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1 � Introduction
In algebraic geometry and number theory, one is frequently interested in abelian vari-
eties with extra endomorphisms, and their moduli spaces. The study of elliptic curves 
and their moduli spaces has been extremely influential in the last century (for instance, 
see [10, 22, 34]). Higher dimensional abelian varieties have also seen many applications; 
however, it has remained quite a challenge to provide explicit computational descrip-
tions for these or their moduli spaces. There has been quite a lot of work in the direc-
tion of explicit approaches to abelian surfaces in the last couple of decades. This paper 
is chiefly concerned with moduli spaces of genus 2 curves with decomposable Jacobians. 
We say that an abelian variety A over a field k is decomposable or reducible over k if it is 
isogenous over k to a product of abelian varieties of smaller dimension.

In particular, we will be interested in principally polarized abelian surfaces A which 
are isogenous to a product of elliptic curves. A natural way to produce such an abe-
lian surface is as the Jacobian of a curve C of genus 2, which has a map of degree n > 1 
to an elliptic curve E. The morphism φ : C → E induces φ∗ : E → J (C) = A and 
φ∗ : A = J (C) → E, with φ∗ ◦ φ∗ = nE. The curve C also has a map of degree n to the 

Abstract 

We compute explicit rational models for some Hilbert modular surfaces corresponding 
to square discriminants, by connecting them to moduli spaces of elliptic K3 surfaces. 
Since they parametrize decomposable principally polarized abelian surfaces, they 
are also moduli spaces for genus-2 curves covering elliptic curves via a map of fixed 
degree. We thereby extend classical work of Jacobi, Hermite, Bolza etc., and more 
recent work of Kuhn, Frey, Kani, Shaska, Völklein, Magaard and others, producing 
explicit families of reducible Jacobians. In particular, we produce a birational model for 
the moduli space of pairs (C, E) of a genus 2 curve C and elliptic curve E with a map of 
degree n from C to E, as well as a tautological family over the base, for 2 ≤ n ≤ 11. We 
also analyze the resulting models from the point of view of arithmetic geometry, and 
produce several interesting curves on them.

Keywords:  K3 surfaces, Moduli spaces, Hilbert modular surfaces, Genus-2 curves, 
Jacobians, Elliptic curves

Mathematics Subject Classification:  Primary 11F41; Secondary 14J28; 14H40

Open Access

© 2015 Kumar. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate 
if changes were made.

RESEARCH

Kumar ﻿Mathematical Sciences  (2015) 2:24 
DOI 10.1186/s40687-015-0042-9

*Correspondence:   
thenav@gmail.com 
2 Present Address:  
Department of Mathematics, 
Stony Brook University, Stony 
Brook, NY 11794, USA
Full list of author information 
is available at the end of the 
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40687-015-0042-9&domain=pdf


Page 2 of 46Kumar ﻿Mathematical Sciences  (2015) 2:24 

complement E′ = A/φ∗(E) (obtained by composing the embedding C → A with the 
projection map) and A is isogenous to the product E × E′ with kernel isomorphic to 
Z/nZ⊕ Z/nZ. We say that J(C) is (n, n)-split. The (coarse) moduli space we wish to par-
ametrize is the space L̃n of pairs (C, E) related by an optimal map of degree n > 1. (Here, 
optimal means that the map does not factor through an unramified cover of E.) It is a 
double cover of the moduli space Ln of genus 2 curves C whose function field has an 
elliptic subfield of degree n; this latter locus is a hypersurface in M2, the moduli space of 
genus 2 curves.

Classically, hyperelliptic curves with split Jacobians were studied in the guise of the 
reduction of abelian integrals to elliptic integrals by algebraic transformations, going as 
far back as Legendre and Jacobi, who essentially gave a complete description of the mod-
uli space for n = 2. The generic family of curves C for n = 3 was worked out by Hermite, 
Goursat, Burkhardt, Brioschi and Bolza, and n = 4 by Bolza. We refer the reader to [15] 
for a summary of this classical literature. Kuhn [16] revisited this topic, giving a com-
binatorial description in terms of the branch points of the map φ as well as the hyper-
elliptic involution ι on C, and adapting some examples to positive characteristic. This 
approach has led to fairly explicit descriptions of L̃n for 2 ≤ n ≤ 5 by Shaska and others 
[23, 26–28]. From an arithmetic standpoint, reducible Jacobians for 2 ≤ n ≤ 4 have been 
studied in [2, 3, 5]. Frey and Kani [8, 9] have also studied such covers for general n by 
looking at pairs of elliptic curves E and E′ such that there is an Galois equivariant anti-
isometry between their n-torsion subschemes. Their description connects L̃n to several 
interesting arithmetic questions and applications.

In this paper, we will take a rather different strategy to compute the moduli spaces 
L̃n , which does not focus on the map φ : C → E and its ramification locus. The key fact 
upon which our method rests is that a genus 2 curve C has a map of degree n to an 
elliptic curve E if and only if the point in A2 corresponding to its Jacobian J(C) lies on 
the Humbert surface Hn2 (see [25], for instance). In other words, under the birational 
morphism M2 → A2, the image of Ln is (birationally) identified with the Humbert 
surface for discriminant n2. Recall that for a discriminant D, the Humbert surface HD 
describes principally polarized abelian surfaces which have real multiplication by the 
quadratic ring of discriminant D. Its double cover is the Hilbert modular surface Y−(D) 
which parametrizes pairs (A, ι), where A is a principally polarized abelian surface, and 
ι : OD → End(A) is a ring homomorphism. Note that the reason Y−(D) → HD is a dou-
ble cover is because (generically) there are two choices for the action of 

√
D.

In [7], a method was laid out to compute explicit models for these Hilbert modular 
surfaces Y−(D), relying on the computation of moduli spaces of suitable elliptic K3 sur-
faces, which are related to the abelian surfaces via a Shioda–Inose structure. In that 
paper, equations were given for rational models for the surfaces Y−(D), for the thirty fun-
damental discriminants D such that 1 < D < 100. These Hilbert modular surfaces are 
coarse moduli spaces for principally polarized abelian surfaces with real multiplication 
by the ring of integers OD of Q(

√
D).

In this paper, we will extend this method to compute the Humbert surfaces for square 
discriminants D = n2, and our desired moduli space L̃n [which is birational to Y−(n2)],  
for 2 ≤ n ≤ 11. To do so requires several ideas beyond those of [7]. First, we general-
ize the set-up and theorems in [7] to the case of non-fundamental discriminants. This 
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allows us to compute Y−(n2) as a moduli space of K3 surfaces, but does not elucidate its 
structure as a moduli space of (C, E). In order to do so, we first describe explicitly a nor-
malized tautological family of genus 2 curves over the moduli space, using the method 
of certifying eigenforms for real multiplication from [19]. Finally, we describe a new 
method involving integration of eigenforms to recover the elliptic curves E1 and E2 asso-
ciated to a given C.

Our models agree with those in the literature for 2 ≤ n ≤ 5, and we go well beyond 
the previous state of the art with the higher values of n. In doing so, we exhibit non-
rational surfaces L̃n: the surfaces L̃6 and L̃7 are elliptic K3, the next three L̃8, L̃9 and L̃10 
are honestly elliptic, whereas L̃11 is a surface of general type. The geometric classification 
of these surfaces was studied in [13, 21], but explicit algebraic models were not known 
before this work. We anticipate that our algebraic models for these moduli spaces will 
make it easy to carry out explicit arithmetic and geometric investigations. For instance, 
one can immediately apply our formulas to produce examples or even families of elliptic 
curves with anti-isometric n-torsion Galois representations.

The plan of the paper is as follows: in Sect. 2, we prove the necessary generalizations of 
the results from [7]. Each of the following sections treats a separate square discriminant. 
We outline the parametrization of the moduli space of elliptic K3 surfaces, and a 
sequence of “elliptic hops” converting to an elliptic fibration with E8 and E7 fibers. This 
allows us to compute the map to A2. We can then write down the explicit double cover 
giving a model of L̃n = Y−(n2). We carry out some basic geometric analysis of the mod-
uli space, and note any obvious arithmetic curves on it. We also provide a tautological 
family of genus 2 curves over L̃n, as well as the j-invariants of both the associated elliptic 
curves1 E1 and E2 .

The auxiliary computer files for this paper, containing various formulas and computa-
tions omitted here for lack of space, are available from http://arxiv.org/abs/1412.2849. 
To access these, download the source file for the paper. This will produce not only the 
LaTeX file for this paper, but also the computer code.

For the computations involved in our work, we made frequent use of the computer 
algebra systems pari-gp, Magma, Maxima and Sage. We thank Nils Bruin, Henry 
Cohn, Noam Elkies, Gerard van der Geer, David Gruenewald, Curt McMullen, Ronen 
Mukamel, Dan Petersen, Matthias Schütt and the anonymous referee for helpful com-
ments. This work was supported in part by NSF grant DMS-0952486, and by a grant 
from the MIT Solomon Buchsbaum Research Fund.

2 � Hilbert modular surfaces for square discriminants
In this section, we generalize the main theorems of [7] to the case of non-fundamental 
discriminant D, which is a positive integer congruent to 0 or 1 modulo 4. In particu-
lar, this paper will deal with the case of square discriminant: D = n2, in which case the 
ring in question is an order in a split quadratic algebra (i.e. Q⊕Q), rather than a real 
quadratic field. We first briefly go over the basic setup for this particular case, since the 
typical case considered in the literature is that of non-square discriminant. For more 
background on Hilbert modular surfaces see [30], and for a quick introduction to the 

1  We can make a uniform choice of one of these, so that the family of (C , E1) is really the tautological family over the 
moduli space L̃n.

http://arxiv.org/abs/1412.2849
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calculations of this section, we refer the reader to [24]. The notes [6] also contain an 
excellent description of the theory of abelian varieties with extra endomorphisms, and 
the connection with K3 surfaces which was exploited in [7, 17] and is also used here.

2.1 � The quadratic ring of discriminant D

Let D = n2, and OD the quadratic ring of discriminant D. Concretely, we can write

with componentwise addition and multiplication. It has a Z-basis {e1, e2} given by 
e1 = 1 = (1, 1) and e2 = (n, 0). The two embeddings σ1, σ2 of K = OD ⊗Q ∼= Q⊕Q 
into R are given by taking the first or second components and composing with Q →֒ R . 
There are four square roots of D in OD, namely ±n = ±(n, n) and ±(n,−n). If we label √
D = (n,−n), we see that 1 and (D +

√
D)/2 =

(
(n2 + n)/2, (n2 − n)/2

)
 also form a Z

-basis, just as in the case of non-square discriminant. The involution which changes 
√
D 

to −
√
D is that which switches the two factors; i.e. takes (x, y) to (y, x). The trace map 

takes (x, y) to x + y, and the matrix of the trace form with respect to e1 and e2 is

which has discriminant n2 = D. The dual lattice O∗
D with respect to the trace form 

has basis f1 = (1, 0) and f2 = 1
n (1,−1). (In fact, for a general discriminant, O∗

D equals 
1√
D
OD.) The discriminant group O∗

D/OD is easily calculated to be Z/n2Z if n is odd, 
and Z/2Z⊕ Z/(n2/2)Z if n is even.

2.2 � The setup for non‑fundamental discriminants

We now adapt Sect. 3 and 4 of [7] to the setting of non-fundamental discriminant. The 
outline of the method is as follows.

1.	 The Hilbert modular surface Y−(D) is the coarse moduli space of (A, ι) where A is a 
principally polarized abelian surface, and ι : OD → End(A) is a homomorphism. The 
complex manifold Y−(D)C can be obtained by compactifying SL2(OD,O

∗
D
)\H2.

2.	 There is a map Y−(D) → A2 which simply takes the ppas A. The image HD is the 
Humbert surface of discriminant D in A2, and the map from the Hilbert modular 
surface has degree 2. The key first step is to realize HD as a moduli space of elliptic 
K3 surfaces, polarized by a particular lattice LD of rank 18 and discriminant −D. We 
explicitly parametrize this moduli space MLD, and compute the universal K3 family 
over it.

3.	 We then find a different elliptic fibration on the (family of ) K3 surfaces, with reduc-
ible fibers of type II∗ and III∗. This is accomplished by a sequence of “elliptic hops”, 
which reflect 2- and 3-neighbor steps at the lattice level (see [7, Section5] or [18, 
AppendixA]). By the main result of [17], from the final Weierstrass equation we may 
read out the map MLD → A2, which is given in terms of Igusa–Clebsch invariants 
(coordinates on A2 [14]).

4.	 So far, we have an explicit birational model of HD. To get to Y−(D), we must identify 
the correct double cover. We first pin down the geometric branch locus as a union 

OD = {(x, y) ∈ Z2 : x ≡ ymod n}.

(
2 n

n n2

)

,
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of certain modular curves (by a result of Hausmann), and interpret these curves in 
terms of the K3 moduli space (the Picard group jumps in a predictable manner). 
Finally, we find the correct arithmetic twist by point-counting and matching charac-
teristic polynomials of Frobenius on the abelian and K3 sides.

The first part of [7, Section3] outlines the proof that SL2(OD,O
∗
D
)\H2 is the coarse 

moduli space of principally polarized abelian surfaces with real multiplication by 
OD. The same proof goes through for arbitrary discriminant. Of course, for D = n2, 
usually it is more convenient to understand a ppas with real multiplication by OD in 
terms of pairs of elliptic curves which have degree n maps from a common genus 2 
curve, as described in the introduction. This is the approach taken in [4, 13, 21].

Proposition 1  Let A be a principally polarized abelian surface with End(A) ∼= OD. 
Then NS(A) ∼= End(A). The lattice NS(A) has a basis with Gram matrix

of signature (1, 1) and discriminant −D.
The proof of [7] goes through with minor changes, noting that the Rosati involution on 

K must be the identity, since the other element of the Galois group (interchange of the 
factors in the square-discriminant case) is not a positive involution.

The proof of the next proposition is unchanged from the original.

Proposition 2  There is a primitive embedding, unique up to isomorphism, of the lattice 
OD into U3. Let TD be the orthogonal complement of OD in U3. Then there is a primitive 
embedding, unique up to isomorphism, of TD into the K3 lattice �.

The main theorem of that section identifies the Humbert surface with a moduli 
space of K3 surfaces lattice-polarized by LD := E8(−1)2 ⊕OD. Let L be the lattice 
U ⊕ E8(−1)⊕ E7(−1).

Theorem  3  Let FLD be the moduli space of K3 surfaces that are lattice polarized by 
LD . Then the isomorphism φ : FL → A2 of [17] induces a birational surjective morphism 
FLD → HD.

Its proof relies on a key proposition involving the lattice embedding LD →֒ L, where 
L = U ⊕ E8(−1)⊕ E7(−1) and LD ∼= E8(−1)2 ⊕OD is the orthogonal complement of 
TD in �, uniquely described by the proposition above. The proof of the key proposition 
and the main theorem go through without any changes.

We must next show that the branch locus of the map Y−(D) → HD corresponds to a 
divisor Z in the moduli space of MLD of K3 surfaces lattice polarized by LD, such that the 
rank of the K3 surface corresponding to a generic point on Z jumps to 19, and the discri-
minant of the Picard group is D / 2 or 2D. In [7], the argument used the fact that D was 
fundamental; we give a more general proof here, valid for arbitrary discriminant.

(1)

(
2 D

D (D2 − D)/2

)
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First, we observe as in [7] that the branch locus consists of a union of specific modular 
curves. Let us consider the birational models Ŵ\H2 for Y−(D) (where Ŵ = SL2(OD,O

∗
D) ) 

and Sp4(Z)\S2 for A2, with S2 being the Siegel upper half space for genus 2. The two-
to-one map Ŵ\H2 → Sp4(Z) \ S2 factors through (Ŵ ∪ Ŵσ) \H2, where σ is the inter-
change of coordinates on H2. The branch locus is the fixed point set of σ on Ŵ\H2.

Proposition 4  (Hausmann [12]) The one-dimensional part of the fixed point set of σ on 
Ŵ\H2 is the union of the modular curves Fw, where w ranges over {1,D} if D is odd, and 
over {1, 4,D/4,D} if D is even.

Next, we analyze what happens to the K3 surfaces along these modular curves.

Proposition 5  Let N be a natural number, and let C be any component of the inverse 
image of a modular curve FN , under the birational surjective morphism φD : FLD → HD . 
The K3 surface corresponding to a generic point of C has Néron–Severi group of rank 19 
and discriminant 2N.

Proof  By [24], the generic point on any component of a modular curve FN corresponds 
to an abelian surface A whose ring of endomorphisms is a quaternionic order R of discri-
minant N 2. By [11], the Néron-Severi group of A and the endomorphism ring are con-
nected by the relation R = C+

(
1
2NS(A)

)
, the even part of the associated Clifford ring. 

From this, it is easy to compute that NS(A) must have rank 3 and discriminant 2N. By 
the Shioda–Inose structure, the Picard group of the associated K3 surface must have 
rank 19 and discriminant 2N. 

Therefore, the part of the branch locus corresponding to the curve FD (and FD/4 if D is 
even) corresponds to a sublocus of K3 surfaces having Picard group of discriminant 2D 
(respectively D / 2). Section 4 of [7] explains how to correctly identify the branch locus 
and the arithmetic twist; we will not restate the method or proofs here.

The discussion for the curves F1 (and F4 if D is even) was omitted from [7]; we address 
it here.

Proposition 6  Let X be an elliptic K3 surface with a reducible fiber of type II∗ and 
another of type III∗. Furthermore, assume that X has a section of height D / 2, for some 
natural number D congruent to 0 or 1 modulo 4. Then NS(X) cannot be a lattice of rank 
19 and discriminant 2 or 8.

Proof  First, assume that X has no other reducible fibers. Then, in particular, there 
cannot be a torsion section: such a section would have height 0, which is impossible to 
obtain with only two reducible fibers of type E8 and E7. Therefore, if NS(X) had discri-
minant 2, the Mordell–Weil lattice would be positive definite of rank 2 and discrimi-
nant 1. The Hermite constant in dimension 2 is 2/

√
3, so this would imply that there is 

a section of height at most 2/
√
3 ≈ 1.155, which is impossible with the fiber configura-

tion (the best we can do is 4 − 4/3 = 8/3 > 2.66). Similarly, if NS(X) had discriminant 8, 
we would need a section of height 4/

√
3 ≈ 2.309, which is still forbidden. Note that we 

did not use the assumption of a section of height D/2. For the case when X could have 

�
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additional reducible fibers, we have to do some additional analysis, but a similar proof 
applies.�  �

Going back to our situation, let X  be the family of K3 surfaces lattice polarized by LD, 
over the base MLD (the coarse moduli space). In the third step of the method described 
above, we find a different elliptic fibration on the K3 surface Xν (uniformly over ν on 
the base), with II∗ and III∗ fibers. However, according to the above proposition, for ν on 
one of the curves C lying over F1 or F4, we cannot have such an elliptic fibration on Xν. 
Therefore, the Weierstrass equation for the resulting II∗, III∗ fibration must be undefined 
(or not minimal, or one of these fibers must degenerate further) for ν on such a curve 
C. This is reflected in the denominators of the expressions for the Weierstrass coeffi-
cients and of the Igusa–Clebsch invariants, as well as the (numerator of the) invariant 
I10 . Therefore, by adding their irreducible factors to that of the list for discriminant 2D 
(and D / 2 when D is even), we can then continue with Step 4 of [7].

The remaining assertions and proofs of Section  4 of [7] go through without any 
change. Therefore, we may now proceed with the computation of the Hilbert modular 
surfaces Y−(n2) for small values of n. Here, we describe these surfaces for n up to 11. 
The cases 2 ≤ n ≤ 5 have been treated in the previous literature on the subject, 
although by using completely different methods. The cases 6 ≤ n ≤ 11 show that one 
can quickly go beyond the current state of the art using our new techniques. For each n 
treated in this paper, we also describe a tautological family of genus 2 curves over the 
moduli space, whose Jacobians are (n, n)-isogenous to a pair of elliptic curves, and we 
give the j-invariants of these elliptic curves.2 To accomplish this, we use the Eigenform 
Location Algorithm of [19] to produce a tautological family of normalized genus 2 
curves (i.e. for which the eigenforms for real multiplication are given by dx/y and x dx/y), 
along with a method which involves integrating an eigenform. In principle, we can even 
give the two maps of degree n from the genus 2 curve to the elliptic curves; we indicate 
how this is done in the case n = 3. There is no serious obstruction to computing these 
modular surfaces for n ≥ 12, though of course the computations will get more challeng-
ing for large n.

We list the geometric type of the surfaces treated here in the following table. For 
comparison with the literature, we note that Hermann [13] described the geometric 
classification of modular surfaces Yn,ǫ of discriminant n2, which is the quotient of H2 
by an appropriate subgroup of SL2(Z/nZ)2. A different proof was given by Kani and 
Schanz [21], who also corrected a typo in [13], and described the connection with the 
moduli space of pairs of elliptic curves E1,E2 with an isomorphism on the n-torsion 
E1[n] ∼= E2[n]. The index ǫ ∈ (Z/nZ)× is the factor which multiplies the determinant 
of the Weil pairing under this isomorphism. See also [4] for a nice overview and con-
nections to modular forms. For our particular situation, ǫ = −1 as the isomorphism 
is an anti-isometry (see [9]), and we can read off the corresponding results from the 
above papers (note that the isomorphism type only depends on the square class of ǫ in 
(Z/nZ)× ).

2  More specifically, when the moduli space Y−(n2) is rational, we give the j-invariants in terms of the parameters on the 
moduli space. For the non-rational moduli spaces, we give j1 + j2 and j1 j2 in terms of the parameters on the (rational) 
Humbert surface Hn2, and verify that j1 − j2 generates the function field of its double cover Y−(n2).
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n Geometric type

2 Rational

3 Rational

4 Rational

5 Rational

6 Elliptic K3

7 Elliptic K3

8 Honestly elliptic

9 Honestly elliptic

10 Honestly elliptic

11 General type

3 � Discriminant 4
3.1 � Parametrization

We would like a family of K3 surfaces lattice polarized by L4. It is easy to see that 
L4 ∼= U ⊕ E8 ⊕ E7 ⊕ A1. We now reverse-engineer Tate’s algorithm to find elliptic K3 
surfaces with reducible fibers of types E8, E7 and A1 at t = ∞, 0 and 1 respectively.

A general elliptic K3 surface with section has the form

with a, b, c being polynomials in t of degree 4, 8, 12 respectively. In order to have an 
E8 fiber at t = ∞, we may assume (after shifting x suitably) that a has degree at most 
2. Similarly, the E7 fiber at t = 0 allows us to assume that a = kt2, for some constant k. 
These normalizations involve shifting x by a linear combination of 1, t, t3 and t4. Finally, 
since there is an A1 fiber at t = 1, we may shift x by a suitable multiple of t2, to make b(t) 
and c(t) divisible by t − 1 and (t − 1)2 respectively. The final result is that the Weierstrass 
equation has the form

Since we must quotient by the Weierstrass scaling of x and y, we see that the resulting 
moduli space is a weighted projective space P(2 : 4 : 6) in the coordinates e, f, g.

3.2 � Map to A2 and equation of L̃2

To compute the map to A2, we put the surface in the standard form described in [17]. 
Here, it merely involves shifting x so that the coefficient of x2 is zero, and then rescaling 
so that the coefficient of xt3 is −1. We obtain the Weierstrass equation

We may now read out the Igusa–Clebsch invariants, which are functions of r = f /e2 and 
s = g/e3. We obtain

y2 = x3 + a(t)x2 + b(t)x + c(t),

y2 = x3 + et2x2 + ft3(t − 1)x + gt5(t − 1)2.

y2 = x3 − t3
(
3f − e2

3
t − 1

)

x + t5
(

fgt2 −
54g + 9ef − 2e3

27
t +

3g + ef

3f

)

.
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By considering the possible ways the rank could jump and give K3 surfaces whose 
Néron–Severi lattices have the appropriate discriminant, we obtain the following list of 
possible factors for the branch locus:

An arithmetic verification as in [7] pins down the correct double cover.

Theorem 7  A birational model for the surface L̃2 (equivalently, for Y−(4)) is given by

It is a rational surface. The Humbert surface is birational to the (r, s)-plane. In these coor-
dinates, the Igusa–Clebsch invariants of a point on the moduli space are given by the for-
mulas in (2) above.

This is a conic bundle over P1
r. Setting s = 0 makes this expression a square, so in fact 

this conic bundle has a section, and is a rational surface over the base field Q. To para-
metrize it, we complete the square by letting z = ms + r(4r − 1). Solving for s, we obtain

3.3 � Comparison with previous formulae

The classical formulae over an algebraically closed field are described in [27], for 
instance. We start with a genus 2 curve

which has two obvious maps to elliptic curves. The group D12 acts on the family of such 
Weierstrass equations as follows: its two generators take (x, y, s1, s2) to (ζ6x, y, s1ω, s2ω2) 
or to (1/x, iy/x3, s2, s1), where ζ6 is a primitive sixth root of unity, ω = ζ 26  and i =

√
−1. 

The invariants of this action on the polynomial ring generated by the parameters s1 and 
s2 are u = s1s2 and v = s31 + s32. Comparing Igusa–Clebsch invariants, we obtain the rela-
tion between our coordinates r, s above and u, v.

with inverse

(2)

I2 = 8(3s + r)/r,

I4 = −4(3r − 1),

I6 = −4(6rs − 8s + 5r2 − 2r)/r,

I10 = 4rs.

r, s, (4s − r2), (9s − 3r2 + r), (27s2 + 36rs − s − 16r3 + 8r2 − r).

z2 = −r(27s2 + 36rs − s − 16r3 + 8r2 − r).

s = −
r(8mr + 36r − 2m− 1)

27r +m2
, z =

r(108r2 − 4m2r − 36mr − 27r +m2 +m)

27r +m2
.

y2 = x6 − s1x
4 + s2x

2 − 1

r =
s21s

2
2 − 4s31 − 4s32 + 18s1s2 − 27

4(s1s2 − 9)2
=

u2 − 4v + 18u− 27

4(u− 9)2
,

s =
2(s21s

2
2 − 4s31 − 4s32 + 18s1s2 − 27)

(s1s2 − 9)3
=

2(u2 − 4v + 18u− 27)

(u− 9)3

u = (9s + 8r)/s,

v = 2(27s2 + 36rs − 32r3 + 8r2)/s2.



Page 10 of 46Kumar ﻿Mathematical Sciences  (2015) 2:24 

The branch locus, up to squares, equals (v2 − 4u3) = (s31 − s32)
2. Recall that interchang-

ing s1 and s2 changes the equation of the genus 2 curve by x → 1/x, and so switches the 
two elliptic subfields. So it agrees with the classical double cover. Another explicit way to 
see this is through the j-invariants, which we compute next.

3.4 � Tautological genus 2 curve and elliptic curves

Over the moduli space Y−(4) (or L̃2), it is possible to write down a tautological family of 
genus 2 curves with (2, 2) reducible Jacobian. In terms of r, s, z above, the sextic defining 
the family is

The j-invariants corresponding to the two elliptic subfields are

which again shows that the involution switching the j-invariants is the one correspond-
ing to the double cover.

Since the Hilbert modular surface is rational with parameters r,  m, we may further 
simplify the tautological family above.

Theorem 8  In terms of the parameters (r, m) on the Hilbert modular surface, a tauto-
logical family of genus 2 curve with (2, 2)-reducible Jacobian is given by

3.5 � Special loci

We now describe some special curves on the Hilbert modular surface.

1.	 The genus 0 curve r = 0 is part of the branch locus; it is also part of the product 
locus, i.e.  the boundary (A2\M2) ∩H4 which corresponds to products of elliptic 
curves rather than Jacobians of genus 2 curves.

2.	 For the curves (r, s, z) = (r, 0,±r(4r − 1)), the invariant I10 = 0. They correspond to 
degenerations of the genus 2 curve to a rational curve.

3.	 The curve s = r2/4 on the Humbert surface pulls back to a genus 0 curve on Y−(4) , 
isomorphic to P1. It is a modular curve, corresponding to Jacobians with endomor-
phisms by a (split) quaternion algebra. The minimal degree of the isogeny between 
the two elliptic curves we have associated above is 3. This curve is the same as that 
defined in [27, formula (11)].

4.	 The curve r = 1/4 also lifts to a P1 on the Hilbert modular surface, corresponding to 
the modular curve for which j1 = j2.

5.	 The curve r = −1/2, z = ±(27s − 2)/18 corresponds to one of the j-invariants being 
0 (i.e. having CM by Z[ω]).

y
2 = x

6 + (9s + 8r)x4 − (8rz − 27s
2 − 36rs + 32r

3 − 8r
2)x2

− s(8rz − 27s
2 − 36rs + 32r

3 − 8r
2).

±
128(4r − 1)

s2
z −

64(36rs − s − 32r3 + 16r2 − 2r)

s2
,

y2 = x6 − (2m+ 3)x4 − (36r − 4m− 3)x2 + 4(2m+ 9)r − 2m− 1.
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6.	 The curve 27s2 + 36rs − s − 16r3 + 8r2 − r = 0 has genus 0 and is part of the 
branch locus. It is parametrized by (r, s) =

(
(t2 − 1)/12, (t − 2)2(t + 1)/54

)
 and 

corresponds to the j-invariants being equal.
7.	 The curve 3375s2 − 1440rs − 152s − 64r3 + 48r2 − 12r + 1 = 0 lifts to a genus 0 

curve on the Hilbert modular surface; its parametrization on the Humbert surface 
is given by (r, s) =

(
(t2 − 1)/60, (t + 4)3/3375

)
. It corresponds to the elliptic curves 

being 2-isogenous.
8.	 There are also several simple non-modular curves, for example the curves s = 1/27, 

s = 2/27, and s = r2/3− r/9. These lift to genus 0 curves (in fact, isomorphic to P1) 
on Y−(4).

Remark 9  Since the Hilbert modular surface is rational, in fact we have a 2-parameter 
family of genus 2 curves with (2, 2)-split Jacobian given by the equation above, and we 
can specialize it to produce infinitely many examples of 1-parameter families of such 
genus 2-curves.

Remark 10  To check the statement that elliptic curves corresponding to points on a 
specific curve on L̃2 are (say) 2-isogenous, one can simply substitute in the j-invariants 
into the appropriate classical modular polynomial. Another way to verify that such a 
curve on the Hilbert modular surface is modular is to check that the Picard number of 
the elliptic K3 surface jumps (for instance, due to an extra reducible fiber, or an extra 
section). From now on, we shall make such statements without further justification; the 
interested reader may carry out the (easy) check.

4 � Discriminant 9
4.1 � Parametrization

Next, we describe degree 3 elliptic subfields, which were treated by Shaska in [26]. A 
simple family of elliptic K3 surfaces which will allow us to recover this moduli space is 
that with E8 and A8 fibers. As before, we put the E8 fiber at ∞, letting us write the Weier-
strass equation as

with a, b, c polynomials of degrees 2, 4, 7 respectively. Assuming the A8 fiber is at t = 0 , 
and shifting x by a suitable quadratic polynomial, we can rewrite the Weierstrass equa-
tion as

This surface generically has an A5 fiber at t = 0. To ensure an A8 fiber, we need three 
more orders of vanishing for the discriminant at t = 0. Since we need the components of 
the I9 fiber to be defined over the ground field, the coefficient a0 is a nonzero square; by 
scaling x we may assume it is 1. Similarly, by scaling t, we can arrange c0 = c1.

The three orders of vanishing successively yield b0 = c20, b1 = b0(a1 + 1)/2, and 
a2 = (a1 − 1)2/4. Relabeling c0 = r and a1 = s, we obtain the final Weierstrass equation

y2 = x3 + a(t)x2 + 2b(t)x + c(t)

y2 = x3 + (a0 + a1t + a2t
2)x2 + 2t3(b0 + b1t)x + t6(c0 + c1t).
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over the rational moduli space with parameters r, s.

4.2 � Map to A2 and equation of L̃3

To compute the map to A2, we go to an elliptic fibration with E8 and E7 fibers via a 
2-neighbor step (see [7, 18]).

In terms of Dynkin diagrams of rational curves on the K3 surface, the picture is as 
follows:

The dark vertices form a sub-diagram cutting out an E7 fiber. The corresponding ellip-
tic parameter (unique up to fractional linear transformations) is w = (x + rt3)/t4. Sub-
stituting x = wt4 − rt3 in to the Weierstrass equation, and dividing the right hand side 
by t8, we obtain a quartic in t, giving rise to a genus 1 curve over P1

w. In fact, the genus 1 
fibration has a section (it is evident from the diagram above), so we may convert to the 
Jacobian using classical formulas (see [1], for instance). After some scaling and normali-
zation, we arrive at a Weierstrass equation in standard form, with the following equation

From this we may read out the Igusa–Clebsch invariants.

A similar analysis as for discriminant 4 computed the double cover of the Humbert sur-
face giving the Hilbert modular surface.

Theorem 11  A birational model for the surface L̃3 (equivalently, for Y−(9)) is given by

It is a rational surface. The Humbert surface is birational to the (r, s)-plane. In these coor-
dinates, the Igusa–Clebsch invariants of a point on the moduli space are given by the for-
mulas in (3) above.

y2 = x3 +
(
(s − 1)2

4
t2 + st + 1

)

x2 + t3r
(

(s + 1)t + 2
)

x + r2t6(t + 1)

Y
2 = X

3 +
(

− 27(s4 − 4s
3 + 6s

2 − 48rs − 4s + 192r + 1)T 4 − 5184T
3

)

X

+ 15552(s2 + 4s − 2)T 5 + 54(s6 − 6s
5 + 15s

4 − 72rs
3 − 20s

3 − 432rs
2

+ 15s
2 + 1080rs − 6s + 864r

2 − 576r + 1)T 6 + 46656r
3
T

7
.

(3)

I2 = 8(s2 + 4s − 2),

I4 = 4(s4 − 4s3 + 6s2 − 48rs − 4s + 192r + 1),

I6 = 8(s6 + 2s5 − 21s4 − 40rs3 + 44s3 + 144rs2 − 41s2 + 792rs

+ 18s − 288r2 − 320r − 3),

I10 = 214r3.

z
2 = 11664r

2 − 8(54s3 + 27s
2 − 72s + 23)r + (s − 1)4(2s − 1)2.
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The equation above describes a conic bundle over P1
s. Setting r = 0 makes the right 

side a square, so the conic bundle has a section. To parametrize the surface, we set 
z = 4mr + (s − 1)2(2s − 1) and solve for r, obtaining

4.3 � Tautological curve

A tautological curve over the Hilbert modular surface (which is rational in the param-
eters m, s above) is given by

Remark 12  This presentation of the curve has the feature that the eigen-differentials 
for the action of real multiplication by O9 (alternatively, the pullbacks of the canonical 
differentials from the two elliptic curves) are dx / y and x dx/y. We say that the Weier-
strass equation is normalized.3 The Weierstrass equations given in this paper and in the 
auxiliary files for tautological families of genus 2 curves (for each of the discriminants) 
will always be normalized. To check this property of being normalized amounts to a cal-
culation using the “eigenform location” algorithm of [19] In this paper, we omit the 
details.

4.4 � Elliptic curves

Next, we compute the j-invariants associated of the two associated elliptic curves.

4.4.1 � Calculation of j‑invariants

To calculate the j-invariants in this and other sections, we used the following compu-
tational technique. For many specializations (r, s) ∈ Q2, we compute the genus 2 curve 
from its Igusa–Clebsch invariants. We then decompose its Jacobian and find out its 
simple factors, using analytic techniques (using the function AnalyticJacobian in 
Magma; see [33]). More precisely, let A be the analytic Jacobian. If the coordinates r, s are 
chosen generically, its endomorphism ring will be O9, the quadratic ring of discriminant 
9. We solve the equation η2 = 3η in End(A). Then we can recover the period matrices 
of E1 = A/ηA and E2 = A/(η − 3)A, and from there compute the two j-invariants. In 
general, these are quadratic over the base field, but their sum and product are rational. 
We use rational reconstruction to recover these numbers (j1 + j2)(r, s) and (j1j2)(r, s) 
from floating-point approximations. Finally, we apply the above procedure to enough 

r = −
(s − 1)2(2s − 1)m+ (54s3 + 27s2 − 72s + 23)

2(m− 27)(m+ 27)
,

z = −
(s − 1)2(2s − 1)(m2 + 729)+ 2(54s3 + 27s2 − 72s + 23)m

(m− 27)(m+ 27)
.

y2 =
(

x3 + 3(3s − 1)x2 −
2(m− 27)(9s − 5)2

(m+ 27)

)

×
(

x3 −
3(m− 27)(9s − 5)2

4(m+ 27)
x +

(m− 27)(9s − 5)3

4(m+ 27)

)

.

3  There is still an extra degree of freedom from scaling the x-coordinate, and we make an arbitrary choice, designed to 
make the equation look “nice”.
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specializations to enable us to recover j1 + j2 and j1j2 as rational functions, by interpola-
tion/linear algebra (using some upper bounds on the degree as in [32]) .

We obtain the following expressions:

The discriminant of T 2 − T (j1 + j2)+ j1j2 is, up to squares, the branch locus of the dou-
ble cover defining the Hilbert modular surface. Solving in terms of m and s, we have (up 
to interchange)

The above process may seem non-rigorous, but in fact can be made completely rigorous, 
for instance, by demonstrating the real multiplication by O9 through an explicit corre-
spondence (as described in [32] or in more detail in the forthcoming note [20]). For rea-
sons of space, we do not describe this method explicitly here.

4.4.2 � Calculation of the morphism

However, we will describe another method, suggested to us by Noam Elkies, which 
makes use of the fact that the differentials on the genus 2 curve are normalized (i.e. are 
eigenforms for real multiplication).

We start with the (arbitrarily chosen) point s = 5,m = 13 on L̃3. Rescaling the x-coor-
dinate so the Weierstrass equation has integer coefficients, the genus 2 curve is given by

For convenience, let us instead start from the curve C

(obtained by the change of variables x → 1/x, y → y/x3) which has the 
rational point (0,  1). The form x dx/y is a normalized differential on C (since 
dx/y �→ (−1/x2) dx/(y/x3) = −x dx/y under the above transformation). Assume that 
the associated elliptic curve E is given by

where F, G and H are (for the moment) undetermined parameters. Also, let us assume 
without loss of generality that the morphism φ : C → E which we want to determine 
takes (0, 1) ∈ C to (0, 1) ∈ E. Note that the above model for E can easily be converted to 
standard Weierstrass form.

j1 + j2 = (2s9 − 17s8 + 64s7 − 324rs6 − 140s6 + 1350rs5 + 196s5 − 2097rs4

− 182s4 + 17496r2s3 + 1368rs3 + 112s3 − 23328r2s2 − 162rs2 − 44s2

+ 9720r2s − 198rs + 10s − 314928r3 − 432r2 + 63r − 1)/r2,

j1j2 = (s4 − 4s3 + 6s2 + 432rs − 4s − 288r + 1)3/r3.

j1 =
4(m+ 27)(ms2 + 27s2 − 2ms + 18s +m− 21)3

(m− 27)(2ms3 + 54s3 − 5ms2 + 27s2 + 4ms − 72s −m+ 23)
,

j2 =
−2(m− 27)(ms2 − 459s2 − 2ms + 486s +m− 123)3

(m+ 27)(2ms3 + 54s3 − 5ms2 + 27s2 + 4ms − 72s −m+ 23)2
.

y2 = (x3 + 420x − 5600)(x3 + 42x2 + 1120).

y2 = (−5600x3 + 420x2 + 1)(1120x3 + 42x + 1)

y21 = Fx31 + Gx21 +Hx1 + 1
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Our normalization assumption says that φ∗ maps the canonical differential 
dz1 = dx1/y1 on E to dz = x dx/y on C. Expanding in the formal ring about (0,  1) on 
these curves, we compute as follows:

Therefore

On the other hand, we have

so

Now, since dz = φ∗(dz1), we have the equation z = φ∗(z1), which we can write using the 
above expressions as

where xE = φ∗(x1). We can invert the formal series on the right to write

Now, we know that xE = φ∗(x1) must be a rational function of degree 3 in x (for a degree 
n map C → E, it will have degree n). Since its formal expansion starts x2/2+ · · ·, it must 
equal

for some constants k, m, n, p which are also undetermined.
We expand the above rational expression in a power series about x = 0 and match 

with the previous formal expression for xE. The first few coefficients give us linear equa-
tions which can be solved for m, n, p and k in that order, and then we can solve the next 
few polynomial equations for F, G, H. Renormalizing the equations of C and E, we find 
that the elliptic curve E is given by the Weierstrass equation

and the morphism C → E by

x dx

y
=

x dx
(
(−5600x3 + 420x2 + 1)(1120x3 + 42x + 1)

)1/2
= (x − 21x

2 + 903x
3/2+ · · · ) dx.

z =
∫

x dx/y = x
2/2− 7x

3 + · · · .

dx1

y1
=

dx1

(Fx31 + Gx21 +Hx1 + 1)1/2
=

(

1−
H

2
x1 +

(
−G

2
+

3H2

8

)

x21 + · · ·
)

dx1,

z1 =
∫

dx1/y1 = x1 − (H/4)x21 + · · · .

x2/2− 7x3 + · · · = φ∗(x1 − (H/4)x21 + · · ·
)
= xE − (H/4)x2E + · · · ,

xE = x2/2− 7x3 + (H/16+ 903/8)x4 + · · · .

x2(1+ kx)

2(1+mx + nx2 + px3)

y
2

1 = x
3

1 + 4900x
2

1 + 7031500x1 + 2401000000,

x1 = −
882,000(x − 14)

x3 + 420x − 5600
, y1 =

49,000y(x3 − 21x2 − 140)

(x3 + 420x − 5600)2
.
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(Note that the j-invariant of E is −25 · 7 · 173, which matches the expression given for j1 
at s = 5,m = 13.)

4.4.3 � Further remarks

The above calculation produced the morphism C → E1 to one of the associated elliptic 
curves, for a single point on the moduli space. To produce it over the whole base, one 
may work with the tautological genus 2 curve, and with coefficients in the function field 
of L̃3. Alternatively, we may sample many such points and interpolate to find the coef-
ficients of the rational map defining the morphism, and also the Weierstrass coefficients 
of the elliptic curve. Once the map is produced, it is trivial to verify it (by substituting 
in to the equation of the elliptic curve). To find the other map C → E2, we may use the 
other normalized differential on the genus 2 curve and apply the above process to it. 
More simply, we may rewrite the equation of E1 and the map C → E1 in terms of the 
coordinates r, s on the Humbert surface and the square root z defining the double cover, 
and conjugate z to −z everywhere.

We omit the details of these calculations for the higher discriminants treated in this 
paper, as the expressions become much more complicated with increasing discriminant. 
We may, in fact, use the knowledge of the j-invariants obtained by the first (sampling 
and interpolation) method to reduce our work in this process, since they give us an extra 
equation satisfied by the Weierstrass coefficients F, G, H.

Finally, the above process hinges on finding normalized Weierstrass forms for the 
genus 2 curves in the first place. For a single point (r0, s0, z0) on the moduli space (with 
r0, s0 ∈ Q say), i.e. for a single genus 2 curve, we do this by applying the eigenform loca-
tion algorithm of [20], which indicates the fractional linear transformation needed to 
transform the curve to normalized form. At that point, the Weierstrass coefficients are 
floating point numbers, but we may apply a version of rational reconstruction to recog-
nize them as elements of Q(z0). Finally, with enough sampling, we may interpolate to 
write a normalized tautological curve over the moduli space.

4.5 � Comparison with previous results

Comparing our absolute invariants I4/I22 , I2I4/I6, I4I6/I10 to those of Shaska, we obtain 
the relation between the coordinates here and those in [26]. It is given by

with inverse

Using this change of coordinates, we see that the double cover is the same as the (u, v) 
double cover in [26].4

Let us check the compatibility of the j-invariants we found above with the values in 
[26]. In the setup of that paper, the genus 2 curve is given by

r = 4096r32/r
4
1 , s = −48r2/r1,

r1 = −s
3/(27r), r2 = s

4/(1296r).

4  There is a typo in equation (14) of [26]: the numbers 27 and 1296 should be in the denominator rather than the numer-
ator.

y2 = (x3 + ax2 + bx + 1)(4x3 + b2x2 + 2bx + 1),
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where a, b are related to the parameters u, v on the Hilbert modular surface by

Note that the parameters r1, r2 on the Humbert surface are

Define5 R = 4a3 + 27− 18ab− a2b2 + 4b3 , F(x) = x3 + ax2 + bx + 1, and consider 
the rational functions v = y(x3 − bx − 2)/F(x)2 and u = x2/(x3 + ax2 + bx + 1). Then 
C maps to the genus 1 curve

Computing the j-invariant of this elliptic curve, and using the transformation formulas

we see that it agrees with j2.

4.6 � Special loci

We now list several curves of interest on the Hilbert modular surface.

1.	 The rational curves r = 0, z = ±(s − 1)2(2s − 1) correspond to I10 = 0.
2.	 The curve r = (s − 1)2/4 on the Humbert surface lifts to a rational curve, whose 

points correspond to Jacobians with endomorphisms by a split quaternion algebra. 
The associated elliptic curves are related by a 5-isogeny.

3.	 The curves s = 5/9, z = 4(19683r − 4)/729 are non-modular, but correspond to the 
“degenerate” case considered by Shaska in [26, equation(12)].

4.	 The modular genus 0 curve 

 is part of the branch locus. It is parametrized by (r, s) =
(
(t + 1)2(t + 4)4/(729t6),

(11t2 + 24t + 16)/(6t2)
)
 and corresponds to the two elliptic curves being isomorphic.

5.	 The curves s = 1, s = 1/3 lift to non-modular rational curves on Y−(9).

5 � Discriminant 16
5.1 � Parametrization

We start with a family of elliptic K3 surfaces with bad fibers of types E7 and D8, and a 
section of height 2 = 4 − 2. A Weierstrass equation for such a K3 surface has the form

u = ab, v = b3.

r1 =
v(v − 2u− 9)3

27(4v2 − u2v − 18uv + 27v + 4u3)
,

r2 = −
v(v − 2u− 9)4

1296(v − 27)(4v2 − u2v − 18uv + 27v + 4u3)
.

5  There is a typo on pg. 266 of [26]: in equation (6), the first factor in � should be the quantity R as we have defined it, 
rather than its square.

v2 = u3 +
2(ab2 − 6a2 + 9b)

R
u2 +

12a− b2

R
u−

4

R
.

u = (ms + 27s −m+ 9)/4, v = −(m− 27)/2,

4s
6 − 20s

5 + 41s
4 − 432rs

3 − 44s
3 − 216rs

2 + 26s
2 + 576rs

− 8s + 11664r
2 − 184r + 1 = 0

y2 = x2 + ta(t)x2 + t4b(t)x + t7c
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with a, b linear in t and c constant. Since a(0) �= 0 to have a fiber of type no worse than 
D8 at 0, we may write

We have a degree of freedom (scaling t), so we scale to have a1 = 1. To have the leaves 
of the D8 fiber defined over the ground field, we set b0 = h+ k and c0 = hk. Next, we 
impose a section of height 2: its x-coordinate must have the form t3(−h+ g2t) for some 
g, h. Substituting in to the Weierstrass equation and completing the square, we get a sys-
tem of equations, which can be solve for b1 and k. We finally use the remaining degree of 
freedom (Weierstrass scaling of x and y) to set g = 1, since the variable g has weight 1. 
Thus, we get a rational moduli space in the parameters a0 and h. The Weierstrass equa-
tion suggests the convenient change of variables h = 2s, a0 = 2r + h2/4.

The final Weierstrass equation is

Note that the section has x-coordinate −2st3 + t4.

5.2 � Map to A2 and equation of L̃4

We go to an E8E7 fibration by a 2-neighbor step, as illustrated below.

An elliptic parameter is w =
(
x + r2t3/(s2 + 2r)

)
/t4. As in the previous section, we 

transform to the new elliptic fibration, which has the desired E8 and E7 fibers, and pro-
ceed to read out the Igusa–Clebsch invariants. They are given as follows:

We then compute the double cover defining the Hilbert modular surface.

Theorem 13  A birational model for the surface L̃4 (equivalently, for Y−(16)) is given by

a = a0(1+ a1t), b = a0(b0 + b1t), c = c0a0.

y2 = x3 + (s2 + 2r)t(t + 1)x2 − t4
(
(s2 − 2rs + 2r)t − (2s3 + 4rs + r2)

)
x + 2r2st7.

(4)

I2 = 2(3s6 − 12rs5 + 13r2s4 + 18rs4 − 2r3s3 − 48r2s3 + 28r3s2

+ 36r2s2 + 2r4s − 48r3s + 4r4 + 24r3)/
(
r2(s2 − 2rs + 2r)

)
,

I4 = (s4 + 24s3 + 4rs2 + 48rs + r2)/4,

I6 = (8s10 − 32rs9 + 192s9 + 34r2s8 − 688rs8 − 4r3s7 + 624r2s7 + 1536rs7

− 16r3s6 − 4294r2s6 − 8r4s5 + 3000r3s5 + 4608r2s5 − 109r4s4

− 8612r3s4 + 26r5s3 + 3488r4s3 + 6144r3s3 + 124r5s2 − 5576r4s2

+ 4r6s + 480r5s + 3072r4s + 12r6 + 208r5)/
(
16r2(s2 − 2rs + 2r)

)
,

I10 = r2(s2 + 2r)(s2 − 2rs + 2r)/256.

z2 = 2s(s2 − 2rs + 2r)

× (2s5 − 4rs4 − 27s4 + 76rs3 − 32r2s2 − 108rs2 + 144r2s − 64r3 − 108r2).
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It is a rational surface. The Humbert surface is birational to the (r, s)-plane. In these coor-
dinates, the Igusa–Clebsch invariants of a point on the moduli space are given by the for-
mulas in (4) above.

The right hand side is quartic in r, and we easily calculate that the surface is a rational 
elliptic surface with section. To find a rational parametrization, we make some elemen-
tary transformations to reduce the degree of the equation in r and s. The net effect of 
these is to set

The double cover is transformed to

which is a conic bundle over the e-line with an obvious section (f ,w) = (0, 2). Para-
metrizing with a new parameter d, we obtain finally

where we have omitted z for simplicity.

5.3 � Tautological curve

Once again, it is possible to write down the tautological family of genus 2 curves over the 
Hilbert modular surface. However, the expression is quite long, and so we will omit it 
in the main body of the paper. However, it can be obtained from the auxiliary computer 
files. Similarly, for the higher discriminants treated in this paper, we will omit the expres-
sion for the tautological family of genus 2 curves (these are also in the computer files).

5.4 � Elliptic curves

As before, it is possible to compute the equations of the two elliptic curves attached to 
the (4,  4)-decomposable Jacobian, and the morphisms from the tautological genus 2 
curve to the elliptic curves. We omit this calculation, and simply display the elementary 
symmetric functions in the j-invariants of the two elliptic curves.

Over the Hilbert modular surface, which is rational in parameters d, e, we can solve the 
quadratic equation to get the two j-invariants.

r =
−1

e(e + 2)2f (2ef − 1)
, s =

1

e(e + 2)f
, z =

w

e3(e + 2)5f 4(2ef − 1)2

w2 = (108e3 + 160e2 − 144e)f 2 + (−54e2 − 88e + 8)f + 4,

r = −(108e3 + 160e
2 − 144e − d

2)2

/
(
2e(e + 2)2(16e2 + 8de + 128e + d

2)(27e2 + 44e + 2d − 4)
)
,

s = (108e3 + 160e
2 − 144e − d

2)/
(
2e(e + 2)(27e2 + 44e + 2d − 4)

)
.

j1 + j2 = 128(4s11 − 8rs10 − 63s10 + 200rs9 + 184s9 − 128r2s8 − 1144rs8

+ 1792r2s7 + 1392rs7 − 768r3s6 − 5372r2s6 + 5888r3s5

+ 3936r2s5 − 2048r4s4 − 9840r3s4 + 7168r4s3 + 4928r3s3

− 2048r5s2 − 6464r4s2 + 2048r5s + 2304r4s − 256r5)/(s2 + 2r)4,

j1j2 = 4096(s4 + 24s3 − 56rs2 + 48rs + 16r2)3/(s2 + 2r)4.
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5.5 � Comparison with previous work

We compare our formulas with those of Bolza [15, pp. 477,480], since those of Bruin and 
Doerksen are equivalent [2, Appendix A]. Bolza gives a family of genus 2 curves with 
(4, 4)-reducible Jacobians over a weighted projective space with �,µ, ν of weights 1, 2, 3 
respectively. By comparing the Igusa–Clebsch invariants, we obtain the following rela-
tion between those coordinates and ours:

with inverse

5.6 � Special loci

1.	 The curves r = 0, z = 4s2 − 54s and r = s2/(2s − 2), z = 0 belong to the product 
locus. The latter is also part of the branch locus for the double cover L̃4 → L4.

2.	 The curve 2s3 + 4rs − r2 = 0 on L has genus 0, and is parametrized by 
(r, s) =

(
t2(t − 4)/2, t(t − 4)/2

)
. Its lift is also a rational curve, parametrized by let-

ting t = −(v2 + 171)/
(
4(v − 5)

)
. It is a modular curve, corresponding to the elliptic 

curves being 7-isogenous.
3.	 The curve s = 0 is part of the branch locus.
4.	 The curve s5 − rs4 − s4 + 2rs3 − 4rs2 − 4r2 = 0 on the Humbert surface has 

genus 0, and is parametrized by (r, s) =
(

(t2 + 2t − 2)2/
(
t
4(t − 1)

)
, (t2 + 2t − 2)/

(
t(t − 1)

))

. Its lift is also rational, parametrized by letting t = u(1− 2u)/(u2 + 2). 
This modular curve corresponds to the elliptic curves being 3-isogenous.

5.	 The curve 2s5 − 4rs
4 − 27s

4 + 76rs
3 − 32r

2
s
2 − 108rs

2 + 144r
2
s − 64r

3 − 108r
2 = 0 is 

part of the branch locus. It has genus 0, and is parametrized by 

6.	 There are also several simple non-modular curves: for instance, the specializations 
s = 9 and s = 63/8 gives genus 0 curves with rational points.

6 � Discriminant 25
6.1 � Parametrization

Next, we go on to discriminant 25, which was studied in [23]. We start with a fam-
ily of elliptic K3 surfaces with bad fibers of type D9 and A6, and a section of height 
25/28 = 4 − 9/4 − 6/7. A Weierstrass equation for such a K3 surface has the form

j1 = 16(1080e3 + 108de2 − 976e2 − 32de − 96e − d2)3

/
(
e2(16e2 + 8de + 128e + d2)(27e2 + 44e + 2d − 4)3

)
,

j2 = 16(24e3 − 12de2 − 16e2 − 16de − 96e − d2)3

/
(
e2(e + 2)4(16e2 + 8de + 128e + d2)(27e2 + 44e + 2d − 4)

)
.

µ

�2
=

(4e + d + 16)(12e + 3d − 16)

3(16e2 + 8de + 128e + d2)
,

ν

�3
=

(4e + d + 16)2

(16e2 + 8de + 128e + d2)
.

d =
8(7ν2 + 18�µν − 16�3ν − 9�2µ2)

9(ν − �µ)2
, e =

−2(ν2 + 6�µν − 16�3ν + 9�2µ2)

9(ν − �µ)2
.

(r, s) =
(
27(t − 1)(3t2 + 10t − 1)2

8(3t − 1)4
,
9(t + 1)(3t2 + 10t − 1)

(3t − 1)2

)

.
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This has a D9 fiber at t = ∞ and an A1 fiber at t = 0. We have shifted x so that the gener-
ator of the Mordell–Weil group has x-coordinate 0. We need five more orders of vanish-
ing for the discriminant at t = 0. Since the components of the A6 fiber are defined over 
the ground field, a0 is a square; we may normalize it to be 1. This takes care of the scaling 
in x. We then proceed to successively set the coefficients of t2 through t5 in the expres-
sion for the discriminant to be zero, which gives us the conditions

To simplify the succeeding expressions, we define a new variable k by b1 = k + a1b0/2. 
The condition for the final order of vanishing gives us a quadratic equation in a2, whose 
discriminant is a square times 4k2 − 5b40 + 2a1b

3
0. Therefore, setting

makes the expression a square, and we solve for a2, obtaining

We also scale b0 = 1 to quotient by the scaling in t, and let

to simplify the expressions; this change of variable is suggested by the final formulas 
below. We obtain the final Weierstrass equation

As noted above, the section of height 25 / 28 has x-coordinate 0.

6.2 � Map to A2 and equation of L̃5

We then proceed to an elliptic fibration with E8 and A7 fibers, via a 2-neighbor step. The 
elliptic parameter is simply x.

y2 = x3 + (a0 + a1t + a2t
2 + a3t

3)x2 + 2t(b0 + b1t + b2t
2)x + (c0 + c1t)

2t2.

c0 = b0,

c1 = (2b1 + b20 − a1b0)/2,

b2 = −
(
(8b0 − 4a1)b1 + 8b30 − 10a1b

2
0 + (3a21 − 4a2)b0

)
/8,

a3 = (2b1 + 3b20 − 2a1b0)(4b1 + 10b20 − 8a1b0 − 4a2 + a21)/(8b0).

a1 = (h2 − 4k2 + 5b40)/(2b
3
0)

a2 = (16k4 − 32b20k
3 − 8h2k2 + 16b20hk

2 − 24b40k
2 + 8b20h

2k

+ 16b40hk + 8b60k + h4 − 4b20h
3 − 2b40h

2 + 4b60h+ 5b80)/(16b
6
0).

h = s − r, k = (r + s − 1)/2

y2 = x3 +
(
r2(2r − 1)s2t3 + (4r2s2 − 4rs2 + s2 − 12r2s + 10rs + r2)t2/4

− (2rs − s − r − 2)t + 1
)
x2 − t

(
(2rs2 − s2 + 6r2s − 6rs − r2)t2/2

+ (2rs − 2s − 2r − 1)t − 2
)
x + t2(st + rt + 2)2/4.
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After some easy Weierstrass transformations and a fractional linear transformation of 
the elliptic parameter, the Weierstrass equation for the new fibration is

There is a section P of height 25/8 = 4 − 7/8. Finally, we take a 2-neighbor step to an 
elliptic fibration with E8 and E7 fibers.

The elliptic parameter is x/t4. If F is the class of the E7 fiber, then P · F = 3, while 
F · C = 2, where C is the remaining component of the A7 fiber not includes in F. Since 
these numbers are coprime, the genus 1 fibration defined by F has a section. We there-
fore convert to the Jacobian, and read out the Igusa–Clebsch invariants, which are as 
follows.

Computing the double cover, we obtain the following description of the moduli space.

y2 = x3 +
(
12r3st3 + (4r2s2 − 4rs2 + s2 + 12r2s − 14rs + r2)t2

− 4(2rs + s + r − 1)t + 4
)
x2/16

+ t4
(
6r6s2t2 + r3s(4r2s2 − 4rs2 + s2 + 12r2s − 14rs + r2)t

− 2rs(4r2s2 − 4rs2 + s2 + 2r3s + r2s + r3 − r2)
)
x/32

+ t8
(
4r9s3t + r6s2(4r2s2 − 4rs2 + s2 + 12r2s − 14rs + r2)

)
/256.

(5)

I2 = 2(4r2s2 + 20rs
2 + s

2 − 12r
2
s + 22rs − 6s + r

2 − 6r + 3),

I4 = (16r4s4 − 32r
3
s
4 + 24r

2
s
4 − 8rs

4 + s
4 + 96r

4
s
3 − 976r

3
s
3 + 904r

2
s
3

− 220rs
3 + 56r

4
s
2 − 392r

3
s
2 + 198r

2
s
2 − 24r

4
s + 20r

3
s + r

4)/4,

I6 = (64r6s6 + 320r
5
s
6 − 784r

4
s
6 + 608r

3
s
6 − 196r

2
s
6 + 20rs

6 + s
6 + 64r

6
s
5

− 4128r
5
s
5 − 17120r

4
s
5 + 18544r

3
s
5 − 3692r

2
s
5 − 378rs

5 − 8s
5

− 1616r
6
s
4 + 10304r

5
s
4 − 35208r

4
s
4 + 30368r

3
s
4 − 10769r

2
s
4

+ 1720rs
4 + 4s

4 − 896r
6
s
3 + 6192r

5
s
3 − 7152r

4
s
3 − 1732r

3
s
3

+ 3792r
2
s
3 − 880rs

3 + 364r
6
s
2 − 2228r

5
s
2 + 4543r

4
s
2 − 3312r

3
s
2

+ 792r
2
s
2 − 36r

6
s + 238r

5
s − 264r

4
s + 80r

3
s + r

6 − 8r
5 + 4r

4)/8,

I10 = −16r
7(2r − 1)2s5.
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Theorem 14  A birational model for the surface L̃5 (equivalently, for Y−(25)) is given by

It is a rational surface. The Humbert surface is birational to the (r, s)-plane. In these coor-
dinates, the Igusa–Clebsch invariants of a point on the moduli space are given by the for-
mulas in (5) above.

Once again, this is a conic bundle with a section. Setting z = rm+ s(2s − 1) and solv-
ing for r, we obtain

6.3 � Comparison with previous work

Let us compare our results with those of [23]. There it is asserted that the moduli space 
L5 of genus 2 curves with a degree 5 elliptic subfield (which is birational to the Humbert 
surface H25), is birational to the hypersurface cut out by the following equation in A3

u,v,w:

In fact, this is a rational surface: the discriminant with respect to w is

and the invertible change of variables

converts it to (h2v1 + 24h2 − 8h− 16)/v1, up to squares. Setting this quantity equal to g2 
and solving for v1, we obtain the full parametrization

Remark 15  Unfortunately, there is a mistake6 in the paper [23]: the moduli space 
described there, claimed to be birational to L5 in Theorem 3 of their paper, is actually 
birational to the Hilbert modular surface (i.e. to L̃5), and the Humbert surface is a quo-
tient of it by an involution which we give explicitly in the auxiliary files (we check 
directly that the absolute Igusa–Clebsch invariants are not changed by applying this 
involution).

z2 = (4s2 + 22s − 1)2r2 − 2s(8s3 − 88s2 + 72s − 17)r + s2(2s − 1)2.

r = −
2s(2sm−m+ 8s3 − 88s2 + 72s − 17)

(m− 4s2 − 22s + 1)(m+ 4s2 + 22s − 1)
.

0 = 64v2(u− 4v + 1)2w2 + 4v(128v4 − 16u2v3 + 288uv3

− 2592v3 − 24u3v2 + 96u2v2 + 272uv2 + 4672v2

+ 15u4v − 92u3v + 20u2v − 576uv − 2u5 + 12u4 − 4u3)w

+ (u2 + 4vu+ 4v2 − 48v)3.

−(v + 2u− 16)(16v2 − u2v + 36uv + 108v − 2u3)

u = (v1 + 25)h− 18, v = −2(v1 + 25)h+ (v1 + 52)

u = (h3 − 10h2 − 25g2h+ 16h+ 18g2)/(h2 − g2),

v = −2(h3 − 6h2 − 25g2h+ 12h+ 26g2 − 8)/(h2 − g2),

w =
(h− 5g + 4)(h+ 5g + 4)2(3h2 − 15gh− 10h+ 14g + 8)3

16(h− 1)(h− g)2(3h− 15g − 8)2(h3 − 6h2 − 25g2h+ 12h+ 26g2 − 8)
.

6  We take this opportunity to point out another typo: the last term for a0 in equation (10) should be 12za rather than 
12ya.
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By comparing the Igusa–Clebsch invariants, we obtain the relation between these 
coordinates and ours:

with inverse

6.4 � Elliptic curves

The j-invariants of the associated elliptic curves are given by

Let us check that the j-invariant agrees with that implicit in [23]. It follows from the 
description there that C maps to the elliptic curve

where � = ζF1(ζ )
2/F2(ζ )

2 where F1 and F2 are the polynomials

ζ is a root of

s = (h+ g)(3h− 15g − 8)/
(
4(h2 − 3gh− 10g2 − 2g + 4)

)
,

m = (73h5 − 571gh4 − 208h4 + 310g2h3 + 644gh3 + 312h3 + 3350g3h2

+ 2220g2h2 − 856gh2 − 768h2 + 625g4h

− 1700g3h− 2120g2h+ 64gh+ 192h+ 3125g5

+ 2500g4 − 5400g3 − 4160g2 + 1344g + 1024)

/
(
4(h− g)(h2 − 3gh− 10g2 − 2g + 4)2

)

g =
sm2 + 8s3m− 68s2m+ 2sm+ 8m+ 16s5 − 272s4 + 1228s3 − 212s2 − 127s − 8

(m+ 4s2 − 28s − 1)(2sm−m+ 8s3 − 88s2 + 72s − 17)
,

h =
sm2 + 8s3m− 124s2m+ 74sm− 8m+ 16s5 − 496s4 + 3484s3 − 3036s2 + 649s + 8

(m+ 4s2 − 28s − 1)(2sm−m+ 8s3 − 88s2 + 72s − 17)
.

j1 = −(m4 + 16s
2
m

3 − 8sm
3 + 20m

3 + 96s
4
m

2 − 8288s
3
m

2 + 10632s
2
m

2

− 5304sm
2 + 1014m

2 + 256s
6
m− 65920s

5
m+ 116864s

4
m− 104416s

3
m

+ 49824s
2
m− 24792sm+ 5684m+ 256s

8 − 131584s
7 + 4492928s

6

− 5084160s
5 + 1924400s

4 − 243456s
3 − 87256s

2 + 14552s + 4945)3

/
(
4(m+ 4s

2 + 22s − 1)5(2sm−m+ 8s
3 − 88s

2 + 72s − 17)3

(m2 + 8s
2
m− 4sm+ 16s

4 − 528s
3 − 188s

2 − 24s − 1)
)
,

j2 = −(m4 + 16s
2
m

3 − 88sm
3 + 20m

3 + 96s
4
m

2 − 1568s
3
m

2 + 2632s
2
m

2

− 1064sm
2 + 54m

2 + 256s
6
m− 8320s

5
m+ 57984s

4
m− 33696s

3
m

+ 6944s
2
m+ 6328sm− 1996m+ 256s

8 − 13824s
7 + 207488s

6 − 916480s
5

+ 510000s
4 − 115456s

3 − 53016s
2 + 19592s + 2065)3

/
(
8(m− 4s

2 − 22s + 1)5(2sm−m+ 8s
3 − 88s

2 + 72s − 17)2

(m2 + 8s
2
m− 4sm+ 16s

4 − 528s
3 − 188s

2 − 24s − 1)
)
.

y2 = x(x − 1)(x − �)

F1(T ) = T 2 + (2a+ 2b+ a2)T + 2ab+ b2

F2(T ) = (2a+ 1)T 2 + (a2 + 2ab+ 2b)T + b2,

(2a+ 1)ζ 2 + (2b− 2ab− 2a− a2)ζ + b2 + 2ab = 0
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and u, v are related to the parameters a, b by

After some computation, the value of the j-invariant is found to agree with j1.

6.5 � Special loci

We again list several interesting curves on the surface.

1.	 The curves r = 0, z = ±s(2s − 1), s = 0, z = ±r are rational curves corresponding to 
I10 = 0, as is the lift of r = 1/2.

2.	 The curve 4r2s2 − 4rs2 + s2 + 6r2s − 2rs − 2r3 + r2 = 0 on the Humbert surface, 
parametrized by (r, s) =

(
(t2 − 2t + 4)/8, (t − 2)(t2 − 2t + 4)/(4t2)

)
, lifts to an 

elliptic curve on Y−(25). It parametrizes the locus for which the two associated ellip-
tic curves are related by a 14-isogeny. Abstractly, this elliptic curve is isomorphic to 
y2 + xy+ y = x3 + 4x − 6 of conductor 14, which has rank 0.

3.	 The curve (2r − 1)2s + r = 0 lifts to an elliptic curve on Y−(25), isomorphic to the 
elliptic curve y2 + y = x3 − x2 − 10x − 20 of conductor 11 and rank 0. It para-
metrizes the locus of reducible Jacobians for which the two associated elliptic curves 
have an 11-isogeny.

4.	 The curve 

 of genus 0 is part of the branch locus, and is parametrized by 

 It corresponds to the two elliptic curves being isomorphic.
5.	 The curve parametrized by 

 corresponds to the degenerate Case I of [23].
6.	 The curve parametrized by 

 corresponds to the degenerate Case II of [23].
7.	 The curve parametrized by 

 corresponds to the degenerate case III of [23].

u =
2a(ab+ b2 + b+ a+ 1)

b(a+ b+ 1)
, v =

a3

b(a+ b+ 1)
.

4(2r − 1)2s4 + 4(44r2 + 44r − 1)s3 + (476r2 − 144r + 1)s2

+ (−44r
2 + 34r)s + r

2 = 0

(r, s) =
(
(t + 1)2(2t2 + 4t + 1)/(2(t2 + t − 1)2),−(2t2 + 4t + 1)/(2t2)

)
.

r =
1

50t
, s =

(9t − 1)(25t − 1)

16(25t2 + 6t + 1)
, m =

25(37375t4 + 7044t
3 + 762t

2 − 124t − 1)

64(25t2 + 6t + 1)2

r =
−3(25t − 1)

2(25t − 16)
, s =

1− t

2
, m =

15625t3 + 3750t2 − 7800t + 89

(t − 1)(25t − 16)2

r =
1

2(t − 7)
, s =

3

8
, m = −

125

16
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7 � Discriminant 36
7.1 � Parametrization

Next, we describe the moduli space for degree 6 covers. The corresponding Humbert 
surface is birational to the moduli space of elliptic K3 surfaces with E8, A5 and A2 fibers, 
with a section of height 2 = 4 − 2/3− 2 · 4/6. We briefly describe how to parametrize 
this moduli space and the family of K3 surfaces over it.

Start with an elliptic surface

where a, b, c are polynomials of degrees 2, 1, 1 respectively. This surface already has an 
E8 fiber at ∞, an A3 fiber at 0 and an A1 fiber at t = 1. Since the components of the even-
tual A5 fiber at t = 0 are rational, the constant term of a is a square, and we may scale x 
and y so that a(0) = 1. Similarly, a(1) is rational. So we may write

Imposing two more orders of vanishing at t = 0, we may solve linear equations for c0 and 
c1. We need one more order of vanishing of the discriminant at t = 1. This gives a quad-
ratic equation in b1 whose discriminant is −a1 times a square. We set a1 = −f 2 and solve 
for b1. Finally, we need a section with the requisite height. It must have x-coordinate 
t2(t − 1) times a linear factor, which we may normalize as x0 + 2b0 + g2t. Substituting 
in to the Weierstrass cubic polynomial and completing the square, we can compute the 
y-coordinate. This leads to three equations involving the remaining variables. We elimi-
nate x0 and b0 to get a single equation connecting the remaining variables e,  f, g. This 
equation is cubic in f, but substituting e = e′ − f  and g = g ′f  makes it quadratic. Setting 
the discriminant equal to a square, after some easy algebra we end up with a parametri-
zation by two variables r and s. The universal Weierstrass equation is

Here we have introduced appropriate scalings of x, y, t to eliminate denominators. The 
x-coordinate of the section of height 2 is given by

7.2 � Map to A2 and equation of L̃6

The 3-neighbor step corresponding to the figure below takes us to an E8E7 fibration.

y2 = x3 + ax2 + 2bt2(t − 1)x + ct4(t − 1)2

a = 1− t + te2 + a1t(1− t).

y2 = x3 +
(

9(r + 6)2s2(2s + r)2t2/4 − s(36s − r2)(18rs2 + 108s2 + 9r2s

+ 36rs + 108s + r3 + 9r2 + 54r)t/3+ (s − 1)2(36s − r2)2
)

x2

+ r(r + 6)2s3(6s + r)t2(rt − 12) ·
(

s(18rs2 + 108s2 + 9r2s

+ 108s + 2r3 + 9r2 + 54r)t − 6(s − 1)2(36s − r2)
)

x

+ 3r2(r + 6)4s6(6s + r)2t4(rt − 12)2(rst + 3s2 − 6s + 3).

xs = 3rs3t2(rt − 12)(3st − 6s − r + 6).
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We may now read out the Igusa–Clebsch invariants. They are fairly lengthy to write 
down, so we will not display them here. Instead they may be accessed in the auxiliary 
computer files.

Theorem 16  A birational model for the surface L̃6 (equivalently, for Y−(36) ) is given by

It is a singular elliptic K3 surface (i.e. of maximal Picard number 20). The Humbert sur-
face is birational to the (r, s)-plane.

The equation above shows that L̃6 has a genus 1 fibration over P1
r, with an obvious 

section. Therefore it is an elliptic surface. Taking the corresponding Jacobian fibration 
and after some simple transformations (including setting r = 4t), we obtain the follow-
ing Weierstrass equation, showing that it is a K3 surface.

It has reducible fibers of type I3 at t = 0 and at the roots of t3 − 3t2 − 3t − 1, I4 at 
t = −1/3 and at t = ∞, and I2 at the roots of t2 − 6t − 3. The trivial lattice therefore has 
rank 2+ 3+ 2+ 6+ 3+ 2 = 18, leaving room for Mordell–Weil rank up to 2. We find 
the sections

The intersection matrix of these sections is

z2 = (36s − r2)
(
1296(r + 6)2s3 − 36r(r + 6)(r2 + 162r − 648)s2

+ 12r2(11r3 + 207r2 + 2592r + 8748)s + r4(7r2 + 108r + 972)
)
.

y2 = x3 + 3(t2 − 4t − 1)(3t2 − 4t − 3)x2

+ 96t2(t + 1)(3t + 1)(t2 − 6t − 3)x

− 256t3(3t + 1)2(7t3 − 30t2 − 33t − 8).

P =
(
8(3t + 1)(t2 − 2t − 1), 8(3t + 1)2(t3 − 3t2 − 3t − 1)

)

Q =
(
− 4t(t − 1)(3t + 1), 4t(3t + 1)2(t2 − 6t − 3)

)
.

1

12

(
3 3
3 7

)
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It has determinant 1 / 12. Hence the span of these two sections and the trivial lattice has 
rank 20 and discriminant 34 · 42 · 22 · (1/12) = 24 · 33. We check that it is 2- and 3- satu-
rated in the Néron–Severi lattice, and therefore it must be all of NS(Y−(36)).

7.3 � Elliptic curves

We compute the symmetric polynomials in the two j-invariants, in terms of the param-
eters on the Humbert surface, and check that the discriminant of the polynomial 
T 2 − (j1 + j2)T + j1j2 is, up to squares, the same as the branch locus for the Hilbert 
modular surface. We obtain the following expressions.

7.4 � Special loci

We next present some curves of low genus on the modular surface.

	 1.	 The curves r = 0 and r = −6s lift to pairs of rational curves on Y−(36). They corre-
spond to I10 = 0.

	 2.	 The curve s = r2/36 lies in the branch locus. It is also a component of the product 
locus (i.e. the Jacobian degenerates to a product of elliptic curves).

	 3.	 The curve r = −6 also belongs to the product locus. It lifts to a genus 0 curve with-
out any real points.

	 4.	 The curve s = 0 lifts to a genus 0 curve whose points have j1 = j2. It too does not 
have any real points.

	 5.	 The curve s = 1 lifts to an elliptic curve isomorphic to y2 + y = x3 − x2 − 10x − 20 , 
of conductor 11 and rank 0. Its points correspond to reducible Jacobians such that 
the elliptic curves are related by an 11-isogeny.

	 6.	 The curve 2rs + 12s − r2 + 2r = 0 lifts to an elliptic curve isomorphic to 
y2 = x3 + 22x2 + 125x, which has conductor 20 and rank 0. Along it, the elliptic 
curves are related by a 5-isogeny.

	 7.	 The curve 12s2 + 6rs + r2 + 2r = 0 lifts to an elliptic curve isomorphic to 
y2 = x3 + 30x2 + 289x, which has conductor 17 and rank 0. It corresponds to ellip-
tic curves linked by a 17-isogeny.

j1 + j2 = −54
(
1119744(r + 6)5s9 − 31104r(r + 6)4(r2 + 162r − 1944)s8

+ 31104r
2(r + 6)3(4r3 + 51r

2 − 3888r + 43740)s7

− 7776r
3(r + 6)2(5r4 − 726r

3 + 9540r
2 + 36936r − 2099520)s6

− 2592r
4(r + 6)(31r5 − 777r

4 − 756r
3 + 208008r

2 − 5458752r

− 42515280)s5 − 216r
5(301r6 + 1002r

5 − 32472r
4 − 1228608r

3

− 59731344r
2 − 629226144r − 1836660096)s4 − 216r

6(50r6

− 8601r
5 − 256410r

4 − 3320352r
3 − 32122656r

2

− 195570288r − 459165024)s3 − 54r
8(5r + 54)(143r4

+ 4248r
3 + 61776r

2 + 419904r + 944784)s2

+ 6r
11(5r + 54)2(11r + 162)s + r

12(5r + 54)3
)
/
(
r
11(6s + r)4

)
,

j1j2 = 729
(
144(r + 6)2s4 − 288r(r + 6)(r + 114)s3 + 72r

2(11r2 + 108r + 540)s2

+ 24r
3(r + 18)(5r + 54)s + r

4(5r + 54)2
)3
/
(
r
12(6s + r)6

)
.
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	 8.	 The curve 

 is part of the branch locus. It has genus 0 and can be parametrized as 

 It corresponds to an isogeny of degree 1, i.e.  j1 = j2.
	 9.	 The curve 

 on the Humbert surface has genus 0, and can be parametrized by 

 It lifts to an elliptic curve isomorphic to y2 + y = x3 − 7, which has conductor 27 
and rank 0. The points on this curve correspond to the two elliptic curves being 
related by a 3-isogeny.

	(10)	 The curve r = −2s on the Humbert surface is non-modular. It lifts to an elliptic 
curve isomorphic to y2 = x3 − 9x + 9, which has conductor 324 and rank 1.

	(11)	 We can also produce non-modular curves of genus 0 through the sections P and Q 
and their linear combinations. For instance, the section P gives the curve 

 while P − Q gives the curve 

 The specializations of the tautological family along these genus 0 curves are one-
parameter families of genus 2 curves with real multiplication by O36.

8 � Discriminant 49
8.1 � Parametrization

We start with the family of elliptic K3 surfaces having E8, A4, A2 and A1 fibers at 
t = ∞, 0, 1, h respectively, and a section of height 49/30 = 4 − 6/5− 2/3− 1/2.

We start with a Weierstrass equation

with a, b, c of degrees 2, 1, 1 respectively. We have shifted x so that the section has van-
ishing x-coordinate at t = 0, 1, h.

(
1296(r + 6)2s3 − 36r(r + 6)(r2 + 162r − 648)s2 + 12r2(11r3 + 207r2

+ 2592r + 8748)s + r4(7r2 + 108r + 972)
)
= 0

r =
−6(t + 2)(t − 1)2

t(t2 + 2t − 1)
, s =

(1+ t + t2)(t + 2)2(t − 1)2

(t2 + t − 1)(t2 + 2t − 1)t2

46656(r + 6)s4 − 216r
2(r2 + 12r + 180)s3 + 36r

3(7r2 + 96r − 108)s2

+ 72r
5(r + 12)s + r

6(5r + 54) = 0

r =
6(3t2 − 3t + 1)2

t(t3 − 5t2 + 4t − 1)
, s =

(3t − 1)(3t2 − 3t + 1)3

(t − 1)t3(t3 − 5t2 + 4t − 1)

s =
r2(r2 + 9r + 162)

54(r − 36)(r + 6)
, z =

−r3(r2 − 108r − 972)(r3 − 54r2 − 972r − 5832)

27(r − 36)2(r + 6)

s =
−r(7r2 + 108r + 1296)

6(r2 − 108r + 216)
,

z =
−2(r − 36)r2(r + 6)(7r + 12)(r3 − 54r

2 − 972r − 5832)

(r2 − 108r + 216)2
.

y2 = x3 + ax2 + 2t(t − 1)(t − h)bx + ct2(t − h)2(t − 1)2
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This fibration already has an E8 fiber at ∞ and A1 fibers at t = 0, 1, h. Let us normalize

where we have used that a(0) and a(1) must be squares in order for the components to 
be defined over the base field, and also used the Weierstrass scaling to fix a(0) = 1.

Imposing two more orders of vanishing at t = 0 gives linear equations for c0 and c1 , 
which are easily solved. A third order of vanishing gives a quadratic equation for b1, 
whose discriminant equals b0(h+ 1)− a2, up to squares. We set it equal to f 2 and solve 
for a2 and then b1. Next, we impose an extra order of vanishing at t = 1, which gives a 
quadratic equation for e, with discriminant up to squares equal to f 2 − b0. We therefore 
set b0 = f 2 − g2 and solve for e. Next, scale f = f ′g and m = m′g(f ′2 − 1). The section 
of height 49  /  30 must have x-coordinate t(t − 1)(t − h)(m2t + g2 − f 2). Substituting 
this in to the Weierstrass equation, we obtain a square times an expression quartic in t. 
Completing the square, we obtain two equations. Solving these leads to a rational mod-
uli space with parameters r and s.

The universal Weierstrass equation is as follows, where we have scaled t, x, y to avoid 
denominators:

The A2 fiber is now at t = t0 = (u− 1)(uv − 1)/(uv).
The x-coordinate of a section P = (xs, ys) of height 49 / 30 is given by

For brevity we omit the y-coordinate, though it may be found in the auxiliary files.

8.2 � Map to A2 and equation of L̃7

We now need to perform “elliptic hopping” to an E8E7 fibration. We start with a 2-neigh-
bor step to a fibration with E8 and A7 fibers.

a = (1− t)+ e2t + a2t(1− t)

b = b0 + b1t

c = c0 + c1t,

y2 = x3 −
(

(4r2s2 + 4rs2 − s2 + 4r2s + 2rs − r2)t2 − 2(2r3s4

+ 4r3s3 − 4r2s3 + rs3 + 6r3s2 − 5r2s2 + rs2 − s2 + 4r3s

− 7r2s + 2rs + 2s − 3r2 + 2r)t − (rs2 + rs − s − r)2
)

x2

+ 8t
(
(s + 1)t − rs − r − s

)(
rst − (r − 1)(rs − 1)

)
·

(

(4r3s4 + 8r3s3 − 6r2s3 + rs3 + 6r3s2 − 7r2s2 + 3rs2

− s2 + 2r3s − 3r2s + 2rs − r2)t + (rs2 + rs − s − r)2
)

x

+ 16t2
(
(s + 1)t − rs − r − s

)2(
rst − (r − 1)(rs − 1)

)2·
(

4r2s2(s + 1)(rs + r − 1)t + (rs2 + rs − s − r)2
)

.

xs = 4t
(
(s + 1)t − rs − r − s

)(
rst − (r − 1)(rs − 1)

)(
rs(s + 1)t − 1

)
.
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The elliptic parameter is given by

where

Converting to the Jacobian, it is then an easy matter to take a second 2-neighbor step to 
an E8E7 fibration, as in the second step for discriminant 25. We omit the details, and also 
the formulas for the Igusa–Clebsch invariants, which may be found in the auxiliary files.

We then compute the double cover defining the Hilbert modular surface.

Theorem 17  A birational model for the surface L̃7 (equivalently, for Y−(49)) is given by

It is a singular elliptic K3 surface. The Humbert surface is birational to the (r, s)-plane.
This surface has a genus 1 fibration over P1

s, with a section, for instance (z, r) = (s, 0). 
Converting to the Jacobian fibration, we get the Weierstrass equation

of an elliptic K3 surface. It has an I7 fiber at s = 0, an I∗0 fiber at s = ∞, a IV fiber at 
s = −1, an I3 fiber at s = 2/25, and I2 fibers at s = (−5± 2

√
7)/4. So the contribution to 

the Picard number from the trivial lattice is 18. In addition we find the sections

which are linearly independent. Therefore, the Picard number is 20, i.e. the Hilbert mod-
ular surface is a singular K3 surface. The intersection matrix of these sections is

1

t(t − t0)

(
y+ ys

x − xs
+ α0 + α1t

)

α0 = rs2 + (r − 1)s − r,

α1 = −
(
2r2s2 + (2r2 − r + 1)s + r2 − r

)
/(r − 1).

z2 = −16s4r4 + 2s(20s2 + 17s − 1)r3 − (44s3 + 57s2 + 18s − 1)r2 + 2s(15s + 17)r + s2.

y2 = x3 + (148s3 + 45s2 − 18s + 1)x2 + 36s4(20s2 + 12s − 1)x

+ 64s7(1300s2 + 885s − 72)

P =
(
4s3(4s − 3), 4s3(s + 1)(16s2 + 40s − 3)

)

Q =
(
− 4s2(5s − 2), 4s2(s + 1)(25s − 2)

)

1

21

(
13 4
4 5

)

.
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It has discriminant 1/9. Hence the span of these two sections and the trivial lattice has 
rank 20 and discriminant 7 · 4 · 3 · 3 · 22 · (1/9) = 24 · 7. We check that it is 2-saturated 
in the Néron–Severi lattice, and therefore it must be all of NS(Y−(49)).

Once again, we check that the symmetric polynomials of the two j-invariants are 
rational functions of r and s (not displayed here for brevity), and that the difference 
j1 − j2 generates the function field of the Hilbert modular surface over that of the Hum-
bert surface. The equation of a tautological family of genus 2 curves may also be found in 
the computer files.

8.3 � Special loci

	 1.	 The rational curves 

 correspond to I10 = 0.
	 2.	 The curve rs = 1 lifts to a rational curve on Y−(49). It is part of the product locus.
	 3.	 the curve r = 1 also lifts to a rational curve. It corresponds to the elliptic curves 

being related by a 13-isogeny.
	 4.	 The curve rs + r + s = 0 lifts to an elliptic curve on the Hilbert modular surface, 

isomorphic to y2 + xy+ y = x3 − x2 − x − 14, of conductor 17 and rank 0. It cor-
responds to the elliptic curves being related by a 17-isogeny.

	 5.	 The curve s − r(s2 + s − 1) = 0 lifts to an elliptic curve on Y−(19), isomorphic to 
y2 + y = x3 + x2 − 9x − 15 of conductor 19 and rank 0. It corresponds to the ellip-
tic curves being related by a 19-isogeny.

	 6.	 The curve rs3 + 2rs2 + s − r + 2 = 0 lifts to an elliptic curve isomorphic to 
y2 = x3 − x2 − 4x + 4, of conductor 24 and rank 0. It corresponds to the elliptic 
curves being 24-isogenous.

	 7.	 The rational curve 4r2s2 + 4r2s − 2rs − s + r2 − r = 0 on the Humbert surface can 
be parametrized by (r, s) =

(
(t + 1)/(t2 + 1), (t2 − 1)/4

)
. It lifts to an elliptic curve 

on Y−(49), isomorphic to y2 + y = x3 − 7, which has conductor 27 and rank 0. It 
corresponds to the elliptic curves being 27-isogenous.

	 8.	 The rational curve 2rs2 + (2r − 1)s + r − 1 = 0 lifts to an elliptic curve, isomorphic 
to y2 = x3 + x2 + 4x + 4 of conductor 20 and rank 0. It corresponds to the elliptic 
curves being 20-isogenous.

	 9.	 The curve −16s
4
r
4 + 2s(20s2 + 17s − 1)r3 − (44s3 + 57s

2 + 18s − 1)r2 + 2s(15s+
17)r + s

2
= 0 has genus 0 and is part of the branch locus. It can be parametrized as 

 and corresponds to the two elliptic curves being isomorphic.
	10.	 Again, we can obtain several genus 0 non-modular curves from the sections. For 

instance, the section P gives rise to 

s = −1, z = ±(r − 1)2

s = 0, z = ±r

r = 0, z = ±s

s =
1− r

r
, z = ±

r3 + 5r2 − 8r + 1

r

r =
(t2 − 5)(t2 − 2t − 7)

4(t2 − 4t − 1)
, s =

4(t2 − 2t − 7)

(t2 − 5)2
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 and the section Q to 

 The tautological curve along this latter curve is short enough to note here; it is given 
by 

9 � Discriminant 64
9.1 � Parametrization

We start with a family of elliptic K3 surfaces with reducible fibers of types E7, A3 and D5 , 
and a section of height 2 = 4 − 3/4 − 5/4. The Weierstrass equation for this family is 
given by

The x-coordinate of a section of height 2 is given by

For brevity, we omit the description of the process of parametrization, which is similar 
to that for the smaller discriminants described in this paper. A brief outline is given in 
the auxiliary files, for the interested reader.

9.2 � Map to A2 and equation of L̃8

To go to an elliptic fibration with E8 and E7 fibers, we proceed as follows. First, we take a 
3-neighbor step with fiber class as shown below, to go to an elliptic fibration with D8 and 
E7 fibers.

r =
2s + 3

s(4s + 3)
, z = −

(s + 1)(16s2 + 40s − 3)

(4s + 3)2

r = 4/(5s), z = (s − 2)(25s − 2)/(25s).

y2 =
(
x3 + x2(25s − 2)− 8x(s − 4)(25s − 2)− 20(s − 4)(12s + 1)(25s − 2)

)

·
(
x3 − 2x2(25s − 2)/5− x(11s − 142)(25s − 2)/4 − 5(25s − 2)(3s2

+ 368s − 148)/4
)
.

y2 = x3 + x2t
(

− 4(2s5 + 6rs4 − s4 + 4r2s3 + 4r2s2 − 4r4)t

+ s2(s + 2r)(s3 + 2rs2 + 4s2 + 8rs + 8r2)
)

+ 2xt3(t − 1)
(

− 2s3(s + 2r)2(s2 + 2s + 4r)(s3 + 2s2 + 12rs + 8r2)t

+ 2s2(s + 2r)2(3s6 + 8rs5 − 4s5 + 8r2s4 + 12s4

+ 24r2s3 + 32rs3 + 32r3s2 + 32r2s2 + 32r3s + 32r4)
)

+ t4(t − 1)2
(

64r(s − 2)s5(s + r)(s + 2r)4(s2 + 2s + 4r)t

+ 16s4(s + 2r)4(s3 − 2s2 − 4rs − 4r2)2
)

.

xs = 4(s2 + 2s + 4r)(t − 1)t2
(
(s2 + 2s + 4r)t + (s − 2r − 2)(s + 2r)

)
.
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We then take a 2-neighbor step to an E8E7 fibration, as in the calculation for discrimi-
nant 16. We omit the details.

The equation for the double cover defining the Hilbert modular surface can now be 
computed.

Theorem 18  A birational model for the surface L̃8 (equivalently, for Y−(64)) is given by

Its minimal model is an honestly elliptic surface X with χ(OX ) = 3 and Picard number 
30. The Humbert surface is birational to the (r, s)-plane.

The equation above yields an elliptic surface: making the change of variables r = st and 
absorbing s4 in z2 makes the right side quartic in s, giving an elliptic fibration over P1

t , 
with an obvious section. Converting to the Jacobian form, after some simple transforma-
tions, including the substitution t = (v − 1)/2, we obtain the Weierstrass equation

which displays an obvious extra symmetry (x, y, v) → (x/v6, y/v9, 1/v). This is an hon-
estly elliptic surface with χ = 3. It has reducible fibers of type I8 at ∞ and 0, I2 at 1, I4 
at −1, I2 at the roots of v2 − 10v − 7 and also at the roots of 7v2 + 10v − 1, and I3 at 
the roots of v2 − 10v + 1. The trivial sublattice has rank 28, leaving room for Mordell-
Weil rank up to 2. In addition to the 2-torsion section T = (0, 0), we find the following 
sections:

These sections are orthogonal of heights 1 / 6 and 3 / 2 respectively. Therefore, this ellip-
tic surface has maximal Picard number 30. The discriminant of the lattice generated by 
T, P, Q and the trivial lattice is 29 · 32. We checked that it is 2- and 3-saturated. There-
fore, it must be the full Picard group, and the Mordell–Weil lattice is generated by these 
sections.

z2 = −(s3 + 2s2 + 12rs + 8r2)(s + 2r + 2)(27s4 + 54rs3 − 52s3 − 48rs2

+ 44s2 + 96r2s + 72rs − 16r3 − 16r2).

y2 = x3 + (v6 − 14v5 + 23v4 + 108v3 + 23v2 − 14v + 1)x2

− 16v4(v2 − 10v − 7)(7v2 + 10v − 1)x

P =
(
4v(7v2 + 10v − 1), 4v(v + 1)(v2 − 10v + 1)(7v2 + 10v − 1)

)
,

Q =
(
4(v2 − 10v − 7), 12

√
−3(v − 1)(v + 1)2(v2 − 10v − 7)

)
.
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The Igusa–Clebsch invariants, the equation of a tautological family of genus 2 curves, 
and the elementary symmetric polynomials in the j-invariants of the associated elliptic 
curves can be found in the auxiliary files.

9.3 � Special loci

1.	 The curve r = 0 is part of the product locus. It lifts to a genus 0 curve on the Hilbert 
modular surface, with no real points.

2.	 The curve s = 0, z = 16r2(r + 1) has genus 0 and is part of the locus I10 = 0, as is 
the curve s = 2, which lifts to a rational curve on L̃8. The locus I10 = 0 also con-
tains the curves r = −s2/4 (which lifts to an elliptic curve), r = −s2/4 − s/2 
(lifts to a union of two rational curves), and s3 + 2s2 + 12rs + 8r2 = 0, which has 
genus 0 and is part of the branch locus. The last curve can be parametrized as 
(r, s) =

(
− t(1+ 3t + t2),−2(t2 + 3t + 1)

)
.

3.	 The curve s3 + 2rs2 − 2s2 + 4r2 = 0 has genus 0 and can be parametrized as 
(r, s) =

(

− t(t2 − 2)/
(
2(t + 1)

)
,−(t2 + 2)/(t + 1)

)

. It lifts to an elliptic curve of 
conductor 14, and is modular (corresponding to the two elliptic curves being 7-isog-
enous).

4.	 The rational curve s = −2r − 2 is part of the branch locus, as is the curve 

 The latter can be parametrized as 

5.	 There are several non-modular specializations: for instance, s ∈ {−2, 1/2, 5/2} or 
r = −1 all yield elliptic curves with rational points. Of course, we may use the elliptic 
fibration to produce many elliptic curves, simply by specializing the parameter on 
the base.

6.	 The sections of the elliptic fibrations gives us several (usually) non-modular rational 
curves. For instance, P gives the curve parametrized by 

 while Q gives the curve parametrized by 

10 � Discriminant 81
10.1 � Parametrization

We start with a family of elliptic K3 surfaces with reducible fibers of types E6, A2 and A7 , 
and a section of height 9/8 = 4 − 4/3− 2/3− 7/8. A Weierstrass equation is given by

27s4 + 54rs3 − 52s3 − 48rs2 + 44s2 + 96r2s + 72rs − 16r3 − 16r2 = 0.

(r, s) =
(
(t2 + 26t + 124)(t2 + 40t + 408)

216(t + 20)
,
(t + 16)(t2 + 26t + 124)

54(t + 20)

)

r = −
(v − 1)(2v − 1)

v2 − v + 1
, s = −

2(2v − 1)

v2 − v + 1
,

z =
16(v − 1)v2(v + 1)(2v − 1)2(v2 − 10v + 1)

(v2 − v + 1)4
,

r = −
(v − 1)(7v2 + 4v − 7)

(v + 1)(7v2 − 4v + 7)
, s = −

2(7v2 + 4v − 7)

(v + 1)(7v2 − 4v + 7)
,

z =
48

√
−3v3(v2 − 10v − 7)(7v2 + 4v − 7)2(7v2 + 10v − 1)

(v + 1)4(7v2 − 4v + 7)4
.
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and the x-coordinate of the extra section is

10.2 � Map to  A2 and equation of L̃9

We first go to an elliptic fibration with E8 and A7 fibers, via the 3-neighbor step corre-
sponding to the figure below.

Finally, a 2-neighbor step (as in the second step for discriminant 25) takes us to an 
E8E7 fiber. We can then read out the Igusa–Clebsch invariants, which are in the auxiliary 
files, along with a tautological family of genus 2 curves and the sum and product of the 
j-invariants of the elliptic curves.

We then compute the double cover defining the Hilbert modular surface.

Theorem 19  A birational model for the surface L̃9 (equivalently, for Y−(81)) is given by

y2 = x3 + x2
(

(4r2s6 + 4rs6 + s6 − 24r2s5 − 24rs5 − 6s5 − 36r2s4 + 108rs4 + 15s4

+ 240r2s3 + 144rs3 − 84s3 + 252r2s2 − 132rs2 − 177s2 − 216r2s − 504rs

− 198s + 36r2 − 108r − 63)t2 − 2(2r2s3 + rs3 + 10r2s2

+ rs2 − 2s2 − 2r2s − 13rs − 4s + 6r2 − 5r − 2)t + r2
)

+ 32 x (s + 1)2(rs − r − 1)t2
(
4(s2 + 3)2t − (s − 1)(2rs + s + 2r − 1)

)
·

(

(2rs6 + s6 − 4rs5 − 2s5 − 16r2s4 + 38rs4 + 3s4 + 64r2s3 + 24rs3 − 44s3

+ 96r2s2 − 34rs2 − 73s2 − 192r2s − 276rs − 114s + 48r2 − 6r − 27)t2

− 2(r2s3 + rs3 + 9r2s2 + rs2 − 2s2 − 5r2s − 13rs − 4s + 3r2 − 5r − 2)t + r2
)

+ 256(s + 1)4(rs − r − 1)2t4
(
4(s2 + 3)2t − (s − 1)(2rs + s + 2r − 1)

)2·
(

(s − 1)2(s2 + 2s + 8r + 5)2t2 − 2(rs3 + 8r2s2 + rs2 − 2s2 − 8r2s

− 13rs − 4s − 5r − 2)t + r2
)

,

xs = −4(s + 1)2(rs − r − 1)t
(
4(s2 + 3)2t − (s − 1)(2rs + s + 2r − 1)

)
/(s − 1)2.

z2 = 16(s3 − 9s2 − 9s + 9)2r4 + 32s(s5 + 5s4 + 90s3 + 18s2 − 171s − 135)r3

+ 8(3s6 + 40s5 + 81s4 − 336s3 − 627s2 − 360s − 81)r2

+ 8(s + 1)2(s4 + 5s3 − 49s2 − 57s − 12)r + (s + 1)4(s2 − 18s − 15).
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Its minimal model is an honestly elliptic surface X with χ(OX ) = 3 and Picard number 
29. The Humbert surface is birational to the (r, s)-plane.

The equation above evidently defines an elliptic surface over P1
s with section. Convert-

ing to the Jacobian form, we obtain (after Weierstrass transformations and the change of 
variable s = t − 1)

It is honestly elliptic with χ = 3, and reducible fibers of type I8 at 0, I∗4 at ∞, I3 at the 
roots of t2 − 2t + 4, I2 at the roots of 4t3 − 12t2 + 21t − 4 and I3 at the roots of 
25t3 − 66t2 + 84t − 16. These give rise to a trivial lattice of rank 27, leaving room for 
Mordell–Weil rank up to 3. We find the sections

with height matrix

Therefore the Picard number ρ is at least 29. On the other hand, by counting points 
modulo 7 and 13 and using the method of van Luijk [31] (comparing the square classes 
of the discriminants of the Picard groups of these reductions) we obtain that the Picard 
number cannot be 30. Therefore ρ = 29 exactly. We checked that the lattice generated 
by P and Q, which has discriminant 24 · 37, is 2- and 3-saturated. Therefore it is the full 
Mordell–Weil lattice.

10.3 � Special loci

1.	 The curves r = 0, s = −4r − 1 and 2rs2 − s2 − 4rs − 2s + 2r − 1 = 0 of genus 0 
on the Humbert surface are all part of the product locus. The first lifts to a rational 
curve on Y−(81) and the other two lift to elliptic curves.

2.	 The curves s = −1, rs − r − 1 = 0 and s2 + 3 = 0 are part of the locus I10 = 0. The 
first two lift to unions of two rational curves, while the last clearly has no real points.

3.	 The curve s = 1 lifts to an elliptic curve isomorphic to X0(11). It corresponds to the 
two elliptic curves being 11-isogenous.

4.	 The branch locus has genus 1, and corresponds to j1 = j2.
5.	 The section P gives rise to the following non-modular curve of genus 0: 

 The section Q gives the non-modular curve 

y2 = x3 + 4(44t5 + 149t4 − 184t3 + 280t2 − 128t + 16)x2

+ 64t5(125t5 + 1403t4 − 946t3 + 1672t2 + 472t − 176)x

+ 256t9(13625t5 − 3964t4 + 18780t3 + 3568t2 + 17296t − 4096)

P =
(
128t3 − 256t4, 16t3(3t − 4)(25t3 − 66t2 + 84t − 16)

)

Q =
(
16t4(t2 − 7t − 2), 16t4(t2 − 2t + 4)(4t3 − 12t2 + 21t − 4)

)

1

18

(
18 − 12
−12 17

)

r = −
(s + 1)2(s2 − 18s − 27)

(s − 3)(7s3 + 27s2 + 45s + 9)

z =
(s − 1)(s + 1)3(25s3 + 9s2 + 27s + 27)(s4 − 18s3 − 144s2 − 342s − 729)

(s − 3)2(7s3 + 27s2 + 45s + 9)2
.
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 The tautological curve over it is given by 

11 � Discriminant 100
11.1 � Parametrization

We start with a family of elliptic K3 surfaces with D6, A6 and A3 fibers, and a section of 
height 25/12 = 4 − 6/4 − 3/4 − 6/7. A Weierstrass equation is given by

and the extra section having x-coordinate

11.2 � Map to A2 and equation of L̃10

We first go to an elliptic fibration with E7, A7 and A1 fibers by a 2-neighbor step.

Next, we go to a D6D5A3 fibration, via the fiber class shown below.

r =
(s + 1)2

2(s − 3)s
, z = −

(s − 1)(s + 1)3(4s3 + 9s + 9)

(s − 3)2s2
.

y2 =
(
x3 + 3x2(s2 − 3s + 6)(4s3 + 9s + 9)

− 24x(s − 3)s2(s2 + 3)(4s2 − 3s + 18)(4s3 + 9s + 9)

− 4(s − 3)s(4s2 − 3s + 18)2(4s3 + 9s + 9)2(5s3 − 9s2 + 9s − 9)
)
·

(
x3 − 6x2(s − 3)(s2 + 3)(4s2 − 3s + 18)

− 3x(s + 3)(4s2 − 3s + 18)2(5s2 + 3)(4s3 + 9s + 9)/4

+ (4s2 − 3s + 18)3(4s3 + 9s + 9)·
(100s6 − 225s5 + 945s4 − 1062s3 + 2106s2 − 729s + 81)/4

)
.

y2 = x3 + x2
(

− r5(r + 2)3(2s2 + 2s − r2)t3 − r2(r + 2)2(2s6 + 6s5 − 5r2s4

− 2rs4 + 3s4 − 10r2s3 + 2r4s2 − 2r2s2 + 2r4s − 4r3s − r4)t2

+ r(r + 2)s(s + 2)(s − r)(s + r)(s4 + 2s3 − r2s2 − 2s2 + 4rs + 2r2)t

+ s2(s + 2)2(s − r)2(s + r)2
)

/
(
s2(s + 2)2(s − r)2(s + r)2

)

+ 2xr3(r + 2)3(s + r + 2)(t − 1)t2
(

r2(r + 2)2(s2 + s − r2)t2

− r(r + 2)(s4 + 2s3 − r2s2 − s2 − r2s + 2rs + r2)t

− s(s + 2)(s − r)(s + r)
)

/
(
s(s + 2)3(s − r)2(s + r)3

)

+ r6(r + 2)6(s + r + 2)2(t − 1)2t4(r2t + 2rt + 1)/
(
(s + 2)4(s − r)2(s + r)4

)
,

xs = s3(s + 2)(s − r)2(s + r)(s + r + 2)t(t − r2 − 2r)/r2.
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The new elliptic fibration has Mordell–Weil group of rank 2, generated by two sections 
P and Q with height matrix

with the entries arising as

A 2-neighbor step takes us to a fibration with D8D6A1 fibers, a 2-torsion section T (and a 
section of height 25 / 2).

The section Q intersects the fiber class in 3, whereas the remaining component of the 
D5 fiber intersects it in 2. Since these are coprime, the new fibration has a section. Note 
also that the section 2P of height 2 = 4 − 1− 2 · 2/4 doesn’t intersect the fiber class, giv-
ing rise to an extra A1 fiber.

Q

Finally, a 2-neighbor step leads us to the desired E8E7 fibration. The fiber F with an 
extended E8 Dynkin diagram is shown below, and the 2-torsion section T combines 
with some of the D6 components and the non-identity component of the A1 fiber to give 
an E7 diagram disjoint from F. Also, the section P of height 25 / 2, or its negative, has 
odd intersection number with F, while the remaining component of the D8 fiber has 
intersection 2 with F. So the new fibration has a section. We can read out the Igusa–
Clebsch invariants, which are in the auxiliary files.

1

4

(
2 1
1 13

)

1/2 = 4 − 3/4 − 5/4 − 6/4,

13/4 = 4 − 3/4,

1/4 = 2− 1− 3/4.
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T

We compute the double cover defining the Hilbert modular surface.

Theorem 20  A birational model for the surface L̃10 (equivalently, for Y−(100)) is given 
by

Its minimal model is an honestly elliptic surface X with χ(OX ) = 3 and Picard number 
28 or 29. The Humbert surface is birational to the (r, s)-plane.

Making the substitution r = st and absorbing s4 in to z2 makes the right side quartic in 
s, showing that L10 is an elliptic surface with section over P1

t . Converting to the Jacobian 
form, after some Weierstrass transformations and substitution t = u+ 1, we obtain

It is an honestly elliptic surface with χ = 3, and reducible fibers of type I10 at ∞, I5 at 0, 
IV at −2, I2 at the roots of u2 + 3u+ 1 and also at the roots of u2 + 8u− 4, and I3 at the 
roots of 3u3 + 26u2 + 14u+ 2. The trivial lattice has rank 27, leaving room for Mordell–
Weil rank up to 3. We find the section

of height 1 / 5. Therefore, the Picard number ρ is at least 28. On the other hand, counting 
points modulo 7 and 17 shows that ρ < 30. Therefore the Picard number is either 28 or 
29; we have not been able to determine it exactly.

The equation of a tautological family of genus 2 curves and the elementary symmetric 
polynomials in the j-invariants of the two elliptic curves are omitted here, but can be 
found in the computer files.

11.3 � Special loci

1.	 The rational curves s2 + 2s − r2 = 0 (parametrization r = −t(t + 2)/
(
2(t + 1)

)
 , 

s = t2/
(
2(t + 1)

)
) and s2 + rs + 2s − r2 = 0 (parametrization r = 2(t − 3)(3t − 4)/

(
5(t2 − t − 1)

)
, s = 2(t − 3)2/

(
5(t2 − t − 1)

)
) are part of the product locus, and 

lift to elliptic curves on L̃10. The rational curve 2s2 + 2s − r2 = 0 (parametrized by 
r = −2t/(t2 − 2), s = 2/(t2 − 2)) is also part of the product locus, as well as the 
branch locus.

z2 = −(2s2 + 2s − r2)(s6 − 2rs5 − r2s4 + 2rs4 + 2s4 + 4r3s3 + 2r2s3 + 12rs3 + 14s3

− 2r4s2 − 14r3s2 − 29r2s2 − 20rs2 + 10r4s + 10r3s − 2r2s + r4).

y2 = x3 + (u6 + 16u5 + 74u4 + 92u3 + 21u2 + 20u+ 4)x2

+ 8u2(10u5 + 119u4 + 324u3 + 291u2 + 68u+ 4)x

− 16u4(8u4 + 84u3 + 139u2 + 12u− 4).

P =
(
− 4u2(3u2 + 26u+ 5), 4u2(u2 + 8u− 4)(3u3 + 26u2 + 14u+ 2)

)
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2.	 The curves s = −2, s = −r, s = 0, s = r and s = −r − 2 are part of the locus I10 = 0 . 
The first two lift to rational curves, while the others lift to unions of two rational 
curves.

3.	 The curve r = 0 lifts to an elliptic curve isomorphic to X0(11). It corresponds to the 
two elliptic curves being 11-isogenous.

4.	 The curve r = −2 lifts to an elliptic curve isomorphic to X0(19). It corresponds to 
the elliptic curves being 19-isogenous.

5.	 The curve s = −1 also lifts to an elliptic curve (with conductor 36 and CM), and is 
modular: it corresponds to the elliptic curves being 9-isogenous.

6.	 The curve r = −1 lifts to a rational curve; the two elliptic curves are again 9-isog-
enous along that locus.

7.	 The branch locus is an elliptic curve, and corresponds to j1 = j2.
8.	 The section above gives rise to the non-modular genus 2 curve parametrized by 

12 � Discriminant 121
12.1 � Parametrization

Finally, we describe moduli space of elliptic subfields of degree 11 via the Hilbert modu-
lar surface of discriminant 121. To compute the surface, we work with the moduli space 
of elliptic K3 surfaces with A6, A5 and A3 fibers, and two sections with intersection 
matrix

with the entries arising as

We will be very brief in our description of all the steps, since the formulas are all fairly 
complicated and explained in greater length in the auxiliary files.

The moduli space of these K3 surfaces is again rational, and with chosen parameters r 
and s, the universal Weierstrass equation is as follows.

where

r = 2(u+ 1)(3u+ 1)/
(
u(3u2 + 8u+ 2)

)
,

s = 2(3u+ 1)/
(
u(3u2 + 8u+ 2)

)
,

z = 8(3u+ 1)2(u2 + 3u+ 1)(3u3 + 26u2 + 14u+ 2)/
(
u3(3u2 + 8u+ 2)4

)
.

1

84

(
59 − 46
−46 61

)

59/84 = 4 − 3/4 − 5/6− 12/7,

61/42 = 4 − 5/6− 12/7,

−23/42 = 2− 5/6− 12/7.

y2 = x3 + a(t)x2 + b(t)x + c(t),
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The x-coordinates of the two sections are given by

12.2 � Map to A2 and equation of L̃11

We next quickly illustrate the neighbor steps required to go to an E8E7 fibration.

a(t) = (s − r)2t4 − 16 t3 r(rs4 + 3s4 − 2r2s3 − 5rs3 − 4s3 + r3s2 + 4r2s2 + 5rs2

+ 2s2 − 2r3s − 4r2s − 4rs − s + r3 + 2r2 + r)/s

+ 64r(s − 1)2 t2 (r3s4 + 6r2s4 + 7rs4 + 4s4 − 2r4s3 − 8r3s3 − 12r2s3 − 10rs3

− 6s3 + r5s2 + 4r4s2 + 7r3s2 + 6r2s2 + 5rs2 + 2s2 − 2r5s

− 6r4s − 10r3s − 10r2s − 4rs + r5 + 4r4 + 6r3 + 4r2 + r)/s2

− 1024 t r(s − 1)2(s − r − 1)(r3s4 + 5r2s4 + 4rs4 − 2s4 − r4s3 − 5r3s3 − 8r2s3

+ rs3 + 4s3 + r4s2 − 8r2s2 − 10rs2 − 2s2 + r4s

+ 7r3s + 12r2s + 6rs − r4 − 3r3 − 3r2 − r)/s2

+ 4096r2(s − 1)4(s − r − 1)2(rs + 2s − r − 1)2/s2,

b(t) = 512t2r(s − 1)2(s − r − 1)(s2 − r2s − 2rs − s + r2 + r)
(
t − 8(r2s

+ rs − s − r2 + 1)
)
·
(

s(s − r)2t3 − 8 t2 r(2rs4 + 5s4 − 3r2s3

− 7rs3 − 5s3 + r3s2 + 4r2s2 + 3rs2 + s2 − 2r3s − 3r2s

− 3rs − s + r3 + 2r2 + r)+ 64r(s − 1)2 t (r3s3 + 5r2s3 + 5rs3 − r4s2

− 4r3s2 − 5r2s2 + rs2 + s2

− 3r3s − 10r2s − 8rs − s + r4 + 4r3 + 5r2 + 2r)

− 512r2(s − 1)3(s − r − 1)(rs + 2s − r − 1)2
)

/s2,

c(t) = 65536t
4
r
2(s − 1)4(s − r − 1)2(s2 − r

2
s − 2rs − s + r

2 + r)2

×
(

t − 8(r2s + rs − s − r
2 + 1)

)2
·

×
(

(s − r)2t2 − 16r(rs3 + 2s
3 − r

2
s
2 − 2rs

2 − s
2 − 2rs − s + r

2 + r)t

+ 64r
2(s − 1)2(rs + 2s − r − 1)2

)

/s2.

x1 = 256tr(s − 1)2(s − r − 1)(8r2s + 8rs − 8s − 8r2 − t + 8)

× (s2 − r2s − 2rs − s + r2 + r)/s,

x2 = −256tr(s − 1)2(s − r − 1)
(
s(s2 − r2s − 2rs − s + r2 + r)t

− 8r(rs + 2s − r − 1)2(s2 − r − 1)
)
/s2.



Page 43 of 46Kumar ﻿Mathematical Sciences  (2015) 2:24 

First, we take a 2-neighbor step to an elliptic fibration with E6, A4, A3 and A1 fibers, 
and two sections with intersection matrix

with the entries being realized as

In the figure below we only display the section of height 23 / 12, in order to not clutter 
the picture.

Next, we go by a 2-neighbor step to an E7A4A2A1 fibration with two sections having 
intersection matrix

with the entries being realized as

1

60

(
37 25
25 115

)

,

37/60 = 4 − 4/3− 1/2− 4/5− 3/4

23/12 = 4 − 4/3− 3/4

5/12 = 2− 4/3− 1/4.

1

30

(
16 − 5
−5 115

)

,

8/15 = 4 − 3/2− 4/5− 2/3− 1/2

23/6 = 6− 3/2− 2/3

−1/6 = 2+ 1− 1− 3/2− 2/3.
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We only show the section of height 8 / 15 below.

We next take a 2-neighbor step to an E8A7 fibration, with a section of height 
121/8 = 4 + 2 · 6− 7/8. Finally, we take a 2-neighbor step to go to an E8E7 fibration, as 
in the second step for discriminant 25. The formulas for the Igusa–Clebsch invariants 
can now be read off; they may be found in the auxiliary files.

Finally, we compute the double cover defining the Hilbert modular surface.

Theorem 21  A birational model for the surface L̃11 (equivalently, for Y−(121)) is given 
by

It is a surface of general type. The Humbert surface is birational to the (r, s)-plane.
The expressions for the sum and product of the j-invariants of the two associated ellip-

tic curves may be found in the auxiliary computer files, which also have the equation of a 
tautological family of genus 2 curves.

12.3 � Special loci

Once again we describe some special curves of low genus on the modular surface.

1.	 The rational curve s = 0 and the genus 1 curve s2 − r2s − 2rs − s + r2 + r = 0 are 
contained in the product locus. Each lifts to a union of two curves on the Humbert 
surface (of genera 0 and 1 respectively).

2.	 The curves 

z2 = (s − 1)4r6 − 2(s − 1)3(s2 + 4s + 2)r5 + (s − 1)2(s4 − 4s3 − 40s2 − 10s + 6)r4

+ 2(s − 1)(6s5 − 3s4 − 25s3 − 22s2 + 22s − 2)r3

+ (22s6 − 8s5 − 10s4 − 108s3 + 113s2 − 26s + 1)r2

− 2(s − 1)s2(s + 1)(2s − 13)(2s − 1)r − 27(s − 1)2s4.

r = 0

s = 1

s = r + 1

rs + s − r = 0

r2s + rs − s − r2 + 1 = 0

s2 − r2s − rs − s + r2 = 0

rs2 + 2s2 − r2s − 3rs − 2s + r2 + r = 0
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all correspond to I10 = 0. The first five are of genus 0 and the remaining two have 
genus 1. The first two lift to unions of two genus 0 curves with no rational points, 
the third to a union of two P1’s, the fourth to an irreducible P1, the fifth to an elliptic 
curve, and the last two to curves of genus 2 and 3 respectively.

3.	 The rational curve rs + 2s − r − 1 = 0 lifts to an elliptic curve isomorphic to X0(21), 
and corresponds to the elliptic curves being 21-isogenous.

4.	 the rational curve r = −1 lifts to an elliptic curve isomorphic to X0(17), and corre-
sponds to the elliptic curves being 17-isogenous.

5.	 The rational curve s2 + rs − r = 0 lifts to an elliptic curve isomorphic to X0(32), and 
corresponds to the the elliptic curves being 32-isogenous.
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