
can be generated in pseudo-polynomial time, the time complexity to find the value of
Pr S for a given application is pseudo-polynomial, which is acceptable for (offline)
schedulability analysis of real-time systems (Baruah et al. 1990).

6 A heuristic for configuring the number of active backups

Algorithm FTM considers hi number of active backups (configured by the designer)
for each task τi ∈ Γ . Configuring the number of active backup appropriately is a
major challenge due to three reasons:

• the different possible of ways the number active backups for all the tasks can be
configured is exponential since each hi can be within the range between 0, . . . ,∞;

• setting hi too high is a wastage of processing resource if not too many errors are
likely to occur; and

• setting hi too low may not fully exploit the parallel multicore architecture. A
relatively higher number of backupsmay be considered as passive backups tomask
the errors. Since passive backups are executed one-by-one (i.e., sequentially) in
FTM algorithm, some low laxity (shorter deadline) task may miss its deadline.

To address these challenges and to help the system designer in deciding the number
of active backups for each task, a heuristic is proposed. The basic principle of the

123

Real-Time Syst (2017) 53:45–81 73

heuristic is that: assuming no core failure, increment the number of active backup for
those tasks that can tolerate a relatively smaller number of job errors. The step-by-step
process to implement this heuristic is as follows:

1©Initially, no backup of any task is considered as active, i.e., ∀i, hi = 0. Generate
the schedulability matrix S based on the schedulability condition in Eq. (12). And,
compute the Pr S using Eq. (15) considering the fault model of the target system.

2© Based on the schedulability matrix S computed in last step, determine the task
(called target task) that tolerates the minimum number of job errors when no core
is faulty, i.e., when ρ = 0. Obviously, the task τi with minimum Si,ρ=0 for i =
1, 2, . . . n is the target task. Executing active backups for this target task may increase
the maximum number of tolerable job errors for each job of τi , which may increase
Pr S. This is because the active backup can execute in parallel and thus can finish
earlier than the case if the backup is executed passively.

3© Increment hi of the target task τi by 1, i.e., set hi = hi + 1. Generate the
schedulability matrix S based on the schedulability condition in Eq. (12) considering
the incremented value of hi . And, compute the Pr S using Eq. (15).

4© If Pr S is increased, then go to Step 2 and repeat the process.
5© If Pr S is not increased, then the last increment in Step 3 is undone, i.e., set

hi = hi −1. Task τi will not be considered as a target task any further since increasing
the number of active backups for τi does not increase Pr S.

6© If not all then tasks are considered as target tasks, thengenerate the schedulability
matrixS based on the schedulability condition inEq. (12) considering the decremented
value of hi in last step. Go to Step 2 to select the next target task.

7©If all the n tasks are considered as target tasks, then stop.
In summary, we start with a systemwith all backups configured as passive backups.

We consider a systemwhere there is no core failures.We increase the number of active
backups for that particular task that can tolerate the minimum number of job errors
if doing so results in the value of Pr S to increase. We stop when Pr S does not
increase by incrementing number of active backups for any task. Under this heuristic,
the Pr S is increased because more active backups that can execute in parallel can
effectively tolerate more job errors before deadline.

7 Case study: instrument control application

In this section, Pr S is computed for the Instrument Control application in Table 1
hosted on a multicore platform having M = 4 cores. Note that h1 = 1, h2 = 0,
h3 = 1, h4 = 0, and h5 = 1. The Schedulability Matrix S of the application for
M = 4 is already given in Table 3. Before we present the results, the different values
of fault-model parameters used for computing Pr S are presented.
Parameters of Fault Model In general, failure rate is not very easy to derive since
it depends on many factors, for example, the underlying hardware, the software
implementation, and operating environment. Remember that theB fault model is char-
acterized using five parameters: λc, λb, LB , λr , and LG whereas theR fault model is
characterized using two parameters: λc and λr . The value of Pr S for the Instrument

123

74 Real-Time Syst (2017) 53:45–81

Control application is computed based on the following values for the B and R fault
models.

The failure rate of permanent hardware faults is λc = 10−5/h. Similar failure
rate for permanent faults is also considered in Claesson (2002) where the fault rate
of a computer node for heavy duty trucks is derived based on the MIL-HDBK-217
standard. Experiments by Campbell et al. (1992) using an orbiting satellite containing
a microelectronics test system found that, within a small time interval (∼15 min),
the number of errors due to transient faults could be quite high. Since non-permanent
faults are more frequent, the failure rate of random non-permanent hardware faults in
each core during non-bursty period is λr = 10−4/h. In other words, non-permanent
faults during non-bursty period occurs at a rate 10 times higher than that of permanent
faults. Finally, we consider λb = 10−2/s since non-permanent hardware faults during
a burst is much higher. The failure rate λc applies to the entire multicore chip while
the failure rates λb and λr apply to each individual core of the multicore chip.

The value of LG (i.e., expected duration of one non-bursty period) is LG = 106

ms. Since the duration of bursty period is relatively smaller than non-bursty period,
the value of LB (i.e., expected duration of one bursty period) is LB = 102 ms. In
summary, the values of the parameters for the B and R fault models are given in
Table 4.
Experiments Typical mission lifetime of safety-critical system varies, for example,
from several hours for aircraft to several years for satellites. We considered four dif-
ferent mission’s lifetimes LT ∈ {10 h, 1 day, 1 month, 1 year}.

An experiment is characterized by a fault model and the lifetime of the system. We
conducted 8 experiments considering each of the four mission’s lifetimes, and each
of the B andR fault models using parameters from Table 4. For each experiment, we
computed Pr S using Eq. (15) for the Instrument Control application in Table 1. We
wrote a C program to implement Eq. (15) and ran our experiments on a Dell Optilex
990 Intel Dual Core i7-2600 processor, each with speed 3.40 GHz. The total run-time
to compute the 8 values of Pr S was 63ms. The results of the 8 experiments are shown
in Table 5. Each row in Table 5 represents the values of Pr S for four different lifetimes
for a given fault model.

Table 4 Values of different
parameters of B andR fault
models

λc λr λb LG LB

10−5/h 10−4/h 10−2/s 106 ms 102 ms

Table 5 Value of Pr S for Instrument Control application considering the B and R fault models using
model parameters in Table 4

Fault model 10 h 1 day 1 month 1 year

R 0.99999999 0.99999999 0.99999997 0.99999973

B 0.99999667 0.99999336 0.99986397 0.99838547

123

Real-Time Syst (2017) 53:45–81 75

As expected the Pr S of the Instrument Control application decreases with larger
lifetime. Moreover, the B fault model results in a relatively lower value of Pr S in
comparison to that of the R fault model. The explanation is given below:
Impact of Lifetime The Pr S decreases with longer lifetime for each particular fault
model. For example, Pr S for theRmodel decreases from 0.99999999 to 0.99999973
when the lifetime is increased from 10 hours to 1 year. A similar trend can be observed
for the B model in Table 5. This is because, Pr S in Eq. (15) is the product of the
probabilities of meeting deadlines of all jobs that may be released during the lifetime,
and larger number of jobs are allowed to be released with longer lifetime.
Impact of BurstsBurst of non-permanent faults have severe impact on Pr S.Weobserve
that the Pr S in B fault model for each lifetime is noticeably smaller than that of in
R fault model. For example, the value of Pr S in R model for a lifetime of 1 month
decreases from 0.99999997 to 0.99986397 inB fault model. This is because the failure
rate during a burst is much higher, and therefore, a relatively higher number of errors
may need to be masked for each job in B model than that of in R model. This shows
that a given application may have different Pr S for different fault models.

The result of this section is based on the parameters of the tasks and the parameters
of the fault model. If the parameters of the tasks (e.g., period, deadline or WCET) are
changed or a different failure rate for the fault models is considered, then the value of
Pr S will be different. This paper proposes a methodology to determine the reliability
of a system over some lifetime in terms of real-time schedulability and considering
faulty multicore environment. Such methodology can be used by the system designer
to determine the confidence regarding the correctness of the system with respect to
generating non-erroneous output by some deadline.

Impact of the Heuristic to Determine Number of Active Backups The results in
Table 5 are for Instrument Control application in Table 1 where the number of active
backups for the five tasks are h1 = 1, h2 = 0, h3 = 1, h4 = 0, and h5 = 1. The
Pr S for lifetime of 1 year for the B fault model in Table 5 is 0.99838547. We also
computed the Pr S where all backups are passive (∀i, hi = 0) as is assumed in many
previous works (Chen et al. 2007; Hashimoto et al. 2000; Kim et al. 2010; Bertossi
et al. 1999; Oh and Son 1994; Berten et al. 2006; Liberato et al. 1999; Pathan and
Jonsson 2011a; Huang et al. 2011). This value of Pr S is also 0.99838547 for lifetime
of 1 year for the B fault model.

The proposed heuristic in Sect. 6 is then applied to the tasks of the Instrument
Control application considering lifetime of 1 year and using parameters of the B
fault model in Table 4. The resultant configuration for the active backups is h1 = 0,
h2 = 0, h3 = 0, h4 = 1, and h5 = 0. The Pr S for this configuration is increased
to 0.99999501. This shows the effectiveness of the proposed heuristic in determining
the number of active backups for each task of the Instrument Control application and
its impact in improving Pr S compared to earlier works.

8 Related works

There are numerous works in fault-tolerant real-time scheduling. Being fully aware of
the impossibility to discuss all earlier works, this section presents the works closely

123

76 Real-Time Syst (2017) 53:45–81

related to ours. Fault-tolerant partitioned scheduling traditionally aims to tolerate only
permanent processor/core failures. Many of the earlier approaches to partitioned fault-
tolerant scheduling proposed novel task allocation algorithms but assume a relatively
restricted task or faultmodel in comparison to themodelswe consider in this paper. For
example, the task allocation algorithms in Oh and Son (1994), Bertossi et al. (1999),
Chen et al. (2007), Kim et al. (2010) assumed strictly periodic or aperiodic real-time
tasks, only active backups and considered tolerating only processor failures.

Chen et al. (2007), Hashimoto et al. (2000) and Kim et al. (2010) considered a
backup as the execution of the primary. In contrast, Oh and Son (1994) considered
multiple backups for each task while Bertossi et al. (1999) considered exactly one
backup that may be different from the primary. None of these works considered spo-
radic task model, do not explicitly address mechanisms to mask task errors, do not
consider combining passive and active redundancy, and neither address probabilistic
schedulability analysis.

Fault-tolerant scheduling of aperiodic tasks based on primary-backup approach is
proposed in Ghosh et al. (1994), Tsuchiya et al. (1995). Instead of considering active
backup, passive backup (Ghosh et al. 1994) or partially active backup (Tsuchiya et al.
1995) are also found to be effective for fault tolerance.Moreover, in order to efficiently
utilize the processors, the scheduling algorithms in Ghosh et al. (1994) and Tsuchiya
et al. (1995) consider backup-backup overloading and backup deallocation. The term
“overloading” means that different backups of different tasks are overlapped in the
same time interval on a processor. The term “deallocation” refers to reclaiming the
processing resource given to a backup if the primary completes successfully.

Many interesting table-driven fault-tolerant scheduling are addressed in Girault et
al. (2003), Isovic and Fohler (2000), Pop et al. (2009), Kandasamy et al. (2003). The
scheduling table for each processor is generated offline, which sometimes could be
challenging if task parameters are ‘badly’ related. However, table-driven scheduling
provides high predictability but they are inflexible to changes since the schedule in
each processor needs to regenerated if any task parameter is changed, for example, due
to upgrade. Priority-driven (e.g., FTM) scheduling does not have this disadvantage.

The work by Girault et al. (2003) considers allocation of only active backups to tol-
erate processor failures and is not applicable to sporadic tasks. Isovic and Fohler (2000)
consider time-triggered scheduling of sporadic tasks. In their approach, if the gener-
ated schedule is not fault-tolerant, then the schedule is discarded and new schedule is
re-generated. However, Kandasamy et al. (2003) avoid this by directly generating the
time-triggered fault-tolerant schedule. Pop et al. (2009) considered overhead-aware
check-pointing for fault-tolerance in time-triggered scheduling. Huang et al. (2011)
considered fault-tolerant schedule of jobs (not tasks) based on simple re-execution and
rely on approximation (hence pessimistic) of a schedulability test that has exponential
time complexity.

There are few works that addressed fault-tolerant global scheduling (Berten et al.
2006; Liberato et al. 1999; Pathan and Jonsson 2011a; Huang et al. 2011). Berten
et al. (2006) proposed fault-tolerant EDF scheduling based on probabilistic analysis
assuming strictly periodic tasks, deadline equals period, re-execution of the primary as
onlymeans of backup and does not consider processor failures. Each task τi is assumed
to have ti replicas and a probability pi which is the probability that a replica fails. The

123

Real-Time Syst (2017) 53:45–81 77

work in Berten et al. (2006) has several interesting results. First, sufficient number of
processors that are required to meet all the deadlines of all the replicas of all tasks is
computed based on a sufficient schedulability condition for global EDF scheduling.
Second, the probability of meeting deadlines of at least one replica of each task over
a given time frame is computed, which is the reliability of the system for that given
time frame. Third, the minimum number of processors required to achieve a given
target reliability is computed. Finally, the maximum reliability that can be achieved
for a given number of processors is computed by considering different heuristics to
determine the number of replicas for different tasks. Huang et al. (2011) considered
migratory table-driven scheduling of only jobs (thus, not applicable to sporadic tasks)
but considers tolerating both task error and core failures based on re-execution of the
primary as the only means of backup.

Liberato et al. (1999) considers Earliest-Deadline-First (EDF) scheduling for tol-
erating a single fault on uniprocessor considering periodic tasks and derive an exact
test that can be used to determine whether all the deadlines of all the periodic tasks are
met or not. Liberato et al. (1999) extended the dynamic-priority-based P-fair (Baruah
et al. 1996) scheduling for fault tolerance considering periodic task model, exactly
one backup for each task (thus cannot tolerate multiple task errors affecting the same
job) and assuming a minimum inter-arrival time between occurrences of consecutive
task errors. The main idea is to execute tasks by artificially increasing their utilization
to ensure that each task completes early enough to complete recovery if an error is
detected in that task. A extra processor is deployed to execute the recovery so that
schedulability guarantee to other tasks are not compromised.

Pathan and Jonsson (2011a) considered global fixed-priority scheduling where only
passive backups are considered and do not address probabilistic analysis. A sufficient
schedulability condition is presented that can be used to determine if all the tasks meet
their deadlines. The use of only passive backups imply that atmost one backup executes
at a time and does not exploit the benefit of parallel architecture to recover quickly from
errors using active backups. The works in Huang et al. (2011) and Pathan and Jonsson
(2011a) are based on a fault model that assumes that each job can suffer the same
number of faults in its scheduling window. This is unreasonable since the scheduling
windows of different jobs may have different length. And, job with relatively longer
scheduling window and longer WCET may suffer relatively larger number of faults.
To the best of our knowledge, no partitioned or global scheduling considered fault
burst model as we have considered in this paper.

A similar fault model is considered for uniprocessor platform in Pathan and Jonsson
(2010b) where each job can suffer the same number of faults in its scheduling window
and an exact schedulability condition for sporadic tasks is proposed. Similar to the
work in Pathan and Jonsson (2010b), this paper presents a deadline-based analysis
in which the load in the scheduling window of each task is computed and compared
against the deadline to determine if the task meets its deadline or not. One interesting
future work is to extend the analysis of this work to derive a response-time based
schedulability analysis.

In summary, many of the previous works on fault-tolerant scheduling on multi-
processors consider a relatively restricted error/fault model by assuming, for example,
that (i) the inter-arrival time of two errors/faults must be separated by a minimum

123

78 Real-Time Syst (2017) 53:45–81

distance (Ghosh et al. 1994; Tsuchiya et al. 1995; Liberato et al. 1999), (ii) at most
one error affect each task (Liberato et al. 1999; Ghosh et al. 1994; Bertossi et al. 1999),
(iii) tolerating task error is same as tolerating processor failures (Oh and Son 1994;
Bertossi et al. 1999; Chen et al. 2007; Kim et al. 2010; Girault et al. 2003), and (iv)
consider only active backups (Girault et al. 2003) or only passive backups (Pathan and
Jonsson 2011a).

To the best of our knowledge, there is no work that addresses fault-tolerant global
scheduling that considers sporadic task model, deadline of the tasks being less than
or equal to the periods, considers both core failures and task errors using multiple
and possibly different backups, provides probabilistic guarantee for different fault
models, and combines advantages of both active and passive redundancy.Our proposed
FTM scheduling algorithm presented in this paper possesses all these characteristics.

9 Conclusion

This paper presents the design and analysis of a scheduling algorithm FTM that consid-
ers application-level error level which is independent of the stochastic behavior of the
hardware-level fault model. The schedulability analysis is performed to determine the
application’s ability to tolerate the number of core failures and job errors for each task.
And, the actual fault model’s stochastic behavior is plugged in to the analysis later
to perform a probabilistic analysis to determine the application’s ability to withstand
actual faults during run-time. Such separation of concern between the “error model”
and “fault model” enables to derive the probabilistic schedulability guarantee of the
same application under different faulty environments.

The other major strengths of FTM algorithm are that it considers (i) combination
of both active and passive redundancy, (ii) both job errors and core failures, (iii) use
backups that may be different from the primary, (iv) probabilistic schedulability guar-
antee for different fault models, and (v) proposing an effective heuristic to determine
the number of active backups for each task. The methodology presented in this paper
can be applied to determine the probability of meeting all real-time constraints of
safety-critical application operated in faulty multicore environment.

Although hardware faults are considered, the FTM scheduling is also applicable
for tolerating software faults relying on the execution of diverse backups. Based on
the exponential failure law for software faults, as is proposed by Sha (2001), we can
extend our fault models by including the stochastic behavior of software faults and
can apply the same probabilistic analysis presented in this paper.

We assume that when a core fails, no task can execute on that core. However, a
core may be faulty only for certain tasks and may be non-faulty for other tasks. For
example, if the floating-point unit (FPU) of a core is not working, then all tasks that
do not use FPU can be executed on that core. Extending the analysis of this paper for
task-specific permanent hardware faults is left as a future work.

Acknowledgements This research has been funded by the MECCA project under the ERC grant ERC-
2013-AdG 340328-MECCA.

123

Real-Time Syst (2017) 53:45–81 79

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: Proof of Theorem 1

Proof We will show that if total (̂M · sk,̂M) units of CPU time is available, then the zth

backup has enough CPU time to complete its Ez
k units of execution in FTM scheduling

for z = 0, 1, . . . hk . From Eq. (9), we have that

̂M · sk,̂M ≥ ̂M · Ez
k +

z−1
∑

b=0

Eb
k (20)

for z = 0, 1, . . . hk . It is evident from Eq. (20) that the total CPU time available on
̂M cores is at least (̂M · Ez

k + ∑z−1
b=0 E

z
k) for z = 0, 1, . . . hk .

In FTM scheduling, the 0th, 1st , . . . (z−1)th backups of job Jk have higher priorities
over the zth backup for z = 0, 1, . . . hk . Therefore, when considering whether the zth

backup has enough CPU time or not, we have to consider the amount of CPU time
required for the higher priority 0th, 1st , . . . (z − 1)th backups and the zth backup.
The total CPU time required for the (z − 1) higher priority backups is

∑z−1
b=0 E

b
k .

Consequently, theminimumCPU time available for the zth backup is (̂M·Ez
k) according

to Eq. (20).
The amount of sequential execution time available for the zth backup is minimized

when this available CPU time of (̂M·Ez
k) units are evenly divided across all thêM cores.

In other words, at least
̂M·Ez

k
̂M = Ez

k units of sequential execution is possible for the z
th

backup, which is enough for zth backup to complete its execution for z = 0, 1, . . . hk .

References

Aggarwal N, Ranganathan P, Jouppi NP, Smith JE (2007) Configurable isolation: building high availability
systems with commodity multi-core processors. In: Proceedings of the ISCA

Al-Asaad H,Murray BT, Hayes JP (1998) Online BIST for embedded systems. IEEEDes Test 15(4):17–24.
doi:10.1109/54.735923

Andersson B, Bletsas K, Baruah S (2008) Scheduling arbitrary-deadline sporadic task systems on multi-
processors. In: Proceedings of the IEEE real-time systems symposium, pp 385–394

Avižienis A, Laprie J-C, Randell B, Landwehr C (2004) Basic concepts and taxonomy of dependable and
secure computing. IEEE Trans Depend Secur Comput 1(1):11–33. doi:10.1109/TDSC.2004.2

Barlow RE, Heidtmann KD (1984) Computing k-out-of-n system reliability. IEEE Trans Reliab 33(4):322–
323. doi:10.1109/TR.1984.5221843

Baruah S, Rosier LE, Howell RR (1990) Algorithms and complexity concerning the preemptive scheduling
of periodic, real-time tasks on one processor. Real-Time Syst 2(4):301–324

Baruah SK, Cohen NK, Plaxton CG, Varvel DA (1996) Proportionate progress: a notion of fairness in
resource allocation. Algorithmica 15(6):600–625

Baruah S, Burns A, Davis R (2011) Response-time analysis for mixed criticality systems. In: Proceedings
of RTSS

Baruah S, Fohler G (2011) Certification-cognizant time-triggered scheduling of mixed-criticality systems.
In: Proc RTSS, pp 3–12

123

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1109/54.735923
http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1109/TR.1984.5221843

80 Real-Time Syst (2017) 53:45–81

Baumann R (2005) Soft errors in advanced computer systems. IEEE Des Test Comput 22(3):258–266
Berten V, Goossens J, Jeannot E (2006) A probabilistic approach for fault tolerant multiprocessor real-time

scheduling. In: Proceedings of IPDPS, p 8
Bertossi AA, Mancini LV, Rossini F (1999) Fault-tolerant rate-monotonic first-fit scheduling in hard-real-

time systems. IEEE Trans Parallel Distrib Syst 10(9):934–945. doi:10.1109/71.798317
Borkar S (2005) Designing reliable systems from unreliable components: the challenges of transistor vari-

ability and degradation. IEEE Micro 25(6):10–16. doi:10.1109/MM.2005.110
Brandenburg BB, Calandrino JM, Anderson JH (2008) On the scalability of real-time scheduling algorithms

on multicore platforms: a case study. In: Proceedings of RTSS, pp 157–169
Campbell A,McDonald P, RayK (1992) Single event upset rates in space. IEEETrans Nucl Sci 39(6):1828–

1835. doi:10.1109/23.211373
Carpenter J, Funk S, Holman P, Anderson JH, Baruah S (2004) A categorization of real-time multiprocessor

scheduling problems and algorithms. Methods, and Models, Handbook on Scheduling Algorithms
Chen J-J,YangC-Y,KuoT-W,TsengS-Y (2007)Real-TimeTaskReplication for Fault Tolerance in Identical

Multiprocessor Systems. In: Proceedings of RTAS, pp 249–258
Claesson V (2002) Efficient and reliable communication in distributed embedded systems. Ph.D. Thesis,

Chalmers University of Technology, Gothenburg
Davis R, Burns A (2011) A survey of hard real-time scheduling for multiprocessor systems. ACM Comput

Surv 43(4):35:1–35:44
Elliott EO (1963) Estimates of error rates for codes on burst-noise channels. Bell Syst Tech J 42(5):1977–

1997
Ferreira J, Oliveira A, Fonseca P, Fonseca J (2004) An experiment to assess bit error rate in CAN. In:

Proceedings of 3rd international workshop of real-time networks
Garey MR, Johnson DS (1979) Computers and Intractability: a guide to the theory of NP-completeness. W.

H. Freeman & Co., New York
Ghosh S, Melhem R, Mosse D (1994) Fault-tolerant scheduling on a hard real-time multiprocessor system.

In: Proceedings of the Parallel Processing Symposium, pp 775–782
Girault A, Kalla H, Sorel Y, Sighireanu M (2003) An algorithm for automatically obtaining distributed and

fault-tolerant static schedules. In: Proceedings of the DSN
Hashimoto Koji, Tsuchiya Tatsuhiro, Kikuno Tohru (2000) A new approach to fault-tolerant scheduling

using task duplication in multiprocessor systems. J Syst Softw 53(2):159–171
HillerM (2000)Executable assertions for detecting data errors in embedded control systems. In: Proceedings

of the DSN
Hong Y (2013) On computing the distribution function for the poisson binomial distribution. Comput Stat

Data Anal 59(C):41–51. http://ideas.repec.org/a/eee/csdana/v59y2013icp41-51.html
Huang J, Blech JO, Raabe A, Buckl C, Knoll A (2011) Analysis and optimization of fault-tolerant task

scheduling on multiprocessor embedded systems. In: Proceedings of the CODES+ISSS, pp 247–256
Isovic D, Fohler G (2000) Efficient scheduling of sporadic, aperiodic, and periodic tasks with complex

constraints. In: Proceedings of the RTSS, pp 207–216
Jalote P (1994) Fault tolerance in distributed systems. Prentice Hall, Upper Saddle River
Jhumka A, Hiller M, Claesson V, Suri N (2002) On systematic design of globally consistent executable

assertions in embedded software. In: Proceedings of the LCTES
Joseph R, Brooks D, Martonosi M (2003) Control techniques to eliminate voltage emergencies in high

performance processors. In: Proceedings of the 9th international symposium on high-performance
computer architecture, HPCA ’03

Kandasamy N, Hayes JP, Murray BT (2003) Transparent recovery from intermittent faults in time-triggered
distributed systems. IEEE Trans Comput 52(2):113–125. doi:10.1109/TC.2003.1176980

Kato S, Yamasaki N (2009) Semi-partitioned scheduling of sporadic task systems on multiprocessors. In:
Proceedings of the EuroMicro conference on real-time systems, pp 249–258

Kim J, Lakshmanan K, Rajkumar R (2010) R-BATCH: task partitioning for fault-tolerant multiprocessor
real-time systems. In: Proceedings of ICESS, pp 1872–1879

Koren I, Krishna CM (2007) Fault-tolerant systems. Morgan Kaufmann, ISBN 0-12-088525-5
Lakshmanan K, Rajkumar R, Lehoczky J (2009) Partitioned fixed-priority preemptive scheduling for multi-

core processors. In: Proceedings of the EuroMicro Conference on Real-Time Systems, pp 239–248
Liberato F, Lauzac S,MelhemR,Mossé D (1999) Fault tolerant real-time global scheduling onmultiproces-

sors. Proceedings of ECRTS, p 252

123

http://dx.doi.org/10.1109/71.798317
http://dx.doi.org/10.1109/MM.2005.110
http://dx.doi.org/10.1109/23.211373
http://ideas.repec.org/a/eee/csdana/v59y2013icp41-51.html
http://dx.doi.org/10.1109/TC.2003.1176980

Real-Time Syst (2017) 53:45–81 81

Many F, Doose D (2011) Scheduling analysis under fault bursts. In: 17th IEEE Real-time and embedded
technology and applications symposium (RTAS), pp 113–122

Meixner A, Bauer ME, Sorin DJ (2008) Argus: low-cost, comprehensive error detection in simple cores.
IEEE Micro 28(1):52–59. doi:10.1109/MM.2008.3

Oh Y, Son SH (1994) Enhancing fault-tolerance in rate-monotonic scheduling. Real-Time Syst 7(3):315–
329. doi:10.1007/BF01088524

Pathan RM, Jonsson J (2010a) Load regulating algorithm for static-priority task scheduling on multiproces-
sors. In: Proceedings of the IPDPS, pp 1 –12

Pathan RM, Jonsson J (2010b) Exact fault-tolerant feasibility analysis of fixed-priority real-time tasks. In:
International workshop on real-time computing systems and applications, pp 265–274

Pathan RM, Jonsson J (2011a) FTGS: Fault-tolerant fixed-priority scheduling on multiprocessors. In: Pro-
ceedings of ICESS

Pathan RM, Jonsson J (2011b) Improved schedulability tests for global fixed-priority scheduling. In: Pro-
ceedings of ECRTS

Pathan RM (2014) Fault-tolerant and real-time scheduling for mixed-criticality systems. Real-Time Syst
50(4):509–547

Pop P, Izosimov V, Eles P, Peng Z (2009) Design optimization of time- and cost-constrained fault-tolerant
embedded systems with checkpointing and replication. IEEE Trans VLSI Syst 17(3):389–402. doi:10.
1109/TVLSI.2008.2003166

Ras J, Cheng AMK (2010) Response time analysis of the abort-and-restart model under symmetric multi-
processing. In: Proceedings of CIT, pp 1954–1961

Sha L (2001) Using simplicity to control complexity. IEEE Softw 18(4):20–28. doi:10.1109/MS.2001.
936213

Sherwood T, Sair S, Calder B (2003) Phase tracking and prediction. SIGARCH Comput Archit News
31(2):336–349

Shivakumar P, Kistler M, Keckler SW, Burger D, Alvisi L (2002) Modeling the effect of technology trends
on the soft error rate of combinational logic. In: Proceedings of the DSN, pp 389–398

Short M, Proenza J (2013) Towards efficient probabilistic scheduling guarantees for real-time systems
subject to random errors and random bursts of errors. In: Proceedings of ECRTS, pp 259–268. doi:10.
1109/ECRTS.2013.35

Srinivasan J, Adve SV, Bose P, Rivers JA (2004) The impact of technology scaling on lifetime reliability.
In: Proceedings of the DSN

Tsuchiya T, Kakuda Y, Kikuno T (1995) Fault-tolerant scheduling algorithm for distributed real-time sys-
tems. In: Proceedings of the workshop on parallel and distributed real-time systems, p 99

Wong HC, Burns A (2014) Schedulability analysis for the abort-and-restart (ar) model. In: Proceeding of
RTNS, 2014

123

http://dx.doi.org/10.1109/MM.2008.3
http://dx.doi.org/10.1007/BF01088524
http://dx.doi.org/10.1109/TVLSI.2008.2003166
http://dx.doi.org/10.1109/TVLSI.2008.2003166
http://dx.doi.org/10.1109/MS.2001.936213
http://dx.doi.org/10.1109/MS.2001.936213
http://dx.doi.org/10.1109/ECRTS.2013.35
http://dx.doi.org/10.1109/ECRTS.2013.35

	Real-time scheduling algorithm for safety-critical systems on faulty multicore environments
	Abstract
	1 Introduction
	2 Error, fault and application model
	3 Algorithm FTM: tasks dispatching policy
	4 Worst-case schedulability analysis of FTM algorithm
	4.1 Finding set HJk
	4.2 Computing workload Wc(HJk)
	4.3 Determining the schedulability of job Jk

	5 Probabilistic schedulability analysis
	6 A heuristic for configuring the number of active backups
	7 Case study: instrument control application
	8 Related works
	9 Conclusion
	Acknowledgements
	Appendix: Proof of Theorem 1
	References

