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Abstract The power spectra of the scalar and tensor per-
turbations in the noncommutative k-inflation model are cal-
culated in this paper. In this model, all the modes created
when the stringy space–time uncertainty relation is satisfied,
and they are generated inside the sound/Hubble horizon dur-
ing inflation for the scalar/tensor perturbations. It turns out
that a linear term describing the noncommutative space–time
effect contributes to the power spectra of the scalar and tensor
perturbations. Confronting the general noncommutative k-
inflation model with latest results from Planck and BICEP2,
and taking cS and λ as free parameters, we find that it is
well consistent with observations. However, for the two spe-
cific models, i.e. the tachyon and DBI inflation models, it is
found that the DBI model is not favored, while the tachyon
model lies inside the 1σ contour, when the e-folding number
is assumed to be around 50 ∼ 60.

1 Introduction

Inflation [1–3], which solves a number of cosmological
conundrums, such as the horizon, monopole, and entropy
problems, is now a crucial part of the standard model of our
universe. Within the simplest inflation model, a field called
inflaton plays an important role during the early time of the
universe. It does not only drives the universe to expand nearly
exponentially, but also generates small fluctuations, which
are very important for large-scale structure formation in the
later time. Inflation may never end, and we call this kind
of phenomenon the eternal inflation [4–6]. From observa-
tions of the Cosmic Microwave Background (CMB), like
the satellite-based Wilkinson Microwave Anisotropy Probe
(WMAP) [7] and Planck [8] experiments, we can obtain lots
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of information about the early universe, such as the power
spectra of the perturbations.

The observed CMB temperature fluctuations mainly gen-
erated by scalar perturbations have already constrained many
inflation models, but there are still many models consis-
tent with observations. Currently, a large number of CMB
experiment efforts target B-mode polarization, which could
be only generated by tensor perturbations. The ground-based
“Background Imaging of Cosmic Extragalactic Polarization”
experiment has reported their results (BICEP2). They show
that the observed B-mode power spectrum at certain angular
scales is well fitted by a lensed-�CDM + tensor theoretical
model with tensor-to-scalar ratio r = 0.20+0.07

−0.05, and r = 0
is disfavoured at 7.0σ [9].

On the other hand, general relativity might break down due
to the high energy density during inflation. As a candidate for
the theory of everything, string theory should tell us what is
a successful theory of the cosmology at that time, and some
corrections from string theory should be not omitted. In the
non-perturbative string/M theory, any physical process at the
very short distance takes an uncertainty relation, called the
stringy space–time uncertainty relation (SSUR):

�tp�xp ≥ l2
s , (1)

where ls is the string length scale, and �tp(= �t), �xp are
the uncertainties in the physical time and space coordinates.
The SSUR may be a universal relation for strings and D-
branes [10–12]. Brandenberger and Ho [13] have proposed
a variation of space–time noncommutative field theory to
realize the stringy space–time uncertainty relation without
breaking any of the global symmetries of the homogeneous
isotropic universe. If inflation is affected by the physics at
a scale close to string scale, one expects that space–time
uncertainty must leave vestiges in the CMB power spectrum
[14–21]. Recently, Feng et al. [22] propose a new power-
law inflation model, by choosing a new different kind of β±

k
function (which will be defined below), which is equivalent
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to that proposed by Brandenberger and Ho [13] in the sense
of integration. But it is much more clear to see the effect of
noncommutative space–time and much easier to deal with
the perturbation functions. For detail calculations and dis-
cussions on it, see the Appendix A in Ref. [22].

It has been shown that a large class of non-quadratic scalar
kinetic terms can derive an inflationary evolution without
the help of potential term, usually referred to as k-inflation
[23,24], e.g. the tachyon [25,26] inflation and the Dirac–
Born–Infeld (DBI) inflation [27]. In this paper, we shall study
the k-inflation model in the noncommutative space–time fol-
lowing the method in Ref. [22]. A linear contribution to the
power spectra of the scalar and tensor perturbations is given
in this model. We also confront two specific k-inflation mod-
els, namely the tachyon and DBI models, with latest results
from the Planck and BICEP2 experiments, and we find that
the DBI model is not favored, while the tachyon model lies
inside the 1σ contour, when the e-folding number is assumed
to be around 50 ∼ 60. This paper is organized as follows.
In next section, the power spectra of the k-inflation model in
the noncommutative space–time shall be calculated; in Sect.
3 the parameters in tachyon and DBI models shall be con-
strained by using the latest observations. In the last section,
we will draw our conclusions and give some discussions.

2 K-inflation in noncommutative space–time

The general Lagrangian for a single field model with second-
order field equations is an arbitrary function p(ϕ, X) of the
scalar field ϕ and its kinetic energy X = − 1

2 gμν∇μϕ∇νϕ.
With the addition of gravity, the action takes the following
form

S =
∫

d4x
√−g

[
R

2
+ p(ϕ, X)

]
, (2)

in the units of M−2
pl = 8πG = 1. Here, one may replace

the term dx4 in the action by dx ∗ dt or dt ∗ dx , but the
result could not be changed, see Appendix A. The energy-
momentum tensor of the inflaton reads

Tμν ≡ − 2√−g

δSϕ

δgμν
= p,X∇μϕ∇νϕ + pgμν,

p,X ≡ ∂p(ϕ, X)

∂ X
, (3)

which is equivalent to a perfect fluid, namely Tμν = (ρ +
p)UμUν + pgμν with pressure p, energy density

ρ = 2X p,X − p, (4)

and four-velocity Uμ = −∇μϕ/
√

2X . In the following, we
will consider a spatially flat universe (K = 0), which is
described by the Friedmann–Robertson–Walker metric:

ds2 = −dt2 + a2(t)dx2. (5)

Then, we have X = ϕ̇2/2 and the SSUR relation (1)

�t�x ≥ l2
s

a(t)
. (6)

But this relation is not well defined when �t is large, because
the argument t for the scale factor on the r.h.s. of Eq. (6)
changes over time interval �t , and it is thus not clear what
to use for a(t) in Eq. (6). The problem is the same when one
uses the conformal time η defined by dt = adη. Therefore,
for later use, a new time coordinate τ is introduced as

dτ = a(t)dt, (7)

such that the metric becomes

ds2 = −a−2(τ )dτ 2 + a2(τ )dx2, (8)

and the SSUR relation is now well defined:

�τ�x ≥ l2
s . (9)

Therefore, the Friedmann equation becomes

H2 = ρ

3
= 1

3
(ϕ̇2 p,X − p), (10)

and the equation of motion for the inflaton is

ϕ̈ (p,X + ϕ̇2 p,X X ) + 3H ϕ̇ p,X = p,ϕ − ϕ̇2 p,Xϕ. (11)

Also we have the relation Ḣ = −X p,X = −ϕ̇2 p,X/2. As a
result of non-trivial kinetic terms in p, the dispersion relation
for the inflaton is changed, and the fluctuations in the scalar
field are no longer travelling at the speed of light. Instead,
the sound speed of ϕ is given by

c2
s ≡ p,X

ρ,X
= p,X

p,X + ϕ̇2 p,X X
≤ 1. (12)

In the canonical case, p(ϕ, X) = X − V (ϕ) with inflaton
potential V (ϕ), we have c2

s = 1. To use the slow-roll approx-
imation we may define

ε1 = − Ḣ

H2 = X p,X

H2 , ε2 = ε̇1

ε1 H
, s = ċs

cs H
, (13)

which are all small parameters during inflation, i.e. |ε1|, |ε2|,
|s| 	 1.

It should be noticed that the stringy space–time uncer-
tainty (SSUR) does not impose a restriction on quantities
with only time dependence, then if we only look for solu-
tions with a single variable, noncommutative field theories
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are equivalent to commutative field theories. The background
equations (10) and (11) that describing a homogeneous and
isotropic universe are only time-dependent, while the pertur-
bations have both time and space dependences. Therefore,
only perturbations are affected by noncommutative effects,
see the following subsections.

2.1 Scalar perturbation

The action of the scalar perturbation could be written as

S = V

2

∫
k<k0

dηd3k z2(η)(ζ ′−kζ
′
k − c2

s k2ζ−kζk), (14)

where V is the total spatial coordinate volume and the prime
denotes the derivatives with respect to a new time coordinate
η defined as

dη

dτ
≡ a−2

eff =
(

β−
k

β+
k

)1/2

= a−2(τ + �τ). (15)

Here we have defined

β±
k (τ ) = a±2(τ + �τ), �τ = −l2

s k, (16)

where ζk is the curvature perturbation and z ≡ a
√

2ε1/cs

is the so-called “Mukhanov variable”. Here we have taken
a different form of the β±

k functions, which is equivalent to
that used in the literatures in the sense of integration. In the
present form, it is much more easier to deal with the equations
of motion for the field ζk :

u′′
k +

(
c2

s k2 − z′′

z

)
uk = 0, (17)

which is derived from the action (14). Here the mode function
is defined by uk = zζk . By using the definitions of slow-roll
parameters, we get the coefficient of the third term in the
perturbative equation (17) as

z′′

z
≈ 1

η2 (1 − ε1)
−2�−2(τ,�τ)

×
[
2�(τ,�τ)

(
1 + ε2

2
− s

)
ε1 + ε2

2
− s

]
, (18)

where we have used

η ≈ −[a(τ + �τ)H(τ + �τ)(1 − ε1)]−1, (19)

which is derived from Eq. (15). Here, the � function is
defined as

�(τ,�τ) = a(τ )

a(τ + �τ)

H(τ + �τ)

H(τ )
. (20)

By using the approximation a(τ + �τ) ≈ a(τ ) + H(τ )�τ

and H(τ + �τ) ≈ H(τ ) − ε1 H2(τ )a−1(τ )�τ , we get

�(τ,�τ) ≈ 1 − (1 + ε1)
λ

1 − λ
+ O(�τ 2), (21)

where we have defined the parameter

λ = �τ

a(τ )H−1(τ ) + �τ
. (22)

All the modes are created when the SSUR is saturated
with the upper bound of the comoving wave number

k0(τ ) = aeff

ls
= a(τ + �τ )

ls
≈ H(τ )

ls
[a(τ )H−1(τ ) + �τ ],

(23)

which means that at time τ , a mode with wave number k0 is
generated. The corresponding parameter λ during inflation
at the mode creating time is given by

λ0 ≡ �τ

a(τ )H−1(τ ) + �τ

∣∣∣∣
k=k0

≈ −ls H∗, (24)

where H∗ is the value of Hubble parameter during inflation.
Since the scale factor is increasing nearly exponentially (a ∼
eHt ) or with a large power (a ∼ tn , with a large n) and H∗
is almost a constant, the absolute value of parameter λ will
decrease with time, see Eq. (22). At the same time when a
mode is created (23), the wave number cross the comoving
sound horizon is given by

kc = a(τ )
H(τ )

cs
. (25)

Therefore, during inflation, we have

kc

k0
≈ a(τ )

a(τ ) + H(τ )�τ

ls H(τ )

cs
≈ ls H∗

cs
. (26)

In the following, we will focus on the case of ls H∗/cs 	 1,
which means that all the modes are created inside the horizon
(k0 � kc). The other case ls H∗/cs ≥ 1 will not be considered
in this paper, since in this case it is hard to explain the flatness
of the universe, see Ref. [22] for detail discussions. Thus,
during inflation the parameter |λ| 	 1, and we will treat it as
a free small parameter in the model. All the calculations are
taken up to the first order of λ. Furthermore, the scalar power
spectrum will be calculated at the time when the mode crosses
the sound horizon (k = aH/cs). By using the approximation,
Eq. (17) becomes

u′′
k +

(
c2

s k2 − ν2 − 1/4

η2

)
uk = 0, (27)
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where

ν ≈ 3

2
+ ε1 + ε2

2
− s + 2

3
λ, (28)

up to the first order of slow-roll parameters and λ. With the
initial Bunch–Davies vacuum condition:

uk = 1√
2csk

e−icskη, (29)

we get the solution to Eq. (27)

uk(η) =
√

π

2
ei(ν+1/2)π/2√−ηH (1)

ν (−cskη), (30)

where H (1)
ν is the Hankel’s function of the first kind. At the

superhorizon scales the solution becomes

uk(η) = 2ν−3/2ei(ν−1/2)π/2 �(ν)

�(3/2)

1√
2csk

(−cskη)1/2−ν .

(31)

Therefore, the power spectrum of the metric scalar perturba-
tion is given by

Ps = k3

2π2 |ζk |2 = k3

2π2

∣∣∣∣uk

z

∣∣∣∣
2

= 22ν−4

ε1cs

[
�(ν)

�(3/2)

]2 (
H

2π

)2 (
csk

aH

)3−2ν ∣∣∣∣
csk=a H

≈ 1

8π2ε1cs

H2

M2
pl

∣∣∣∣
csk=a H

, (32)

and the spectrum index of the power spectrum for the scalar
perturbation reads

ns −1 ≡ d ln Ps

d ln k
= 3−2ν − s ≈ −2ε1 − ε2 + s − 4

3
λ. (33)

Also we obtain the running of the index

αs ≡ dns

d ln k
= −2ε2ε1 − ε3ε2 + s1s + 4

3
λ(1 − λ)(1 + ε1)

≈ −2ε2ε1 − ε3ε2 + s1s + 4

3
λ(1 − λ + ε1), (34)

where ε3 ≡ ε̇2/(ε2 H) and s1 ≡ ṡ/(s H).

2.2 Tensor perturbation

The equation of motion for the tensor perturbation is almost
the same as the one for the scalar perturbation, except that
the Mukhanov variable becomes z = a. Then the equation
of motion for the mode function is given by

v′′
k +

(
k2 − a′′

a

)
vk = 0, (35)

where vk ≡ ahk/2. Here hk denotes the independent degree
of the tensor mode, i.e. h+ and h×. By using the same approx-
imation as that in the scalar perturbation, we get

a′′

a
≈ 1

η2 (1 − ε1)
−2�−2(τ,�τ)[2�(τ,�τ) − ε1]

≈ ν2 − 1/4

η2 , (36)

with

ν ≈ 3

2
+ ε1 + 2

3
λ. (37)

Then the solution to Eq. (35) is given by

vk(η) =
√

π

2
ei(ν+1/2)π/2√−ηH (1)

ν (−kη), (38)

which also satisfies the Bunch–Davies vacuum initial condi-
tion. At the superhorizon scales the solution becomes

uk(η) = 2ν−3/2ei(ν−1/2)π/2 �(ν)

�(3/2)

1√
2k

(−kη)1/2−ν . (39)

Therefore, the power spectrum of the metric tensor perturba-
tion is given by

Pt = 2 × k3

2π2 |hk |2 = k3

π2

∣∣∣∣2vk

z

∣∣∣∣
2

= 22ν

[
�(ν)

�(3/2)

]2 (
H

2π

)2

×
(

k

aH

)3−2ν ∣∣∣∣
k=a H

≈ 2

π2

H2

M2
pl

∣∣∣∣
k=a H

, (40)

and the spectrum index of the power spectrum for the tensor
perturbation reads

nt ≡ d ln Pt

d ln k
= 3 − 2ν ≈ −2ε1 − 4

3
λ. (41)

We also get the tensor-to-scalar ratio

r ≡ Pt

Ps
= 16csε1, (42)

and the consistency relation

r = −8cs

(
nt + 4

3
λ

)
. (43)

When λ → 0, it reduces to the one in the commutative case,
i.e. r = −8csnt . With the help ofλ term in the above equation,
one shall see that the power-law inflation in noncommutative
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space–time may be more consistent with observations than
that in the commutative case.

3 Confront two specific k-inflation models
with observations

3.1 Tachyon inflation models

The tachyon inflation model was introduced by Sen [25,26],
and later studied in Refs. [19,28–35]. In the following, we
will consider the so-called assisted tachyon inflation mode
[31], which solves some difficulties with a single tachyonic
field [29]. These difficulties could be also solved by taking
account of non-minimal coupling to the gravity, see Ref. [36].
The Lagrangian for the assisted tachyon inflation reads

p(ϕi , Xi ) = −
n∑

i=1

V (ϕi )

√
1 − 2l2

s Xi , (44)

which is a simply the sum of n single-tachyonic fields without
interactions. The 4-d effective theory is applicable when n
is large enough, say n ≥ 107 [31]. The Friedmann equation
(10) becomes

H2 =
n∑

i=1

V (ϕi )

3
√

1 − 2l2
s Xi

=
n∑

i=1

V (ϕi )

3
√

1 − l2
s ϕ̇2

i

≈ n

3
V (ϕi ),

(45)

and the equation of motion (11) for the inflaton is given by

ϕ̈i + 3H ϕ̇i (1 − l2
s ϕ̇2

i ) + V,ϕi

V l2
s
(1 − l2

s ϕ̇2
i ) = 0. (46)

And also we have

Ḣ = −
n∑

i=1

l2
s ϕ̇2

i V (ϕi )

2
√

1 − l2
s ϕ̇2

i

, and c2
s = 1 − l2

s ϕ̇2
i ≈ 1 − 2ε1

3n
.

(47)

Thus, the slow-roll parameters (13) are given by

ε1 = 3

2

n∑
i=1

l2
s ϕ̇2

i

≈ 1

2l2
s nV (ϕi )

(
Vϕi

V

)2

≈ 1

2l2
s nV (ϕi )

(
V,ϕi

V

)2

, (48)

ε2 ≈ − 2

l2
s nV (ϕi )

V,ϕi ϕi

V
+ 6ε1 + O(ε2), (49)

s = ċs

cs H
= ċ2

s

2c2
s H

≈ − ε̇1

3nc2
s H

≈ −ε2ε1

3n

(
1 − 1

3n
ε1

)−1

∼ O(ε2). (50)

Considering the power-law potential V (ϕi ) = αϕm
i , we have

ε1 ≈ m2

2l2
s nV (ϕi )ϕ

2
i

≈ m

2(m + 2)N
, ε2 ≈ m(m + 2)

l2
s nV (ϕi )ϕ

2
i

≈ 1

N
, cs ≈ 1 − ε1

3n
, (51)

where N denotes the number of e-folds during inflation,
which is defined by

N ≡
∫ tend

t
Hdt ≈ −

∫ ϕend
i

ϕi

3H2l2
s

V

V,ϕi

dϕi

= −nl2
s α

m

∫ ϕend
i

ϕi

ϕm+1
i dϕi ≈ l2

s nα

m(m + 2)
ϕm+2

i

≈ l2
s nV (ϕi )ϕ

2
i

m(m + 2)
. (52)

Therefore, the spectrum indices of the power spectra for the
scalar and tensor perturbations are given by

ns − 1 = − 2m + 2

(m + 2)N
− 4

3
λ, nt = − m

(m + 2)N
− 4

3
λ,

(53)

and the tensor-to-scalar ratio is

r = 8m

(m + 2)N

[
1 − m

6n(m + 2)N

]
≈ 8m

(m + 2)N
. (54)

In fact, the sound speed cs is very closed to 1 for a positive
value of m when n ≥ 107.

3.2 DBI inflation models

The Lagrangeian of DBI inflation is given by [27] (see also
[37]):

p(ϕ, X) = − 1

f (ϕ)

√
1 − 2 f (ϕ)X − V (ϕ), (55)

where f (ϕ) takes the form f (ϕ) = α/ϕ4. The Friedmann
equation (10) becomes

H2 = 1

3

[
1

f (ϕ)cs
+ V (ϕ)

]
, (56)

where the speed of sound from Eq. (12) is given by

cs = √
1 − 2 f (ϕ)X =

√
1 − f (ϕ)ϕ̇2. (57)

While the equation of motion (11) for the inflaton is

ϕ̈

c2
s

+ 3H ϕ̇ + 2ϕ3

α

(
3 − 1

c2
s

)
+ csV,ϕ = 0. (58)
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And also we have

Ḣ = − ϕ̇2

2cs
. (59)

Thus, the slow-roll parameters (13) are given by

ε1 = ϕ̇2

2cs H2 = 1 − c2
s

2cs f (ϕ)H2 = 3(1 − c2
s )

2

×[1 + cs f (ϕ)V (ϕ)]−1 = 3(1 − c2
s )

2(1 + α′cs)
, (60)

ε2 = − 2c2
s s

1 − c2
s

− scs f v

1 + cs f V
−

√
3cs(1 − c2

s )

1 + cs f V

cs f V

1 + cs f V

×(ln f V ),ϕ = −
(

2c2
s

1 − c2
s

+ α′cs

1 + α′cs

)
s, (61)

where we have consider the quartic potential V (ϕ) ∼ ϕ4

that makes f (ϕ)V (ϕ) = α′. From Eq. (60), we get cs ≈
1 − (1 + α′)ε1/3 and the rate of change of the sound speed
s ≈ −(1+α′)ε2ε1/3 ∼ O(ε2). Then the Friedmann equation
becomes

H2 = ϕ4

3αcs
(1 + α′cs) ≈ ϕ4

3α
(1 + α′)

(
1 + ε1

3

)
. (62)

And the slow-roll parameters could be approximated as

ε1 ≈ 8

ϕ2 ≈ 1

N
, ε2 ≈ 8

ϕ2 ≈ 1

N
, (63)

where

N =
∫ tend

t
Hdt =

∫ ϕend

ϕ

H

ϕ̇
dϕ ≈ ϕ2

8
. (64)

Therefore, the spectrum indices of the power spectra for the
scalar and tensor perturbations are given by

ns − 1 = − 3

N
− 4

3
λ, nt = − 2

N
− 4

3
λ, (65)

and the tensor-to-scalar ratio is

r = 16

N

[
1 − (1 + α′)

3N

]
≈ 16

N
. (66)

With the help of λ term in the Eqs. (53) and (65), one shall see
that the tachyon and DBI inflation models in noncommutative
space–time may be more consistent with observations than
that in the commutative case.

3.3 Confront models with Planck and BICEP2

In this subsection, we will constrain the noncommutative k-
inflation by using the analysis results from data including

the Planck CMB temperature likelihood supplemented by
the WMAP large scale polarization likelihood (henceforth
Planck + WP). Other CMB data extending the Planck data to
higher-l, the Planck lensing power spectrum, and BAO data
are also combined, see Ref. [8] for details. In Ref. [8], the
index of scalar power spectrum is given by: 0.9583±0.0081
(Planck + WP), 0.9633 ± 0.0072 (Planck + WP + lensing),
0.9570 ± 0.0075 (Planck + WP + highL), 0.9607 ± 0.0063
(Planck + WP + BAO). From the recent reports of BICEP2
experiment, we get the tensor-scalar-ratio as r = 0.20+0.07

−0.05,
see Ref. [9] for details. Also, adopting the data from BICEP2
together with Planck and WMAP polarization data, Cheng
and Huang [38] got the constraints of r = 0.23+0.05

−0.09, and nt =
0.03+0.13

−0.11. By using these results, we obtain the constraints
on the parameters cs and λ as

cs = 0.65 ± 0.19, λ = −0.0527 ± 0.041, (68 %CL).

(67)

We plot the contours from 1σ to 2σ confidence levels for the
parameters, see Fig. 1, in which the ns–r plane that based
on Fig. 13 from Ref. [9] is also presented. From Fig. 1, one
can see that the general noncommutative k-inflation with its
best fitting parameters is well consistent with observations,
However, for the two specific models, if we assume that the
number of e-folds number is around 50 ∼ 60, the DBI model
is not favored, while the tachyon model lies inside the 1σ

contour.

4 Conclusions

In conclusion, we have studied the k-inflation model in the
noncommutative space–time following the method in Ref.
[22]. A linear contribution to the power spectra of the scalar
and tensor perturbations is given in this model. We con-
front two specific k-inflation models, namely the tachyon and
DBI models, with latest results from the Planck and BICEP2
experiments, and we find that the DBI model is not favored,
while the tachyon model lies inside the 1σ contour, when the
e-folding number is assumed to be around 50 ∼ 60. We also
constrained the parameter cs and γ for a generic k-inflation
models, and find it is well-consistent with observations, see
Fig. 1.

From Eq. (67), one can see that that the value of the λ

indeed has a large error bar, which means that the present
observational data can not constrain λ very well. This is
mainly because the error bar of r is still too large (with an
error ∼ 20 % at 1σ C.L.) to constraint the e-folding number,
see Eq. (66). We hope that the future data could constrain the
value of r much more tight, say with an error of only about
1 % or even smaller, then the value of λ could be constrained
with an error less than 10 %.
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Fig. 1 Left Constraints on the values of cs and λ. Two constraint con-
tours are given at 68 and 95 % confidence level. The central dot corre-
sponds to the best-fit point (cs = 0.65, λ = −0.0527). Right The ns–r
plane based on Fig. 13 from Ref. [9], in which the red contours are
simply the MCMC result provided with the Planck data release, while
the blue ones are plotted when the BICEP2 data are added. The dark

lines correspond to the tachyon inflation model with model parameter
m → ∞ and the blue lines correspond to DBI inflation model. The
solid lines correspond to the model in usual commutative spacetime
(λ = 0), while the dotted ones correspond to the model in noncommuta-
tive spacetime with λ = 0.01. The best-fit model for general k-inflation
is also pointed out

By using the amplitude value of the power spectrum from
Planck, Rs(k = 0.002 Mpc−1) = 2.215 × 10−19 [39], we
can also estimate the value of Hubble parameter during infla-
tion of

H∗
Mpl

= π
√

rRs/2 ≈ 4.67 × 10−5, (68)

where r = 0.20 was used. Then, by using the fitting value of
cs and λ, we estimate the string scale as ls ≈ 1.13 × 103lp ≈
9.14 × 10−30 cm.
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Appendix A: Action with noncommutative product

In fact, one should replace the term dx4 in the action (2)
by dx ∗ dt or dt ∗ dx , where ∗ indicates the noncommuta-

tive product. But the results could not be changed, since this
replacement is equivalent to multiply a overall constant fac-
tor to the action. To see this, we need the explicit definition
of the ∗ product as follows, see Refs. [13,15]:

( f ∗ g)(τ, x) = exp

[
− i

2
l2
s (∂x∂τ ′ − ∂τ ∂x ′)

]

× f (τ, x)g(τ ′, x ′)
∣∣∣∣
τ ′=τ,x ′=x

. (A1)

Then, one can obtain

dx ∗ dt = exp

[
− i

2
l2
s (∂x∂t ′ − ∂t∂x ′)

]
dxdt ′

∣∣∣∣
τ ′=τ,x ′=x

= exp

(
− i

2
l2
s

)
dxdt ′

∣∣∣∣
τ ′=τ,x ′=x

= exp

(
− i

2
l2
s

)
dxdt, (A2)

or

dt ∗ dx = exp

[
− i

2
l2
s (∂x∂t ′ − ∂t∂x ′)

]
dtdx ′

∣∣∣∣
τ ′=τ,x ′=x

= exp

(
i

2
l2
s

)
dtdx ′

∣∣∣∣
τ ′=τ,x ′=x

= exp

(
i

2
l2
s

)
dxdt,

(A3)

Thus we have∫
dx4 · · · = exp

(
i

2
l2
s

) ∫
dx ∗ dt · · ·

= exp

(
− i

2
l2
s

)∫
dt ∗ dx · · · . (A4)
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