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1 Introduction

A large body of literature has been devoted to the study of the transport and hydrodynamic

properties of strongly coupled gauge theories using the AdS/CFT correspondence, starting

from [1–3]; see [4] for a recent review.

One of the most striking results of these investigations has been the discovery that the

ratio of the shear viscosity to the entropy density is a universal quantity, that has the same

value of 1/4π in every theory that admits a description in terms of Einstein gravity coupled

to matter fields; the universality is spoiled if the Lagrangian has higher-derivative terms,

which means generically, given the dictionary of the holographic correspondence, that it

holds only in the limit of infinitely strong coupling of the dual field theory. See [5] for a

review. The underlying reason is the uniqueness of Einstein gravity, or in other words the

universal coupling of gravity to all matter fields; as a consequence, it can be shown that in

any planar black hole background, the transverse graviton (i.e. with polarization parallel

to the directions in which the horizon extends) satisfies the same equation of motion; the

shear viscosity is related to the absorption of this mode by the black hole horizon.

This result was put in a more general framework by [6], who showed that for some

transport coefficients, the relevant correlator has no radial flow, or it is independent of the

radial direction in the low-energy limit; this happens whenever the fluctuating mode that

couples to the operator is a massless scalar. In that case, the transport coefficient that
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is in principle computed on the boundary can also be computed on the horizon, and so

typically it has less dependence on all the details of the model; but it is not enough to

imply universality as there can still be a residual dependence of the “effective coupling” at

the horizon.

Most of the work on the subject has been devoted to bosonic correlators, with relatively

little attention paid to the fermions. In fact, it is natural to wonder whether the constraints

imposed by supersymmetry may be sufficient to imply universality for the transport of

supersymmetry charges. With this question in mind, one of the authors (GP) has computed

the supercurrent diffusion constant inN = 4 SYM [7]. In that paper the result was obtained

by looking at poles of the retarded correlator of the supercharge density; the imaginary part

of the pole gives the attenuation coefficient which can be related to the diffusion constant

by general hydrodynamic arguments. While this was the simplest way to arrive at the

result, it was not optimal because it used the longitudinal channel instead of the transverse

one; even for the graviton the universality would not be manifest in this channel.

In the present paper we reanalyze the question by looking at the transverse mode of the

gravitino. First we consider an uncharged gravitino in a generic black-brane background;

the technique of radial flow allows us to derive a general formula for the diffusion constant;

this formula reproduces the known result in the case of the AdS black hole; however even

in this simple case the fluctuation is not massless in general, so we cannot read the value

in terms of horizon data.

Next we consider what happens when the gravitino is charged, as it is the case in

gauged supergravity. The equations of motion in this case are much more complex and the

radial flow is not useful. Therefore we consider only one particular case: the black hole

in the so-called STU model. This is a solution of N = 2 gauged supergravity, but it can

be embedded in N = 8 and as such corresponds to taking N = 4 SYM at finite chemical

potential for the R-charge. The STU black hole can be charged under three commuting

U(1) gauge fields. We consider the special cases of one charge and three equal charges. In

each case we solve numerically the equations of motion and compute the diffusion constant

as a function of the ratio of temperature over chemical potential.

This is the plan of the paper: in section 2.1 we review the properties of the supersymme-

try correlators in the hydrdynamic regime, and the setup for the holographic computation;

in section 2.3 we derive the diffusion constant for the uncharged gravitino; in section 3.1

we review the solution for the STU black hole and their thermodynamic properties; in

sections 3.2–3.3 we detail the computation of the diffusion constant and give the results (in

figures 1–4). The appendices contain some details on the derivation of the Kubo formula

for the supercurrents, and the normalization of the boundary action.

2 Supercharge diffusion at zero density

2.1 Supercurrent correlator

A supersymmetric field theory at finite temperature has hydrodynamic excitations corre-

sponding to fluctuations of the supercharge density (see [8] and [9] for more details on

hydrodynamics with supercharges). In particular there is a supersymmetric sound wave
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that propagates with a speed and attenuation that are different from those of ordinary

sound. The attenuation rate is governed by the diffusion constant of the supercharge; this

has been computed in the N = 4 SYM theory for the first time in [7] using holography. In

this section we compute it in a different way, not using the sound attenuation but the trans-

verse part of the correlator as explained below; along the way we present the definitions

and techniques that will be used in the next section.

The diffusion constant can be extracted by means of a Kubo formula (see appendix A)

from the retarded correlator of the supercurrents Sαi , defined as:

Gαβ̇ij (k) =

∫
d4xe−ik·xiθ(x0)〈{Sαi (x), S̄β̇j (0)}〉 (2.1)

Conservation of the supercurrents and superconformal invariance imply:

kiGij = 0 γiGij = Gijγ
j = 0 (2.2)

The correlator of the supercurrents can be build out of projectors that implement these

constraints. The projector on the transverse gamma-traceless part of a vector-spinor is

P ji = δji −
1

3

(
γi −

ki/k

k2

)
γj − 1

3k2
(4ki − γi/k)kj (2.3)

The correlator can be written as Gij = P ki MklP
l
j . At zero temperature, Lorentz invariance

dictates the form of M to be Mkl = A(k2) /k ηkl. At finite temperature or density Lorentz

invariance is broken and the correlator can depend apart from k also on the velocity of the

fluid ui = (1, 0, 0, 0). One can write another projector that is transverse both to k and u:

P T11 = P T1i = 0

P Tjk = δjk −
1

2

(
γj −

qj/q

q2

)
γk −

1

2q2
(3qj − γj/q)qk

(2.4)

where ki = (ω−µ,q). We define the longitudinal projector as PL = P−P T . The correlator

can have three possible structures: PLPL, P TP T and PLP T + P TPL. In the following

we choose q = (0, 0, q). With this choice the mixed correlator vanishes identically. The

longitudinal and the transverse part of the correlator can be written as:

GLij = (PL)kiMkm(PL)mj

GTij = (P T )ki M̃km(P T )mj
(2.5)

and the most general form of M and M̃ allowed by the symmetries is:

Mkm = ηkm(a/k + a′/u) + ukum(b/k + b′/u)

M̃km = ηkm(ã/k + ã′/u)
(2.6)

There are additional relations between the coefficients that come from requiring rotational

invariance at zero momentum. For the following we will need these relations between the

components of the correlator in the low momentum limit:

GT22 = GT33 = −a′/2 GT44 = 0

GL22 = GL33 = −a′/6 GL44 = −2a′/3
(2.7)

The longitudinal part of the correlator was calculated in [7]. In the present article we focus

on the transverse correlator.
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2.2 Transverse gravitino in blackbrane background

For the holographic computation we have to consider a gravitino propagating in the near-

extremal 3-brane background (see [10] for the analogous computation at zero temperature).

The near horizon geometry has the following metric:

ds2 =
π2T 2R2

u

(
− f(u)dt2 + dx2 + dy2 + dz2

)
+

R2

4f(u)u2
du2 (2.8)

where f(u) = 1− u2. The boundary is located at u = 0 and the horizon at u = 1.

The bulk action for the gravitino is:

S =

∫
d4x
√
−g (Ψ̄µΓµνρDνΨρ −mΨ̄µΓµνΨν) (2.9)

The covariant derivative acts on a spinor as:

Dµ = ∂µ +
1

4
ωabµ γab (2.10)

and the equation of motion is the Rarita-Schwinger equation:

ΓµνρDνΨρ −mΓµνΨν = 0 (2.11)

In the gauge ΓµΨµ = 0 the equations for the spatial components of the field read [7]:

γ5ψ′k +
1

2πT
√
uf

(
1√
f
γ1∂t + γj∂j

)
ψk +

u2 − 2

2uf
γ5ψk −

1

2u
γkψ5 +

mR

2u
√
f
ψk = 0 (2.12)

where ψa = eµaΨµ, γa = eµaΓµ and ψ′ = ∂ψ/∂u.

Define the Fourier transform as:

Ψµ(u, x) =
1

(2π)2

∫
d4keikνx

ν
Ψµ(u, k) (2.13)

with kµ = 2πT (ω, 0, 0, q).

The field η = γ2ψ2−γ3ψ3 has spin 3/2 under the O(2) rotational symmetry that preserves

kµ and therefore it decouples from the other components that have spin 1/2. It is easy to see

that this is the field that is dual to the transverse part of the correlator. Multiplying (2.12)

for k = 2 by γ2 and for k = 3 by γ3 and subtracting we arrive at the equation satisfied by

the transverse component of the gravitino:

η′ = −γ5
(

/P√
uf

+
u2 − 2

2uf
γ5 − 3

4u
√
f

)
η (2.14)

with /P = −iω/
√
fγ1 + iqγ4.

We cannot solve equation (2.14) analytically but we can solve it as an expansion in mo-

menta. A useful remark is that equation (2.14) commutes with γ23 = diag(1,−1, 1,−1)

and therefore we can project on its eigenvectors. In the eigenspace γ23 = 1 (resp. −1)

equation (2.14) becomes a matrix differential equation for (η1, η3) (resp. (η2, η4)).
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We find the following solutions near the horizon:

(1− u)−
1
4
−iω

2 (−i, 1)

(1− u)−
1
4
+iω

2 (i, 1)
(2.15)

We have to impose incoming boundary conditions at the horizon in order to calculate the

retarded correlator [11].We can keep the incoming waves at the horizon by imposing the

relation η+ = −iη−. For the two other components (η2, η4) the equations are the same after

the exchange q → −q. Repeating the analysis for these components we find the solution

up to first order in momenta. The near boundary expansion of this solution reads:

η =


u3/4(−i33/4)(q − ω)α+ u7/4 3

3/4

2
√
2
β(ω, q)

u3/4i33/4(ω + q)γ + u7/4 3
3/4

2
√
2
δ(ω, q)

u1/433/4[iβ(ω, q) +
√

2(q − (1−
√

2/L)ω)α]

u1/433/4[iδ(ω, q)−
√

2(q + (1−
√

2/L)ω)γ]

 (2.16)

where /L = log(1+
√

2). We may identify the source of the field ϕ with the negative chirality

part η− = u1/4ϕ and identify χ and χ̃ as the coefficients of the positive chirality expansion

η+ = u3/4χ̃+ u7/4χ:

ϕ =

(
33/4[iβ(ω, q)) +

√
2(q − (1−

√
2/L)ω)α]

33/4[iδ(ω, q)−
√

2(q + (1−
√

2/L)ω)γ]

)
(2.17)

χ =

(
33/4

2
√
2
β(ω, q)

33/4

2
√
2
δ(ω, q)

)
χ̃ =

(
i33/4(ω − q)α
i33/4(ω + q)γ

)
(2.18)

Multiplying φ by /k = −i2πT diag(ω− q, ω+ q) and neglecting terms that are of higher

order in the momenta we can express χ̃ in terms of the source:

χ̃ =
i

2πT
/kϕ (2.19)

Similarly we can verify that the following expression is correct up to higher order terms in

the momenta:

ϕ = diag
(
2
√

2i+ 4q − 4(1−
√

2/L)ω, 2
√

2i− 4q − 4(1−
√

2/L)ω
)
χ (2.20)

Inverting the matrix and expanding on small momenta we can express χ in terms of the

source:

χ = diag

(
− i
√

2

4
− 4q + 4(1−

√
2/L)ω,−i

√
2

4
+ 4q + 4(1−

√
2/L)ω

)
ϕ (2.21)

2.3 Computation of the diffusion constant

Given that, for the Rarita-Schwinger field, the on-shell action vanishes, the only contribu-

tion to the correlator will come from the boundary action:

Sbdy = N
∫
d4x
√
−hhijΨ̄iΨ

j (2.22)
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where h is the induced metric on the boundary and Ψ̄ = iΨ†Γ1. Performing the field

redefinitions φ = γ2ψ2 + γ3ψ3 and η = γ2ψ2 − γ3ψ3 and setting φ = 0, ψ1 = 0, ψ4 = 0

since we are only interested in the transverse part we get:

Sbdy =
N
2

∫
d4x
√
−h

√
u√

fπTR
η̄η (2.23)

Fourier transforming and taking the limit u = ε→ 0 we have:

Sbdy =
N
2

√
ε

πTR

∫
d4k
√
−h
[
η†−(k)η+(k) + η†+(k)η−(k)

]
(2.24)

The correlator that we want to calculate is not hermitian and therefore we should keep

only the first term in the action to extract the correlator. This procedure is equivalent to

the recipe proposed in [12]. Substituting the expansion of the field on the boundary the

action becomes:

Sbdy =
N
2

(πTR)3
∫
d4k
(
ε−1/2ϕ†χ̃+ ε1/2ϕ†χ

)
(2.25)

To substract the divergencies in the limit ε→ 0 we introduce the counterterm:

Sct = −Sdiv
bdy = −N

2
(πTR)3

∫
d4kε−1/2ϕ†χ̃ (2.26)

The counterterm is written in covariant form as:

Sct = −NR
4

∫
d4x
√
−hη̄−/∂hη− (2.27)

where η̄− = η†Γ1 and /∂h = Γµ∂µ. This counterterm does not introduce any finite correction

to the correlator since there is no u7/4 term in the boundary expansion of η−. The correlator

is calculated from the renormalized action.

Sren = Sbdy + Sct

=
N
2

(πTR)3
∫
ϕ† diag

(
− i
√

2

4
− 4q + 4(1−

√
2/L)ω,−i

√
2

4
+ 4q + 4(1−

√
2/L)ω

)
ϕ

The retarded correlator of the operator dual to η is therefore:

GR =
N
2

(πTR)3 diag

(
− i
√

2

4
− 4q + 4(1−

√
2/L)ω,−i

√
2

4
+ 4q + 4(1−

√
2/L)ω

)
(2.28)

where we have absorbed the extra ε power in a field redefinition. The normalization of the

action is calculated in the appendix and is found to be:

N =
N2
c

π2
(2.29)

From the analysis of the projections of the correlators we can deduce that with i indices

summed Giiαα̇ = 4GRαα̇ where Giiαα̇ is the correlator that comes in the Kubo formula (A.11)

for the diffusion constant. The energy density is:

ε =
3π2

8
N2
c T

4

We finally compute the diffusion constant from the Kubo formula and find:

Ds =
2
√

2

9πT
(2.30)

This result is in agreement with the diffusion constant calculated in [7].
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2.4 Running of the correlator

In this section we give an alternative derivation in the spirit of the membrane paradigm

approach to the question of universality of the diffusion constant [6]. The idea is that the

correlator can be formally computed on any radial slice of the geometry. When evaluated

on the boundary it corresponds to the real field-theory correlator, and one can derive a

flow equation that expresses the running from the boundary to the horizon. In favorable

cases, at low frequency the flow is trivial and the UV correlator is equal to the value at the

horizon.

Let us consider again the Rarita-Schwinger equation (2.14); at zero momentum and

frequency, it becomes

η′+ = (−A+B)η+ , η′− = (−A−B)η− (2.31)

where B = m
√
guu, and m = 3/2 for the gravitino. The ratio w = η+/η− satisfies

∂uw = 2Bw, and we have the flow equation

F ′ ≡ ∂u
(
e−2

∫
B(u)du η+

η−

)
= 0 . (2.32)

The integral converges at the horizon, so we have F(u = 1) = η+/η−(u = 1) = −i. At the

boundary we have F ∼ u−mη+/η− = χ/φ, but the coefficient of proportionality requires the

computation of
∫ u
1

√
guu so we cannot express it purely in terms of horizon data. We find

Ds =
8

9πT
exp

(
−m log ε− 2m

∫ 1

ε

√
guudu

)
(2.33)

This formula reproduces the result (2.30), and allows to compute the diffusion constant

in any asymptotically AdS black hole background. However, as we will see, in presence

of a finite charge density for a U(1) under which the gravitino is charged (typically an

R-symmetry), the equations of motion are more complicated and do not become diagonal

even at zero momentum.

3 Supercharge diffusion at finite density

3.1 The background

We want to consider the change in the diffusion constant when there is a finite background

charge density. In N = 4 SYM there is an SU(4) R-symmetry group under which the

supercurrents transform in the fundamental representation. It is possible to give a vev

simultaneously to three charges in the Cartan subalgebra of SU(4). The corresponding

solution is an asymptotically AdS black hole carrying electric charges, known as the STU

black hole. It was first constructed as a solution of d = 5,N = 2 gauged supergravity with

2 matter multiplets. The construction of the theory is explained in [13] and the solutions

of the bosonic part are presented in [14]. The solution can be embedded in type IIB

supergravity, the uplift to 10 dimensions is given in [15] but for our purposes it is sufficient

to work with the 5-dimensional solution.
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The theory contains three abelian gaueg fields AI and three scalar fields subject to the

constraint X1X2X3 = 1, with the metric on the scalar manifold given by:

GIJ = 2 diag[(X1)2, (X2)2, (X3)2] (3.1)

and the scalar potential is V = 2
∑

I 1/XI . The metric of the black hole with translationally

invariant horizon is:

ds2 = −H−2/3 (πTL)2

u
f(u)dt2 +H1/3 (πTL)2

u
(dx2 + dy2 + dz2) +H1/3 L2

4f(u)u2
du2

f(u) = H(u)− u2
3∏
I=1

(1 + κI) HI(u) = 1 + κIu

κI =
qI

(πTL2)2
H(u) =

3∏
I=1

HI(u)

where qI are the three charges. In the zero charge limit this metric is exactly (2.8). The

scalar and gauge fields are given by:

XI =
H1/3

HI(u)
AIt = πTLu

κI
HI(u)

3∏
J=1

(1 + κJ) (3.2)

The Hawking temperature of the background is:

TH =
2 + κ1 + κ2 + κ3 − κ1κ2κ3

2
√

(1 + κ1)(1 + κ2)(1 + κ3)
T (3.3)

The energy density, entropy density, charge density and chemical potentials are respec-

tively:

ε =
3π2N2T 4

8

3∏
I=1

(1 + κI)

s =
π2N2T 3

2

3∏
I=1

(1 + κI)
1/2

ρI =
πN2T 3

8

√
κI

3∏
J=1

(1 + κJ)1/2

µI = AIt (u)|u=1 =
πTL

√
κI

1 + κI

3∏
J=1

(1 + κJ)1/2

(3.4)

Imposing the condition of thermodynamic stability on the background implies a restriction

on the charges of the background [16]

2− κ1 − κ2 − κ3 + κ1κ2κ3 > 0 (3.5)

The relevant part of the Lagrangian for the gravitino is [13]:

L = e

[
Ψ̄µΓµνρDνΨρ + iλ̄aΓµΓνΨµf

a
i ∂νφ

i − 1

2
haI λ̄

aΓµΓλρΨµF
I
λρ

+
1

8XI
i(Ψ̄µΓµνρσΨνF

I
ρσ + 2Ψ̄µΨνF Iµν) +

3

2L
Ψ̄µΓµνΨνVo −

3

L
λ̄aΓµΨµVa

] (3.6)
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where I = 1, 2, 3, i, a = 1, 2. haI , Va and Vo are functions of the scalar fields, φi are the

scalars fields on the constrained scalar manifold and fai is the vielbein on this manifold.

The covariant derivative acts on a spinor as

Dµψ = Dµψ − i
3

2L
VIA

I
µψ

where VI are constants and should be equal to 1/3 for the HI to be properly normalized [14].

Vo is given by:

Vo =
1

2
GIJ

VI
XJ

(3.7)

and F Iµν = ∂µA
I
ν − ∂νA

I
µ are the gauge field strengths.The equations of motion for the

gravitino are:

ΓµνρDνΨρ+iΓµΓνλaf
a
i ∂νφ

i− 1

2
haIΓ

µΓλρλaF Iλρ+
i

8XI
(ΓµνρσΨνF

I
ρσ+2ΨνF Iµν)

+
3

2L
ΓµνΨνVo −

3

L
ΓµλaVa = 0

(3.8)

The supersymmetry transformations act on the gravitino as:

δΨµ = Dµε+
i

24XI
(Γνρmu − 4δνµΓρ)F̂ Iνρε+

1

6L

∑
I

XIΓµε (3.9)

where

F̂ Iµν = F Iµν +
i

4XI
Ψ̄[µΨν]

and we neglected the terms containing the spinors λ in the two previous formulas.

We are again interested in the transverse component of the gravitino, which can be defined

as η = ΓxΨx − ΓyΨy. Using the same strategy as in the zero-charge case, one can show

that the transverse part of the gravitino is decoupled, both from the longitudinal part and

from the spinors λ. The equation for the transverse component is therefore:

η′+

(
γ5 /K√
fu

+F (u)− 3i

2L

√
guugttγ5γ

1VIA
I
t +

i

4XI

√
gttγ1F Iut+

3

2L

√
guuγ

5Vo
)
η = 0 (3.10)

with

/K = −i

√
H
f
γ1ω + iqγ4

F (u) =
1

4

g′tt
gtt

+
3

4

g′xx
gxx

(3.11)

Note that the transverse component of the gravitino is gauge invariant and that we can

again split our equation in two different systems by projecting on the eigenspaces of γ23.

3.2 Analytic solution for small charge

The system of differential equations obtained above cannot be solved analytically. Since

calculating the diffusion constant requires knowing the retarded correlator for zero mo-

menta we set the momentum to zero and attempt to find a solution as an expansion in the

charges. We consider in turn the cases where only one charge is turned on, and when there

are three equal charges.
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One charge. In this case we take κ1 = κ, κ2 = κ3 = 0 and attempt to find a solution of

the form:

η(u, κ) = η(0)(u) +
√
κ η(1)(u) + κ η(2)(u) + . . . (3.12)

Solving the system of equations near the horizon we identify the exponents:

U± = −1

4
± i

4

√
κ+ 4

√
1 + κω

2 + κ
(3.13)

The choice of U− yields incoming-wave boundary conditions. Near the boundary we find

the following behavior:

η1 = ωφ(ω, κ)u3/4 + χ(ω, κ)u7/4 + φ(ω, κ)

√
κ(1 + κ) + 2ω3

2
u7/4 log u+ . . .

η3 = φ(ω, κ)u1/4 + φ̃(ω, κ)u5/4 + . . .

(3.14)

This expansion implies that there will be a logarithmic divergence of the correlator that

would need to be regularized with an appropriate counterterm. However this will not affect

the diffusion constant that is computed from the imaginary part of the correlator, so we

will ignore this divergence.

The integration constants that appear at every order in the
√
κ expansion (3.12) can

be fixed at zeroth order by imposing incoming boundary conditions at the horizon and at

the i-th order by imposing η(i) = 0 on the horizon. The near boundary expansion up to

order
√
κ for the two components is:1

η1 = u7/4
[
2−3/4i+

√
κ(α+ β log u)

]
η3 = u1/4

(
23/4 − i

√
κγ
) (3.15)

where α, β, γ are real constants. Notice that there is no term going like u3/4 so we don’t

need to regularize the boundary action. In terms of the source φ and the normalizable

mode χ the correlator is then simply given by:

GR =
πN2

c T
3

2

χ

φ
=
−
√

2

4
i+

(
α

23/4
− γ

4 23/4
+

β

23/4
log u

)√
κ+ . . . (3.16)

The coefficient of
√
κ is real and therefore the diffusion constant is not corrected to the

order
√
κ.

Three charges. We consider here the case of three equal charges, namely κ1 = κ2 =

κ3 = κ. For this special choice of the charges the thermodynamic stability condition (3.5)

is saturated for κ = 2 but it is not violated even for κ > 2. The Hawking temperature (3.3)

on the other hand becomes negative for κ > 2 and so in order to have a physical theory we

must restrict the value of the charge to κ < 2. For κ = 2 we have an extremal black hole.

We attempt to find a solution as an expansion in
√
κ as in the case of one charge. The

indices near the horizon are

V± = −1

4
± i

3
√
κ(1 + κ) + 4ω

4(2− κ)
√

1 + κ
(3.17)

1For q=0 the system for (η1, η3) is identical to the system for (η2, η4).
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Figure 1. The diffusion constant as a function of the charge for the one charge case κ1 = κ,

κ2 = κ3 = 0.

and the incoming wave boundary condition corresponds to V−. The near boundary expan-

sion is written in this case:

η1 = ωφ(ω, κ)u3/4 + χ(ω, κ)u7/4 + φ(ω, κ)
3
√
κ(1 + κ)− 8ω3

8
u7/4 log u+ . . .

η3 = φ(ω, κ)u1/4 + φ̃(ω, κ)u5/4 + . . .

(3.18)

The calculation done for the one charged case goes through for the three charges case and

the end result is similar to (3.15) with different numerical values for the constants α, β, γ.

In this case too, then, the diffusion constant does not receive corrections to order
√
κ.

The explicit computation of higher orders in this expansion becomes too complicated,

therefore we revert to a numerical analysis.

3.3 Numerical solution

In order to solve numerically the system of equations we need to provide initial conditions in

form of a near horizon expansion where we have imposed the incoming boundary conditions.

We will work with the components (η1, η3) since the equations for the other two are exactly

identical for q = 0. We solve the system near the horizon and find a expansion of the form:

ηhor(ω, u, κ) = η
(0)
hor(ω, κ) +

√
1− u η(1)hor(ω, κ) + . . . (3.19)

Using the expansion above as an initial condition we integrate the system of equations from

the horizon to the boundary. Then we can extract the correlator from the near boundary

region of the solution.

The result for the one-charge case is presented in figure 1. At κ = 0 it reproduces

correctly the value calculated analytically for zero charge. In figure 2 we present the

diffusion constant as a function of T/µ and find a behavior similar to the one observed in [17]

for an AdS-RN solution of N = 2, D = 4 supergravity. For large values of T/µ the diffusion

constant approaches the zero density value which is represented by the horizontal line.
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Figure 2. The diffusion constant as a function of T/µ for the one charge case. The horizontal line

represents the zero density analytical result.
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Figure 3. The diffusion constant in the three equal charges case as a function of the charge.

In figure 3 we give the result for three charges as a function of κ, and in figure 4 as

function of T/µ. We observe that the behavior is qualitatively similar to that of the one

charge case for high temperature, but the diffusion constant (or rather the combination

TDs) approaches a finite limit as the temperature goes to zero.

4 Conclusions

We have considered the hydrodynamic limit of the correlators of supercharges in N = 4

SYM at zero and finite R-charge density. From the transverse part of the correlator the su-

percharge diffusion constant can be extracted using a Kubo formula. In the zero charge case

we could confirm the result found previously from the calculation of the supersymmetric

sound attenuation, using the longitudinal channel of the correlator.
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Figure 4. The diffusion constant as a function of T/µ for the three charges case. The horizontal

line represents the zero density analytical result.

The main motivation for the present work has been to answer the question of the

presence of universality in the hydrodynamic supersymmetric sector of theories with a

holographic dual. The conclusion appears to be negative: the diffusion constant depends

on the value of the U(1) charge density. We have not been able to establish the precise

form of the dependence, in particular there does not seem to be a simple relation between

the diffusion constant and the thermodynamic quantities. However qualitatively we found

a behavior very similar to the one found in the 4-dimensional AdS-RN black hole.

The absence of universality is perhaps not surprising, since if we consider the form of the

equation (3.10) we see that the transverse gravitino is coupled to the scalars and gauge

fields that are running in the solution.

We observed that the dimensionless diffusion constant TDs tends to a finite value for

the extremal black hole. It would be interesting to know if this is true in all cases of

extremal black hole, and perhaps find if this value can be predicted by some sort of attractor

mechanism.
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A Kubo formula derivation

The constitutive relation [9] which relates the density of charge to the spatial components

of the supercurrent is:2

Siα = −Ds∂
iρα +Dσ(γij∂jρ)α −

P

ε
(γiγ1ρ)α (A.1)

2When we write γµαα̇ we mean the upper right block of the γ matrix. We made the replacement σ0 → iγ1

and σi → −iγi with respect to [9].
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Combining with the continuity equation ∂tρα + ∂iS
i
α and Fourier transforming in space

yields: [
(∂t +Dsk

2)δβα − ics(kjγjγ1)βα
]
ρβ(t,~k) = 0 (A.2)

where cs = P/ε. The solution of this equation in the limit of small ~k is:

ρα(t,~k) = e−Dsk
2t
[
δβα cos(kcst) + i(k̂jγjγ

1)βα sin(kcst)
]
ρβ(0,~k) (A.3)

From this solution we can deduce the following supercharge density correlators in the small
~k limit since Cαα̇(0,~0) is fixed by the supersymmetry algebra.

Cαα̇(t,~k) =

∫
d3xe−i

~k·~x〈ρα(~x, t)ρ̄α̇(~0, 0)〉

= −ε̄e−Dsk2t
[
(iγ1)αα̇ cos(kcst) + (k̂jγj)αα̇ sin(kcst)

] (A.4)

We define the following correlator:

C̃αα̇(t, ~x) = −iθ(t)〈ρα(t, ~x)ρ̄α̇(0,~0)〉 (A.5)

We can now calculate the Fourier transform:

C̃αα̇(ω,~k) = −i
∫
dt

∫
d3xeiωt−i

~k·~xθ(t)〈ρα(t, ~x)ρ̄α̇(0,~0)〉

= −i
∫
dteiωtθ(t)Cαα̇(t,~k)

= ε̄

[
iDsk

2 + ω

(csk)2 + (Dsk2 − iω)2
(iγ1)αα̇ +

icsk

(csk)2 + (Dsk2 − iω)2
(k̂jγj)αα̇

] (A.6)

The retarded correlator of the supercurrents is defined as:

CRαα̇(t, ~x) = −iθ(t)〈{ρα(t, ~x), ρ̄α̇(0,~0)}〉 (A.7)

From the spectral decomposition of C̃ and CR it follows:

Im C̃αα̇(ω,~k) = − π
Z

∑
n,m

e−βEn〈n|ρα(0,~k)|m〉〈m|ρ̄α̇(0,~0)|n〉δ(ω + En − Em)

ImCRαα̇(ω,~k) = − π
Z

∑
n,m

e−βEn(1 + e−βω)〈n|ρα(0,~k)|m〉〈m|ρ̄α̇(0,~0)|n〉δ(ω + En − Em)

Therefore we get:

ImCRαα̇(ω,~k) = (1 + e−βω) Im C̃αα̇(ω,~k) (A.8)

Taking the small ~k and then the small ω limit of (A.6) and using equation (A.8) we get:

ε̄Ds =
1

4
lim
ω→0

[
lim
k→0

ω2

k2
(iγ1)αα̇ ImCRαα̇(ω,~k)

]
(A.9)

Using the continuity equation we can deduce a relation between the supercharge and the

supercurrent correlators, namely:

ω2CRαα̇(ω,~k) = k2k̂ik̂jG
ij
αα̇(ω,~k) =

1

3
k2Giiαα̇(ω,~k) (A.10)
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where Gijαα̇(t, ~x) = −iθ(t)〈{Siα(t, ~x), S̄jα̇(0,~0)}〉 and in the last equality the i indices are

summed. Using this relation we can write the Kubo formula in terms of the supercurrent

retarded correlator:

ε̄Ds =
1

12
lim
ω→0

[
lim
k→0

(iγ1)αα̇ ImGiiαα̇(ω,~k)
]

(A.11)

B Normalization of the boundary action

In this appendix we fix the normalization of the boundary action using the zero temperature

calculation of the super stress energy tensor correlator. Exceptionally in this appendix we

use the conventions of [18].

The leading term of the super energy-momentum tensor OPE has the following structure

up to a constant A [19]:

Jαα̇(z)Jββ̇(0) = A
sαβ̇ s̄βα̇

(s2s̄2)2
(B.1)

where

sαα̇ = (x− x′)αα̇ +
i

2
[θα(θ̄ − θ̄′)α̇ + θ̄′α(θ − θ′)α]

s̄αα̇ = (x− x′)αα̇ +
i

2
[θ̄α̇(θ − θ′)α + θ′α(θ̄ − θ̄′)α]

The super energy-momentum tensor is a superfield containing the axial current (at zeroth

order in θ), the supercurrent (at linear order in θ) and the energy-momentum tensor (at sec-

ond order in θ). To fix the proportionality constant we can calculate the energy-momentum

tensor correlator by applying twice the operator 1
8([D̄α̇, Dα]Jββ̇+[D̄β̇, Dβ]Jαα̇) on the super

energy-momentum tensor OPE and compare with the energy momentum correlator [20]:

TµνTρσ =
5N2

c

π4
Jκρ J

λ
σ

|x|4

(
δµκδνλ + δµλδνκ −

1

2
δµνδκλ

)
(B.2)

where Jνµ = δνµ − 2xµx
ν/|x|2. From the comparison we deduce that:

A = −32

π4
N2
c (B.3)

Knowing the exact expression fot the super energy-momentum tensor OPE we can com-

pute the supercurrent correlator by applying the operator DγD̄
′
γ̇ and doing the proper

symmetrizations. Then we can compare with the zero temperature correlator of the super-

current calculated in [10]:

Sαµ S̄
α̇
ν =

16N
π2

Πρ
µ

σαα̇λ xλ

|x|8

(
ηρν − 2

xρxν
|x|2

)
(B.4)

where Πρ
µ =

(
δρµ − 1

4γµγ
ρ
)

and find the value of the normalization of the action:

N =
N2
c

π2
. (B.5)
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