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Abstract In this work, we have considered a non-canonical
scalar field dark energy model in the framework of flat FRW
background. It has also been assumed that the dark matter
sector interacts with the non-canonical dark energy sector
through some interaction term. Using the solutions for this
interacting non-canonical scalar field dark energy model,
we have investigated the validity of generalized second law
(GSL) of thermodynamics in various scenarios using first
law and area law of thermodynamics. For this purpose, we
have assumed two types of horizons viz apparent horizon and
event horizon for the universe and using first law of thermo-
dynamics, we have examined the validity of GSL on both
apparent and event horizons. Next, we have considered two
types of entropy-corrections on apparent and event horizons.
Using the modified area law, we have examined the validity
of GSL of thermodynamics on apparent and event horizons
under some restrictions of model parameters.

1 Introduction

Many cosmological experiments, such as observations of
type Ia supernovae [1,2], large scale structure formation
[3–5] and cosmic microwave background anisotropy [6,7]
indicate that at present our universe is undergoing a phase
of cosmic acceleration. The main source responsible for this
accelerated expansion is dubbed as dark energy (DE) having
sufficient negative pressure. A number of candidates have
appeared in the literature which serve as a very good can-
didate for this observed cosmic acceleration. For example,
a cosmological constant (with w = −1), dynamical dark
energy models (with varying w), f (R) gravity models and
many other such models turn out to be a good driver of this
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accelerated expansion. The simplest candidate as the dynam-
ical dark energy can be realized by scalar field models which
arise in string theory and are studied as candidate for dark
energy. For a review on dark energy models, one can look
at [8–10]. However, for most of the dark energy models the
analysis is carried out for canonical scalar fields. But there is
another class of scalar field models, viz, non-canonical scalar
field models which have also been considered as a candidate
for dark energy (for details see [11–13] and the references
there in). This class of models has also been found to be a very
good candidate for dark energy and could provide solution
to a number of cosmological problems.

Usually, most of the dark energy models consider the field
to be non-interacting. Presently we live in an epoch where the
densities of the dark energy and the dark matter are compara-
ble and this coincidence problem can be easily dealt with by
taking a suitable interaction between the two dark sectors.
Also the transition from matter domination to dark energy
domination can be explained through an appropriate energy
exchange rate. Usually, to obtain a suitable evolution of the
universe an interaction term is assumed [14–17] where the
decay rate is considered to be proportional to the present
value of the Hubble parameter for good fit to the expansion
history of the Universe. However, a number of various other
forms of interaction have also been considered in which the
interaction term has been chosen phenomenologically. Since
nothing is known about the nature of DE, search is still on
to find a suitable and observationally viable interaction term.
So, motivated by these facts, recently non-canonical scalar
field DE models are being studied which interacts with the
dark matter sector through a source term [18]. Recently it
has been shown that BOSS (Baryon Oscillation Spectro-
scopic Survey) data also provides evidence for interacting
Dark Energy [19].

In the semi-classical quantum description of black hole
physics, it was found that black hole emits Hawking radi-
ation with a temperature proportional to their surface grav-
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ity at the event horizon with an entropy proportional to its
horizon area [20,21]. The Hawking temperature and horizon
entropy together with the black hole mass obey the first law
of thermodynamics [22]. In Einstein gravity, Jacobson [23]
first derived the Einstein equations from the proportional-
ity of entropy and horizon area together with the first law of
thermodynamics δQ = TdS in the Rindler space-time where
δQ and T are interpreted as the energy flux and temperature
seen by an accelerated observer inside the horizon. For gen-
eral static spherically symmetric space-time, using Einstein
field equation, Padmanabhan [24] formulated the first law of
thermodynamics on the horizon. The study on the relation
between the Einstein equation and the first law of thermo-
dynamics has been generalized to the cosmological context
where it was shown that the first law of thermodynamics
on the apparent horizon can be derived from the Friedmann
equation and vice versa if we take the Hawking temperature
TA = 1

2πRA
and the entropy SA = A

4G on the apparent hori-

zon [25] where A = 4πR2
A is the surface area of the apparent

horizon and RA is the radius of the apparent horizon.
By considering the Universe as a thermodynamical sys-

tem, Gibbons and Hawking [26] first investigated the ther-
modynamics in de-Sitter space-time. It has been found that
in spatially flat de-Sitter space-time, the event horizon and
the apparent horizon of the Universe coincide and there is
only one cosmological horizon, but in the standard big bang
model the cosmological event horizon does not exist. How-
ever, for accelerating universe dominated by dark energy,
the cosmological event horizon and the apparent horizon are
distinct. Besides the first law of thermodynamics, a lot of
attention has been paid to the generalized second law (GSL)
of thermodynamics in the context of dark energy. Following
first law, it has been considered that, at the event horizon,
the Hawking temperature is given by TE = 1

2πRE
and the

entropy is given by SE = A
4G , where A = 4πR2

E is the sur-
face area of the event horizon and RE is the radius of the
event horizon. Wang et al [27] has found that the first law
and GSL of thermodynamics hold on the apparent horizon,
but they break down for the event horizon. Till now a lot of
work [28–35] has been done where the validity of first law
and GSL of thermodynamics on apparent and event horizons
have been investigated in various cosmological phenomena.

In recent years, it has been shown that the quantum correc-
tions (namely logarithmic and power law corrections) pro-
vided to the semi-classical entropy-area relationship leads to
the curvature correction in the Einstein-Hilbert action and
vice versa [36,37]. The logarithmic corrections arises from
loop quantum gravity due to thermal equilibrium fluctua-
tions and quantum fluctuations [38–40]. The general type of
Entropy-area relation in logarithmic correction is given by

SBH = A

4G
+ α ln

A

4G
+ β

4G

A
+ γ (1)

where α, β and γ are dimensionless constants of order unity.
On the other hand, power law corrections to the entropy-
area relation appear while dealing with the entanglement of
quantum fields inside and outside the horizon [41–43] which
is given by

SBH = A

4G

[
1 − KλA

1− λ
2

]
, (2)

where, Kλ = λ(4π)
λ
2 −1

(4−λ)r2−λ
c

and rc is the crossover scale and λ is

the dimensionless constant. The second term in Equation (2)
can be considered as a power-law correction to the entropy-
area law, arising from entanglement of the wave-function of
the scalar field between the ground state and the exited state
[42].

Motivated by these facts, we consider a non-canonical
scalar field model of the universe which is interacting with
the matter sector via some source term. The cosmological
aspects of this model has already been studied by the authors
in an earlier work [11]. In the present work, we investigate
the validity of GSL of thermodynamics for the non-canonical
model at both the apparent horizon and the event horizon.
The validity of GSL of thermodynamics have been exten-
sively studied for a variety of canonical scalar field models,
but have not been studied for non-canonical scalar field mod-
els. As nothing is known about the nature of DE, and non-
canonical scalar field models happen to be a potential can-
didate for DE, it is worth investigating the validity of GSL
of thermodynamics for non-canonical scalar field models as
well. In the present work, we consider one such toy model
for interacting non-canonical scalar field [11] and study its
thermodynamical properties. The paper is organized as fol-
lows: for the sake of simplicity of presentation, in section
2, we give a brief overview of the cosmological model men-
tioned earlier [11]. In section 3, we check the validity of GSL
of thermodynamics at the horizon (apparent/event) assuming
that first law of thermodynamics is valid at both the horizons.
In section 4, we perform similar analysis at both apparent and
event horizons taking into account the entropy-area correc-
tions given by equations (1) and (2). The last section discusses
the results.

2 A model of non-canonical scalar field interacting
with matter

The most general action for a non-canonical scalar field
model is given by

L =
∫ √−gd4x

[
R

2
+ Lφ(φ, X)

]
+ Lm (3)

where R is the Ricci scalar, Lm represents the action of
the background matter, the Lagrangian density Lφ(φ, X)
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is an arbitrary function of the scalar field φ such that φ

is a function of time only and its kinetic term X is given
by X = 1

2∂μφ∂μφ = 1
2 φ̇2. Here we have chosen the unit

8πG = c = 1. The matter content of the universe is consid-
ered to be composed of perfect fluid, for which the energy-
momentum tensor is given by

Tm
μν = (ρm + pm)uμuν − pmgμν (4)

where ρm and pm are the energy density and pressure com-
ponents of the matter part of the universe respectively. The
four-velocity of the fluid is denoted by uμ which satisfies
uμuμ = 1. Again, the energy-momentum tensor for the
scalar field φ is given by

T φ
μν = ∂Lφ

∂X
∂μφ∂νφ − gμνLφ. (5)

From the Lagrangian density (3), one can obtain the field
equations as [11]

Gμν = ∂Lφ

∂X
∂μφ∂νφ − gμνLφ + Tm

μν (6)

and

φ̈

[(
∂Lφ

∂X

)
+ (2X)

(
∂2Lφ

∂X2

)]

+
[

3H

(
∂Lφ

∂X

)
+ φ̇

(
∂2Lφ

∂X∂φ

)]
φ̇ −

(
∂Lφ

∂φ

)
= 0 (7)

A number of functional forms forLφ(φ, X) has been consid-
ered in the literature. Following Fang et al [12], we consider
the non-canonical scalar field Lagrangian density as

Lφ(φ, X) = F(X) − V (φ) (8)

where F(X) is an arbitrary function of X and V (φ) is the
self-interacting potential for the scalar field.

Following [11,13,44], we consider F(X) = X2 such that
Lagrangian density for the scalar field becomes

Lφ(φ, X) = X2 − V (φ) . (9)

With (9), the energy density and the pressure associated with
the scalar field is obtained as [11]

ρφ = 3X2 + V (φ) = 3

4
φ̇4 + V (φ), (10)

pφ = X2 − V (φ) = 1

4
φ̇4 − V (φ) (11)

We consider a homogeneous, isotropic and spatially flat FRW
universe which is characterized by the line element

ds2 = dt2 − a2(t)[dr2 + r2dθ2 + r2sin2θdφ2] (12)

where a(t) is the scale factor of the universe and t is the
cosmic time. Here, we only consider the spatially flat FRW
universe as it is preferred by the anisotropy of the CMBR

measurement [45]. So, the Einstein’s field equations (6)-(7)
for the space-time given by equation (12) takes the form

3H2 = ρm + 3

4
φ̇4 + V (φ), (13)

2Ḣ + 3H2 = −1

4
φ̇4 + V (φ), (14)

ρ̇φ + 3H(1 + ωφ)ρφ = Q, (15)

ρ̇m + 3Hρm = −Q (16)

where we have considered an interaction ‘Q’ between the
dark matter and the scalar field component which will deter-
mine the rate of flow of energy between the two compo-
nents. This type of interactions have shown to provide solu-
tion to a number of cosmological problems and resulted in a
variety of dark energy models (for details one can see [46]
and the references therein). Recently it has been shown that
BOSS (Baryon Oscillation Spectroscopic Survey) data also
provides evidence for interacting Dark Energy [19]. Also an
interacting between the dark energy and the dark matter com-
ponent provides a more general framework to work with. As
this work is an extension of the paper of the present authors
Das and Mamon [11], following [11], we consider a simple
functional form for the interaction term Q as

Q = ζH φ̇4, ζ being a constant. (17)

Also it is well known observationally that at present ωφ � −1
[47,48] and for acceleration (ä > 0) to occur, the effective
equation of state (EoS) parameter should be in the range :
−1 < ωφ < − 1

3 . This indicates that the range of allowed
values of ωφ over the complete span of evolution is very
small. So, we consider that the EoS parameter ωφ as constant
(say, ω) and is given by the following simple relation

ωφ = pφ

ρφ

= X2 − V

3X2 + V
= ω (a constant) (18)

With these set of simplifying assumptions, the expressions
for the various components of the non-canonical scalar field
model are obtained as : (for detailed calculations please refer
to [11])

V (z) = V0(1 + z)ε, (19)

H2 = γ (1 + z)ε + B(1 + z)3, (20)

ρφ(z) = 4

(1 − 3ω)
V (z), (21)

pφ(z) = 4ω

(1 − 3ω)
V (z), (22)

ρm(z) =
(

3γ − 4V0

1 − 3ω

)
(1 + z)ε + 3B(1 + z)3 (23)

where ε = (3 − ζ )(1 +ω), with V0, B are positive constants
and γ = 4ωV0

(3−ε)(3ω−1)
.
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Using equations (21), (23) and (22), one can obtain the
expressions for effective energy density and effective pres-
sure components for the universe as

ρe f f (z) = ρφ(z) + ρm(z) = 3H2 (24)

and

pef f (z) = pφ(z) (25)

Also from equation (20), (15) and (16), one can obtain the
expression for Ḣ in terms of ρe f f and pef f as

Ḣ = −1

2

(
ρe f f + pef f

)
(26)

The stability of this particular interacting non-canonical
scalar field model has also been investigated in the present
work [11] by rewriting the Einstein field equations as a plane
autonomous system. It was found that for a particular choice
of model parameters, there are only two physically relevant
generic stable fixed points and it is classically unstable at
all other points. Infact, if one computes the effective sound
speed for the present model, it is found that

c2
s = ∂pef f

∂ρe f f
=

∂pef f
∂z

∂ρe f f
∂z

=
4V0εω
1−3ω

3γ ε + 9B(1 + z)3−ε
(27)

So, the effective sound speed crucially depends on the choice
of model parameters. For the choice of parameters (consistent
with the analytical model [11] described above), it is found
that c2

s < 0 and the model seems to be classically unsta-
ble everywhere. However, the situation will be completely
different for other choices of model parameters. With these
equations, one can now check the validity of Generalized
Second Law of Thermodynamics at both apparent horizon
and event horizon.

3 Generalized second law of thermodynamics
on apparent and event horizons

In this section, we will check the validity of GSL of thermo-
dynamics on both apparent and event horizons with a prior
assumption that the first law is valid on both the horizons
[49]. From the first law of thermodynamics, one can arrive
at the expression [25,50,51]

TXdSX = −dEX = 4πR3
X H(ρe f f + pef f )dt (28)

where suffix X denotes either the apparent horizon (X = A)

or the event horizon (X = E). Similarly TX and RX denotes
the temperature and radius of the apparent/event horizons
accordingly. The radii of apparent and event horizons for a
flat FRW universe are defined as [25]

RA = 1

H
(29)

and

RE = a
∫ ∞

a

da

a2H
= 1

1 + z

∫ z

−1

dz

H
(30)

These immediately give

ṘA = − Ḣ

H2 (31)

and

ṘE =
(
dRE

dz

)(
dz

dt

)
= (HRE − 1) . (32)

Now from equation (28), one can obtain the time rate of
change of entropy function on the horizons as

TX ṠX = 4πR3
X H(ρe f f + pef f ) (33)

Again from Gibb’s equation of thermodynamics [27]

TXdSI X = pef f dVX + d(EI X ) (34)

where SI X is the entropy inside the horizon (apparent/event),
VX = 4

3πR3
X is the volume of the horizon universe and

EI X = ρe f f VX corresponds to the internal energy.
From equation (34), one can obtain the time rate of change

of internal entropy function as

TX ṠI X = 4πR2
X (ρe f f + pef f )

(
ṘX − HRX

)
(35)

This gives the total rate of change of entropy at the horizon
(apparent / event) as

TX ṠXtot = TX ṠX + TX ṠI X (36)

At the apparent horizon, for the present non-canonical scalar
field model, equation (36) comes out as

TA ṠAtot = 18π

(
ρe f f + pef f

ρe f f

)2

(37)

which is always positive definite irrespective of the func-
tional forms of ρe f f and pef f . So GSL is always valid at the
apparent horizon.

At the event horizon, it comes out as

TE ṠEtot = 4πR2
E (ρe f f + pef f ) (HRE − 1) (38)

At the event horizon, GSL will be valid if either (i) (ρe f f +
pef f ) > 0 and (HRE − 1) > 0 or (ii) (ρe f f + pef f ) < 0 and
(HRE − 1) < 0. Figure 1 shows the plot of TE ṠEtot vs. z for
different values of the model parameter ε. It is evident from
the plot that at the event horizon GSL is valid for each case.
It has been verified that the same result is obtained for a wide
range of values of the model parameter V0 as well. The reason
for this is always satisfied is for the present interacting non-
canonical scalar field toy model, always (ρe f f + pef f ) > 0
and (HRE − 1) > 0 which is evident from Fig. 2. Thus we
can conclude that for the present toy model, GSL is always
satisfied at both event horizon and apparent horizon.
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Fig. 1 Plot of TE ṠEtot vs. z for different values of ε. For this plot we
have taken ω = −0.9, V _0 = 2, B = 0.3

Fig. 2 Plot of ρe f f + pef f and HRE − 1 vs z for ε = 1.1, ω = −0.9,
V0 = 2, B = 0.3.

4 Study of generalized second law of thermodynamics
on apparent and event horizons with corrected
entropy

In this section we study the validity of GSL of thermody-
namics at both the apparent horizon and event horizon for
the non-canonical scalar field model where the entropy - area
relation is modified. We have considered two types of modifi-
cations here as discussed earlier - the logarithmic correction
and the power-law correction. The motivation behind this
exercise is to check how does the GSL of thermodynamics
gets effected by these modifications for this particular inter-
acting non-canonical scalar field model.

4.1 At apparent horizon

The modified entropy-area relation at the apparent horizon
is considered as

SA = A

4G
= 2π f (A) since 8πG = 1 . (39)

where f (A) corresponds to the modification introduced
whose functional form will depend upon the type of mod-
ification (logarithmic or power-law) incorporated and A =
4πRA

2. If f (A) = A, we obtain the original entropy-area
relation that has been used in the previous section. Also the
temperature on the apparent horizon is given by [25]

TA = |κ|
2π

= 1

2πRA

(
1 − ṘA

2HRA

)
= 1

4π
RA

(
Ḣ + 2H2

)

(40)

where κ corresponds to the surface gravity term [25]. Equa-
tions (39) and (40) along with (26), (24) and (29) immediately
gives

TA ṠA = 2πTA f ′(A)
d A

dt

= 3π f ′(A)

(
ρe f f + pef f

)

ρ2
e f f

(
ρe f f − 3pef f

)
(41)

Similarly the rate of change of entropy inside the apparent
horizon is given by

TA ṠI A = pef f
dVA

dt
+ d

dt

(
ρe f f VA

)
(42)

where VA = 4
3πRA

3 is the volume inside the apparent hori-
zon. The above equation by simple algebra takes the form

TA ṠI A = 6π

(
ρe f f + pef f

)

ρ2
e f f

(
ρe f f + 3pef f

)
(43)

This gives the total entropy at the apparent horizon as

TA ṠAtot = 3π

(
ρe f f + pef f

)

ρ2
e f f

× [
2

(
ρe f f + 3pef f

) + f ′(A)
(
ρe f f − 3pef f

)]

(44)

It is evident from equation (44) that for GSL to be satis-
fied at the apparent horizon, the quantity 2

(
ρe f f + 3pef f

)+
f ′(A)

(
ρe f f − 3pef f

)
has to be positive definite. However

the signature of this quantity will depend on many param-
eters such as f ′(A) and

(
ρe f f + 3pef f

) ( (
ρe f f + pef f

)
is

always positive
)
. It has been found that for the present model,(

ρe f f + 3pef f
)

is positive at higher z and becomes negative
at later stage of evolution but the value is close to −1 which
is not sufficiently large. So the overall scenario depends on
the functional form of f ′(A). Now for logarithmic correction
[38–40]

SBH = A

4G
+ α ln

A

4G
+ β

4G

A
+ γ

⇒ f (A) = S

2π
= A + α

2π
ln(2π A) + β

4π2A
+ γ

2π

⇒ f ′(A) = 1 + α

2π

1

A
− β

4π2

1

A2 (45)
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Fig. 3 Plot of TA ṠAtot vs. z for logarithmic correction for ε = 1.1 and
different combinations of α and β

where α, β and γ are dimensionless constants.
Figure 3 shows that when β = 0 or negative, GSL is

always satisfied irrespective of the value of α. On the other
hand, when β is positive, it is found that GSL is not satis-
fied at early epoch and around z ∼ 6, 7, TA ṠAtot becomes
positive and GSL is satisfied. The reason for this is obvious
from equation (45). When β is negative or 0, f ′(A) remains
positive (as the magnitude of the second term in equation
(45) is very less). However for positive β, the third term in
equation (45) dominates at the beginning which makes the
GSL invalid at the early epoch. However for this analysis,
we have kept α, β ∼ O(1) [39]. For higher values of α, β

the situation may be different.
Similarly for power-law corrections [42,43]

SBH = A

4G

[
1 − KλA

1− λ
2

]

⇒ f (A) = A
[
1 − KλA

1− λ
2

]

⇒ f ′(A) = 1 − KλA
1− λ

2

[
2 − λ

2

]
(46)

where, Kλ = λ(4π)
λ
2 −1

(4−λ)r2−λ
c

, rc is the crossover scale and λ is a

dimensionless constant.
Figure 4 shows the variation of TA ṠAtot with z for power

law correction. For small positive values of λ (say λ =
0.5, 1), it is found that GSL is always satisfied. However
as λ increases, it is found that GSL is satisfied at the earlier
epoch and beyond λ = 2.1, GSL is not satisfied (upper panel
of Fig. 4). Also it has been found that the plots are insensi-
tive to the value of the cross-over scale rc. On the other hand,
GSL is always satisfied for negative values of λ (lower panel
of Fig. 4). So it is observed that because of the inclusion of
entropy corrections, the GSL is no longer valid throughout
the evolution and crucially depends on the corrections incor-
porated as well as the parameters of the toy model. This is in
contrast to the result obtained in the previous section.

Fig. 4 Plot of TA ṠAtot vs. z for power-law correction for ε = 1.1 and
different values of λ. The upper panel is for positive values of λ and the
lower panel is for negative values of λ

4.2 At Event Horizon

For event horizon, we know

TE = 1

2πRE
and RE = 1

1 + z

∫ z

−1

dz

H

Like before, we consider the modified entropy - area relation
at the event horizon as

SE = 2π f (A)

⇒ ṠE = 16π2RE ṘE f ′(A) . (47)

Therefore, using (32)

TE ṠE = 8π ṘE f ′(A) = 8π (HRE − 1) f ′(A) (48)

Also, the rate of change of entropy inside the event horizon
is given by (following the same calculations as above)

TE ṠI E = 4πR2
E

(
ρe f f + pef f

) [
ṘE − RE H

]

= −4πR2
E

(
ρe f f + pef f

)
(49)
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Fig. 5 Plot of TE ṠEtot vs. z for logarithmic correction for ε = 1.1 and
different values ofα andβ. Theupper panel is for values ofα, β ∼ O(1)

and the lower panel is for higher values of α, β

Hence, the total entropy at the event horizon as

TE ṠEtot = 4πR2
E

[
2

R2
E

(HRE−1) f ′(A) − (
ρe f f + pef f

)]

(50)

Now replacing f ′(A) from equations (45) and (46) for log-
arithmic and power-law corrections respectively, one arrives
at the expressions for TE ṠEtot as function of z for both the
cases.

Upper panel of Fig. 5 shows that GSL is never satisfied for
this present toy model for α, β ∼ O(1) irrespective of the
values of other model parameters. If we consider higher pos-
itive values of α and β, GSL may get satisfied however those
higher values can not be justified theoretically. So the overall
conclusion that one can derive is that for the present non-
canonical scalar field model, GSL is not satisfied at the event
horizon when logarithmic correction for entropy is taken into
account.

Similarly Fig. 6 shows the plot of TE ṠEtot vs z for power-
law correction. It indicates that for positive values of λ, GSL
is never satisfied at the event horizon, however, for negative
values of λ, GSL is satisfied during later stages of evolution.

Fig. 6 Plot of TE ṠEtot vs. z for power-law correction for ε = 1.1 and
different values of λ.

5 Discussions

In this work, we have considered a non-canonical scalar field
dark energy model in the framework of flat FRW background,
which interacts with the dark matter sector. For the present toy
model, we have assumed the phenomenological interaction
term Q = ζH φ̇4, where ζ is the interaction parameter. We
have also assumed that the equation of state parameter ωφ =
constant = ω and we have obtained the solutions for various
cosmological quantities in terms of the redshift z. Using the
solutions for non-canonical scalar field dark energy model,
we have investigated the validity of generalized second law
(GSL) of thermodynamics in various scenarios using first
law and area law of thermodynamics. For this purpose, we
have assumed two types of horizons viz apparent horizon and
event horizon for our considered universal thermodynamics.

In section 3, we have assumed that the first law of thermo-
dynamics hold on apparent and event horizons. From these
the rate of change of entropy have been found and using the
internal entropy inside the horizons we have found the rate
of change of total entropies of the Universe bounded by the
apparent and event horizons. If the Universe is bounded by
apparent horizon, we can see that the GSL of thermodynam-
ics is always satisfied irrespective of the other parameters.
On the other hand, for event horizon, the rate of change of
total entropy has been calculated in term of ρe f f , pef f , H
and RE . We have observed that at the event horizon, GSL is
valid as both (ρe f f + pef f ) > 0 and (HRE − 1) > 0. The
results are found to be valid for a wide range of values of
the model parameter as well. Thus we can conclude that for
the present toy model, GSL is always satisfied at both event
horizon and apparent horizon.

In section 4, we have assumed the modified entropy-
area relation at the apparent horizon and event horizon.
On the apparent horizon, we have taken the temperature as

1
2πRA

(
1 − ṘA

2HRA

)
. It has been found that for GSL to be satis-

fied at the apparent horizon, the quantity 2
(
ρe f f + 3pef f

)+
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f ′(A)
(
ρe f f − 3pef f

)
has to be positive definite. However

the signature of this quantity will depend on many parame-
ters such as f ′(A) and

(
ρe f f + 3pef f

)
. It has been found that

for the present model,
(
ρe f f + 3pef f

)
is positive at higher z

and becomes negative at later stage of evolution but the value
is close to −1 which is not sufficiently large. So the overall
scenario depends on the functional form of f ′(A).

On the apparent horizon, we have assumed two types
of corrected entropies, viz, logarithmic and power law
entropies. We have found that for logarithmic correction, the
validity of GSL crucially depends on the values of the cor-
rection parameters α and β. When β = 0 or negative, GSL
is always satisfied irrespective of value of α, but for β > 0 it
has been found that GSL is satisfied at late time. When β is
negative or 0, f ′(A) remains positive. However for positive
β, the third term in equation (45) dominates at the beginning
which makes the GSL invalid at the early epoch. However for
this analysis, we have kept α, β ∼ O(1). For higher values of
α, β the situation may be different. For power-law corrections
also, it has been found that the validity of the GSL depends
on the correction parameter λ such that for small positive
values of λ, GSL is satisfied always but with increase in the
value of λ, GSL is not satisfied. However, GSL is always sat-
isfied for negative values of λ. So it is observed that because
of the inclusion of entropy corrections, the GSL is no longer
valid throughout the evolution and crucially depends on the
corrections incorporated as well as the parameters of the toy
model.

We have also applied the logarithmic and power law cor-
rections of entropies on event horizon as well. It has been
found that for logarithmic correction GSL is never satisfied at
the event horizon for this present toy model for α, β ∼ O(1)

irrespective of the values of other model parameters. If we
consider higher positive values of α and β, GSL may get sat-
isfied however those higher values can not be justified theo-
retically. So the overall conclusion that one can derive is that
for the present non-canonical scalar field model, GSL is not
satisfied at the event horizon when logarithmic correction for
entropy is taken into account. However, for power-law cor-
rection it is seen that for positive values of λ, GSL is never
satisfied at the event horizon, however, for negative values of
λ, GSL is satisfied during later stages of evolution.
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