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Abstract: In the standard example of strict deformation quantization of the symplectic
sphere S2, the set of allowed values of the quantization parameter h̄ is not connected;
indeed, it is almost discrete. Li recently constructed a class of examples (including S2)
in which h̄ can take any value in an interval, but these examples are badly behaved.
Here, I identify a natural additional axiom for strict deformation quantization and prove
that it implies that the parameter set for quantizing S2 is never connected.

1. Introduction

The standard geometric quantization construction for a manifold M with symplectic
form ω uses a line bundle over M with curvature equal to ω/h̄. Such a line bundle
exists if and only if the de Rham cohomology class [ ω

2πh̄] ∈ H2(M) is integral. Unless
the symplectic form is exact, this greatly restricts the allowed values of h̄. At best, there
is some maximum h̄0, and the allowed values of h̄ are h̄0, h̄0/2, h̄0/3, . . . , 0. At worst,
there does not exist any h̄ satisfying this integrality condition; for example, this is the
case with the Cartesian product of two symplectic spheres whose symplectic volumes
differ by an irrational factor.

Of course, this is just an obstruction to a particular construction. It says nothing about
whether h̄ is so restricted for any quantization of M. A more general existential result
was found by Fedosov [2] in his study of “asymptotic operator representations” (AOR’s)
of formal deformation quantizations. Let θ = [ ω

2πh̄] + · · · ∈ h̄−1H2(M)[[h̄]] be the
characteristic class of a formal deformation quantization. Under some assumptions about
the trace, he showed that as h̄ → 0, θmust asymptotically satisfy integrality conditions
at the allowed values of h̄. This is an interesting result, but there are many examples of
quantization in which Fedosov’s assumptions are not true and h̄ violates his integrality
conditions.

One way to construct such quantizations is to consider the universal covering spaceM̃.
If we can construct a quantization of M̃ that is covariant under the action of π1(M), then
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this should descend to a quantization of M. This implies that requiring [ ω
2πh̄] (or θ) to

be integral on M is too restrictive. Instead, we should only expect it to give an integral
cohomology class on M̃.

This is a weaker condition, becauseH2(M̃) is generally smaller thanH2(M). To be
precise, for a path-connected manifold, H2(M̃) = π2(M); so, ω

2πh̄ gives an integral

cohomology class on M̃ if it pairs integrally withπ2(M), or equivalently, for any smooth
map ϕ : S2

→ M,

∫

S2

ϕ∗ω
2πh̄

∈ Z. (1.1)

In particular, there is no integrality condition ifω pairs trivially with π2(M).
There are many examples of quantization where h̄ is unrestricted by this condition.

The noncommutative torus [14] is a quantization of the symplectic torus T
2 (for which

π2(T
2) is trivial). Klimek and Lesniewski [6] constructed quantizations for higher genus

Riemann surfaces (where π2 is also trivial). I constructed [5] such a quantization for any
compact Kähler manifold where π2(M) pairs trivially withω. Natsume, Nest, and Peter
[11] constructed such a quantization for any symplectic manifold with π2(M) trivial
and π1(M) an exact group.

On the other hand, Li [10] has constructed a very large class of examples of quantiza-
tions for any Poisson (or even almost Poisson) manifold. In these examples, h̄ takes any
value in an interval, so this violates all possible integrality conditions (not to mention
integrability conditions). However, his examples are badly behaved. In particular, the
quantum algebras are “much too big”; the classical algebra C0(M) is actually a subal-
gebra of each of the quantum algebras. Nevertheless, these examples satisfy a definition
of “strict quantization” which had previously seemed very reasonable.

So, the problem is not to understand how integrality conditions arise from the defi-
nition of quantization. The problem is to improve the definition by identifying good
properties of quantization which do imply integrality conditions.

The sphere S2 obviously plays a key role in the integrality condition (1.1), so the
case of the symplectic sphere is absolutely fundamental. There is no way to understand
integrality conditions without understanding the case of the symplectic sphere. That is
what I am considering in this paper.

In a similar vein, Rieffel [14, Thm. 7.1] showed that there does not exist any noncom-
mutative SO(3)-equivariant product on C∞ (S2) that can be completed to a C∗-algebra.
In particular, there does not exist any equivariant strict deformation quantization of S2

according to his original definition. The Berezin-Toeplitz quantization of S2 is equi-
variant and satisfies a slightly weaker definition (quantization maps are not injective).
With this weaker definition, Rieffel’s proof (adapted from a theorem of Wassermann
[18]) actually shows that the Berezin-Toeplitz quantization is essentially the unique
equivariant quantization of S2. That in turn implies that the set of values of h̄ cannot
be connected. As Rieffel writes, this theorem leaves open the question of “deformation
quantizations which need not be invariant at all”. This is what I am addressing here,
although with a slightly different notion of strict deformation quantization.

As there is no one standard definition of strict deformation quantization, I begin in
Sect. 2 by reviewing some of the various definitions that appear in the literature. I then
motivate and present my definition of ordern strict deformation quantization and explain
why anything less than second order should not really be considered quantization.
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Sections 3 and 4 are purely motivational. In Sect. 3, I briefly review the algebraic index
theorem which Fedosov used to obtain his integrality result. In Sect. 4, I summarize the
standard Berezin-Toeplitz quantization construction. This shows explicitly the structure
we might expect in the quantization of S2.

In Sect. 5 I give the preliminary results which are not specific to S2. Some of these
are minor technical lemmas, but Lemma 5.2 is the key tool and shows an integrality
property of 2× 2 matrices over a C∗-algebra.

Finally, in Sect. 6, I prove the main results. I show that for a second order strict
deformation quantization of S2, the set of values of h̄ cannot be connected. For an
infinite order strict deformation quantization of C∞ (S2), I show that h̄ is asymptotically
restricted by Fedosov’s integrality condition in terms of the characteristic class of the
corresponding formal deformation quantization.

1.1. Notation. In this paper, I will use the notations on(h̄) and On(h̄) a great deal.
These are always in the context of maps from h̄ ∈ I� {0} to Banach spaces.

Definition 1.1. a(h̄) = on(h̄) if

lim
h̄→0

h̄−n
∥
∥a(h̄)

∥
∥ = 0,

and a(h̄) = On(h̄) if h̄−n
∥
∥a(h̄)

∥
∥ is bounded for sufficiently small h̄. More frequently,

I write

a(h̄) ≈ b(h̄) mod on(h̄)

if a(h̄) − b(h̄) = on(h̄). I will always use ≈ in this sense.

Any statement involving on(h̄) is really a statement about a limit, but I think this
notation allows things to be written more clearly. It would really be more correct to write
“a ∈ on(h̄)”, but I don’t want to stray too far from existing notational conventions.
H2(M) is de Rham cohomology with real coefficients.
Given an algebra A, the algebra of m ×m-matrices over A is denoted Matm(A).

The partial trace tr : Matm(A) → A takes the sum of the diagonal entries.
The standard Pauli matrices σi ∈ Mat2(C) are,

σ1 :=

(

0 1
1 0

)

, σ2 :=

(

0 −i
i 0

)

, σ3 :=

(

1 0
0 −1

)

.

More importantly, these are related by σiσj = δij + iεk
ijσk; that is,

σ1σ2 = −σ2σ1 = iσ3, σ2
1 = 1,

et cetera.
The summation convention is used for repeated indices, even if both are superscripts.
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2. Definitions of Quantization

In order to consider properties of quantization, it is necessary to first consider the various
definitions of quantization. All of the definitions for C∗-algebraic deformation quanti-
zation are variations on the ideas proposed by Rieffel [14–16]. Most of these involve
a continuous field of C∗-algebras, either as a given structure, or as something whose
existence and uniqueness is supposed to be guaranteed by the axioms.

All of the definitions include a parameter set I ⊆ R, such that 0 ∈ I is an accumulation
point. This is the set of values for the parameter h̄, and h̄ = 0 is the “classical” value.

Rieffel’s definition is stated in terms of a fixed vector space A0 with an h̄-dependent
product, involution, and norm. Using these norms, the vector space can be completed to
a family of C∗-algebrasAh̄. Instead of starting with a fixed vector space, we can instead
start with a family of normed ∗-algebras Ah̄ which are identified by bijective linear
“quantization maps” Qh̄ : A0 → Ah̄. More generally, we can consider quantizations
in which these are not bijections. Either way, each ∗-algebra Ah̄ is to be completed to
a C∗-algebra Ah̄. These are supposed to form a continuous field, uniquely defined by
the requirement that for any a ∈ A0, h̄ �→ Qh̄(a) is a continuous section. Finally,
some definitions start with the collection of C∗-algebras or continuous field as a given
structure which is not necessarily defined by the quantization maps.

The third setting is the most general, so all of the definitions I am reviewing can be
stated in these terms. Let I ⊆ R with 0 ∈ I an accumulation point. Let {Ah̄}h̄∈I be a
collection of C∗-algebras. Let A0 ⊂ A0 be a dense ∗-subalgebra. Let Qh̄ : A0 → Ah̄
for each h̄ ∈ I be linear maps such that Q0 : A0 ↪→ A0 is the inclusion. Let Ah̄ ⊂ Ah̄
be the subalgebra generated by ImQh̄ ≡ Qh̄(A0).

In most cases, the collection of C∗-algebras forms a continuous field, A, such that
for any a ∈ A0, h̄ �→ Qh̄(a) defines a continuous section, denoted Q(a) ∈ Γ(I,A).
I also refer toQ : A0 → Γ(I,A) as a quantization map. Compatibility with a continuous
field structure implies that for any a, b, c ∈ A0,

∥
∥Qh̄(a) +Qh̄(b)∗

∥
∥ and

∥
∥Qh̄(a)Qh̄(b) −Qh̄(c)

∥
∥

are continuous functions of h̄ ∈ I. Conversely, these conditions imply [16] that the
C∗-algebras generated by each ImQh̄ form a unique continuous field such thatQ(a) is
a continuous section. This means that if we start with a given continuous field structure,
then even if the quantization maps do not generate the given continuous field, they still
generate a continuous subfield.

If there is not a continuous field structure, then these continuity properties are at least
assumed to hold at 0 ∈ I.

With one exception to be discussed below, in all the definitions A0 is a commutative
algebra of functions on a Poisson manifold, and the quantization maps are related to the
Poisson bracket by the condition that ∀a, b ∈ A0,

[Qh̄(a),Qh̄(b)] ≈ ih̄Qh̄({a, b}) mod o1(h̄). (2.1)

After that, there are several variations in the definition. The index set I ⊆ R may
or may not be connected or closed. The quantization maps Qh̄ may be injective. The
image ofQh̄ may be a subalgebra ofAh̄, or it may be dense, or it may generate a dense
subalgebra. The quantization maps may or may not be ∗-linear.

The table on the next page summarizes the substantive variations among some of the
definitions in the literature.
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Name C I 1-1 Alg dense ∗
[16]

Strict deformation
quantization ✓ open

interval ✓ ✓ ✓

[17]
Operator deformation

quantization ✓ [0,ε) ✓ Im Qh̄ ✓

[8] Strict quantization Im Qh̄ ✓

[8]
Strict deformation

quantization ✓ ✓ ✓ ✓

[8] Continuous quantization ✓ ✓

[9]
Strict deformation

quantization ✓ ✓

[9]
Semi-strict

deformation quantization ✓ ✓

[11] Strict quantization ✓ [0,ε) Ah̄

[5]
Strict deformation

quantization ✓ closed Ah̄

[10] Strict quantization ✓ closed
Faithful ✓

Hermitian ✓

[10]
Strict deformation

quantization ✓ closed ✓ ✓

C The C∗-algebras may form a continuous field. Otherwise, continuity is only required at h̄ = 0.
I Any additional assumptions on the index set I ⊆ R.
1-1 The quantization maps may be assumed to be injective Qh̄ : A0 ↪→ Ah̄.
Alg The image Im Qh̄ ⊆ Ah̄ may be a ∗-subalgebra.
dense If the image is a ∗-subalgebra, then it may be dense in Ah̄. Otherwise, Im Qh̄ may be dense, or the∗-subalgebra Ah̄ generated by it may be dense.
∗ The quantization maps Qh̄ may be ∗-linear, i.e., Qh̄(a∗) = Qh̄(a)∗.

As this table should make clear, there is significant variation in both the definitions
and terminology, and these are not correlated. There is no consistent feature of “strict
deformation quantization” as opposed to “strict quantization”. In the absence of a defi-
nitive definition, I shall consider the merits of each of these possible axioms.

First, I favor requiring a continuous field structure, because the idea of strict defor-
mation quantization is to continuously deform from A0 to Ah̄. I can see no aesthetic
justification for requiring continuity at 0 without requiring it at all h̄ ∈ I.

Some authors require the index set I to be an interval. This is a natural requirement,
given the idea of deformation. However, in practice it is not a good assumption for
quantization. The Berezin-Toeplitz quantization of a compact Kähler manifold [1] is
one of the best behaved examples of quantization, and in that case

I =
{

0, . . . , 1
3,

1
2, 1

}

which is very different from an interval. On the other hand, it is technically awkward to
work with a continuous field over a pathological space, so I will assume that I ⊆ R is
locally compact.

The example of Berezin-Toeplitz quantization violates another of these tentative
axioms: The quantization maps are not injective. This is unavoidable because the algebras
Ah̄>0 are finite dimensional. Note that the continuous field structure implies a sort of
asymptotic injectivity; for any a 	= 0 ∈ A0,

lim
h̄→0

∥
∥Qh̄(a)

∥
∥ = ‖a‖ 	= 0 (2.2)
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so a 	∈ kerQh̄ for h̄ sufficiently small. However, this does not imply that any of the
maps Qh̄ for h̄ 	= 0 are actually injective.

The most delicate issue is whether the image ImQh̄ should be an algebra. This is
true in the Berezin-Toeplitz example, but it is not clear if this is true in all nice examples
of quantization. I also do not need this for the main result of this paper. Given this
uncertainty, I am favoring the weaker definition and not assuming this property here.
I will refer to a quantization with this property as algebraically closed.

If the ∗-subalgebras Ah̄ ⊆ Ah̄ generated by each ImQh̄ are dense, then the conti-
nuous field structure is completely fixed by the quantization maps. This would be a nice
property, but I do not need it for the main result here. I am also inclined to de-emphasize
the role of any one quantization map. Instead, I think that the existence of a large class of
equally good quantization maps is important. The tentative axiom that ImQh̄ ⊂ Ah̄ is
a dense subalgebra should probably be replaced by some sort of irreducibility property.

Finally, many definitions do not require the quantization map to be ∗-linear. However,
if the quantization map is at all well behaved with respect to the involution, then the
∗-linear part a �→ 1

2 [Q(a) +Q(a∗)∗] will also be a perfectly good quantization map.
For this reason, we can assume ∗-linearity without any important loss of generality.

These axioms are actually too weak, because they do not require sufficient regularity
at h̄ = 0.

First note that compatibility with the continuous field structure implies that
∀a, b ∈ A0,

Qh̄(a)Qh̄(b) ≈ Qh̄(ab) mod o0(h̄). (2.3)

I mentioned above that one definition does not include Eq. (2.1). That is Rieffel’s
definition [16] for strict deformation quantization of a (possibly) noncommutative alge-
bra. In that case, one cannot assume that the commutator vanishes at h̄ = 0. Instead,
Rieffel requires that

Qh̄(a)Qh̄(b) ≈ Qh̄[ab+ ih̄C1(a, b)] mod o1(h̄), (2.4)

where C1 is a given Hochschild 2-cocycle. The cohomology class of C1 inH2(A0,A0)
is required to be a “noncommutative Poisson structure” [20]; that is, to have vanishing
Gerstenhaber bracket with itself. This definition is slightly awkward; it is more appro-
priate to require that C1 belongs to a given Hochschild cohomology class, rather than
being a given cocycle.

Equation (2.4) requires the product to be expandable to first order in h̄. Equation
(2.1) only requires this of the antisymmetric part of the product. In this way, Eq. (2.4)
is a slightly stronger condition. However, the case of noncommutative A0 suggests that
Eq. (2.4) is more natural.

Equations (2.3) and (2.4) are the beginning of a sequence of possible conditions.

Definition 2.1. A quantization map Q is of order n (for some n = 0, 1, 2, . . . )
∀a, b ∈ A0 if there exists a degree n polynomial a ∗n b ∈ A0[h̄] such that

Qh̄(a)Qh̄(b) ≈ Qh̄[a ∗n b] mod on(h̄). (2.5)

A quantization map is of order ∞ if it is of order n for any finite n.
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The latter definition is consistent, because order n implies orderm < n.
This definition has two aspects. If the quantization is not algebraically closed but

is of order n, then ImQh̄ is approximately algebraically closed to order h̄n. So, this
is partly a weaker version of the algebraic closedness axiom. On the other hand, if the
quantization is algebraically closed and the quantization maps are injective, then the
quantization actually defines a variable product on A0:

Q−1
h̄ [Qh̄(a)Qh̄(b)], (2.6)

and the order n condition means precisely that this is an n times differentiable function
of h̄ at 0; in fact, a ∗n b is the nth order Taylor expansion of (2.6) about 0. So, “order
n” is both an algebraic closedness and a differentiability condition.

The same aesthetic principle that suggests using a continuous field of C∗-algebras
implies that if we impose a differentiability condition at 0, we should impose such a
condition everywhere. However, this condition will not be needed here, so I will leave
that discussion to a future paper.

Definition 2.2. Given a continuous field and a quantization map, Q : A0 → Γ(I,A),

define Γ
(n)
Q (I,A) to be the set of sections a ∈ Γ(I,A) for which there exist elements

a0, . . . , an ∈ A0 such that

a(h̄) ≈ Qh̄(a0 + a1h̄+ · · · + anh̄
n) mod on(h̄). (2.7)

Note that a quantization map Q is of order n if and only if Γ
(n)
Q (I,A) ⊂ Γ(I,A) is a

subalgebra. The algebra Γ
(n)
Q (I,A) should be thought of as the set of sections of A that

aren-times differentiable at h̄ = 0. The next lemma shows that Eq. (2.7) is the analogue
of a Taylor expansion, with the quantization map playing the role of a flat connection.

Lemma 2.1. Given a quantization map Q and a section a ∈ Γ(n)
Q (I,A), there exists a

unique degree n polynomial in A0[h̄] satisfying Eq. (2.7)

Proof. Existence is guaranteed by the definition of Γ
(n)
Q (I,A).

If uniqueness is violated then there exist a0, . . . , an ∈ A0 (not all 0) such that

Qh̄(a0 + a1h̄+ · · · + anh̄
n) = on(h̄).

Suppose that ak is the first nonzero term, then

Qh̄(ak + ak+1h̄+ · · · + anh̄
n−k) = on−k(h̄),

but setting h̄ = 0 shows that ak = Q0(ak) = 0. By contradiction, this proves unique-
ness. ��

Li [10] has constructed a disturbing class of examples which satisfy a reasonable
seeming definition of “strict quantization” but which really should not be considered
as quantizations. One of the surprising features of his construction is that it applies not
just to any Poisson manifold, but to any manifold with an antisymmetric bivector field
(an “almost Poisson manifold”). The problem is that Eq. (2.1) does not imply that the
bracket { · , · } satisfies the Jacobi identity.
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This is a little surprising, since a commutator always satisfies the Jacobi identity.
What goes wrong is that the error in Eq. (2.1) is not controlled enough. If we apply
Eq. (2.1) to a double commutator, we only get

[Qh̄(a), [Qh̄(b),Qh̄(c)]] ≈ −h̄2Qh̄({a, {b, c}}) mod o1(h̄)

which is vacuous. The problem is that the commutator of Qh̄(a) with an error term of
order o1(h̄) is only guaranteed to be of order o1(h̄), because we know nothing more
about that error term.

This problem can be fixed by requiring the quantization map to be second order, as
is implied by a more general result:

Proposition 2.2. Given an order n quantization map, the degree n polynomial a ∗n b
satisfying Eq. (2.5) is unique. There exist unique bilinear maps Cj : A0 × A0 → A0
such that ∀a, b ∈ A0

a ∗n b = ab+

n
∑

j=1

(ih̄)jCj(a, b). (2.8)

This ∗n is an approximately associative product in the sense that ∀a, b, c ∈ A0,

a ∗n (b ∗n c) ≡ (a ∗n b) ∗n c mod h̄n+1.

Proof. The uniqueness of a ∗n b is implied directly by Lemma 2.1. So, it defines a map
∗n : A0 × A0 → A0[h̄]. To check that this is bilinear, observe that if a is multiplied by
a constant, then multiplying a ∗n b by the same constant gives a degree n polynomial
satisfying Eq. (2.5); the same thing works with sums.

Since it is a bilinear map to polynomials, ∗n can be written out as a polynomial of
bilinear maps,

a ∗n b =

n
∑

j=0

(ih̄)jCj(a, b).

However, for any quantization map Q, Q0 : A0 ↪→ A0 is multiplicative. Setting h̄ = 0
in Eq. (2.5) shows that the degree 0 term in a ∗n b must be ab. This shows that a ∗n b
must be of the form Eq. (2.8).

Applying Eq. (2.5) to the product of a, b, c ∈ A0 gives

Q(a)[Q(b)Q(c)] ≈ Q[a ∗n (b ∗n c)] mod on(h̄).

There is an analogous expression with the other arrangement of parenthesis. Subtracting
shows that the associator satisfies,

Q[a ∗n (b ∗n c) − (a ∗n b) ∗n c] = on(h̄).

By Lemma 2.1, this shows that the coefficients of the associator vanish up to order h̄n.
��
This means that ∗n defines an associative product on A0[h̄]/h̄n+1.
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Corollary 2.3. IfQ is of order 1, then C1 is a Hochschild cocycle, defining an element
ofH2(A0,A0). If A0 is commutative then {a, b} := C1(a, b)−C1(b, a) is a derivation
in both arguments.

Proof. This is a well known result. The general case was first proven in [3]. The Hoch-
schild coboundary is the first order part of the associator of ∗1 , which vanishes by
Proposition 2.2.

Because ∗1 is associative to first order, the ∗1-commutator with any a ∈ A0 is a
derivation to first order. In the commutative case, that commutator is just ih̄ {a, · }, and
so the bracket is a derivation of the commutative product. ��

The point is that this alone does not imply the Jacobi identity. The commutator does
satisfy the Jacobi identity. The Jacobi identity for the bracket should appear at order h̄2,
but if Q is only of order 1, then the error terms are of order o1(h̄).

Corollary 2.4. If Qh̄ is of order 2, then the cohomology class of C1 has vanishing
Gerstenhaber bracket [C1, C1] = 0 ∈ H3(A0,A0) (i.e., it is a noncommutative Poisson
structure [20]). In the case of A0 commutative, the bracket { · , · } satisfies the Jacobi
identity and is thus a Poisson bracket.

Proof. Again, this is a standard result and was first proved in [3], where [C1, C1] is refer-
red to as the first obstruction cocycle for a deformation. This comes from the vanishing
of the second order term in the associator for ∗2 .

Because ∗2 is associative to second order, its commutator satisfies the Jacobi identity
to second order. In the commutative case, this commutator equals ih̄{ · , · } to first
order. So, the order h̄2 Jacobi identity for the ∗2-commutator is just the Jacobi identity
for the bracket { · , · }. ��

It is normally assumed that a quantization of a manifold corresponds to a Poisson
structure. However, if the quantization is not algebraically closed or of at least second
order, then the Jacobi identity is really an unnecessary and artificially imposed condition.
For this reason, it seems that we should always require a quantization to be of order at
least 2.

To summarize, here is the main definition I will be using in this paper:

Definition 2.3. Let A0 be a ∗-algebra and π ∈ H2(A0,A0) a real Hochschild cohomo-
logy class. An order n strict deformation quantization (I,A,Q) of (A0, π) consists of:
a locally compact subset I ⊆ R with 0 ∈ I an accumulation point, a continuous field of
C∗-algebras A over I, and a ∗-linear map Q : A0 → Γ(I,A) such that:

(1) At 0 ∈ I this is an inclusion Q0 : A0 ↪→ A0 of A0 as a dense ∗-subalgebra;
(2) Q satisfies the order n condition (2.5);
(3) if n ≥ 1, then the order 1 term in the expansion belongs to the given cohomology

class C1 ∈ 1
2π.

Such a quantization is algebraically closed if each ImQh̄ ⊆ Ah̄ is a ∗-subalgebra. It is
unital if all the algebras A0 and Ah̄ and the quantization maps Qh̄ : A0 → Ah̄ are
unital. This is an (order n) strict deformation quantization of a Poisson manifold M if
C0(M) ⊆ A0 ⊆ Cb(M) and π is the Poisson structure.
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As noted above, existence of a second order quantization implies the vanishing of the
Gerstenhaber bracket [π, π] = 0 ∈ H3(A0,A0). For quantization of a Poisson manifold,
π ∈ H2(A0,A0) implies that A0 is closed under the Poisson bracket.

This definition encompasses a spectrum of concepts. The weakest — a 0th order strict
deformation quantization — is really just a continuous field with a preferred collection of
sections. Anything less than second order should not really be considered quantization.

The class of examples constructed by Li [10] can be seen as a demonstration of
this. His construction applies to (nonintegrable) almost Poisson manifolds because the
quantization map is not required to be second order.

If a strict deformation quantization is of infinite order, then this means precisely that
the product has an asymptotic expansion, which defines a formal deformation quan-
tization. This formal product is not necessarily differential (i.e., the Cj’s may not be
bidifferential). However, any formal deformation quantization is equivalent (isomorphic
as a C[[h̄]]-algebra) to a differential one [7].

In the case of Berezin-Toeplitz quantization of a compact Kähler manifold,
Bordemann, Meinrenken, and Schlichenmaier [1] have shown that such an asymptotic
expansion exists. Thus that quantization is of infinite order and in particular of second
order.

3. Algebraic Index Theorem

Fedosov’s integrality results are stated in the context of formal deformation quantization
and follow from the algebraic index theorem.

A formal deformation quantization of a Poisson manifold [2,7,19] is an associative
product on the space C∞ (M)[[h̄]] of formal power series that reduces to ordinary multi-
plication modulo h̄ and whose commutator is given to first order by the Poisson bracket.
Write A

h̄ for the space C∞ (M)[[h̄]] with this product.
It is also possible to consider just an order n formal deformation quantization — that

is, an associative product on C∞ (M)[h̄]/h̄n+1. Proposition 2.2 shows that an order n
strict deformation quantization determines an order n formal deformation quantization.

Two formal deformation quantizations are equivalent if the algebras are isomor-
phic as C[[h̄]]-algebras. The isomorphism is a C[[h̄]]-linear map G : C∞ (M)[[h̄]] →

C∞ (M)[[h̄]] intertwining the products. Kontsevich [7] calls this a gauge equivalence if
G is the identity map modulo h̄.

A formal deformation quantization of a symplectic manifold (M,ω) determines

a characteristic class θ ∈ h̄−1H2(M)[[h̄]] which always equals [ω]
2πh̄ plus terms of

nonnegative degree. Formal deformation quantizations of (M,ω) are classified up to
gauge equivalence by θ [12,19].

A formal deformation quantization of (M,ω)has a unique C[[h̄]]-linear trace (modulo
normalization) [2]

Trh̄ : A
h̄

→ h̄−1
2 dim M

C[[h̄]].

There is a natural choice of normalization.
This trace is the setting for the algebraic index theorem. The statement of the theorem

is slightly simpler ifM is compact. Suppose that e0 = e20 ∈ Matm[C∞ (M)] is an idem-
potent matrix of smooth functions. Then there exists an idempotent eh̄ ∈ Matm(Ah̄)
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such that eh̄ ≡ e0 mod h̄. For any such idempotent, the algebraic index theorem [2,12]
shows that its trace is

Trh̄eh̄ =

∫

M
eθ ∧ Â(TM) ∧ ch(e0). (3.1)

Here, ch e0 ∈ H•(M) is the Chern character of the image vector bundle e0 (Cm ×M).
Note that this trace does not depend upon the choice of eh̄. It only depends upon the
topology ofM, the characteristic class θ, and the class of e0 in K0(M).

Now, let M = S2 ⊂ R
3 be the unit sphere in Euclidean space and take the induced

volume form as symplectic form. Because this is 2-dimensional, the Â class is trivial
and Eq. (3.1) simplifies to

Trh̄eh̄ =

∫

S2
eθ ∧ ch(e0) =

∫

S2
(1+ θ) ∧ (rk e0 + c1(e0))

= rk e0

∫

S2
θ+

∫

S2
c1(e0).

In particular, the normalization of the trace is

Trh̄1 =

∫

S2
θ. (3.2)

The K-theory K0(S2) is generated by the classes of 1 and the Bott projection. Let xi

be the Cartesian coordinates on S2 ⊂ R
3. Let σi ∈ Mat2(C) be the Pauli matrices. The

Bott projection eBott ∈ Mat2[C∞ (S2)] is

eBott := 1
2(1+ σix

i) =
1

2
+
1

2

(

x3 x1 − ix2

x1 + ix2 −x3

)

. (3.3)

This has rank 1 and Chern number
∫

S2 c1(eBott) = 1, so

Trh̄eh̄ = 1+

∫

S2
θ. (3.4)

Because rk eBott = 1, this is actually not the best choice of generator for K-theory. It
would be better to use [eBott]−[1] ∈ K0(S2), which actually lies in the reducedK-theory.
This corresponds to Trh̄eh̄− Trh̄1 = 1. The class [eBott] − [1] is the protagonist of this
paper.

Fedosov [2] has applied this algebraic index theorem to find restrictions on I for
“asymptotic operator representations” (AOR’s) of a formal deformation quantization.
Any infinite order strict deformation quantization (I,A,Q) of a symplectic manifold
determines a formal deformation quantization, and if the algebras Ah̄ are realized as
concrete C∗-algebras Ah̄ ⊂ L(H), then Q is an AOR of the formal deformation quan-
tization.

Suppose that the operators Qh̄(f) ∈ Ah̄ ⊂ L(H) for f ∈ A0 are all trace class, and
that the formal trace is the asymptotic expansion TrQh̄(f) ∼ Trh̄ f of the operator trace.
The operator trace of an idempotent is always an integer, therefore for any idempotent,
Trh̄eh̄ must be the asymptotic expansion of an integer valued function on I� {0}.

The trouble is that these assumptions do not generally hold for infinite order strict
deformation quantizations of symplectic manifolds. In some very well behaved examples
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of strict deformation quantization, there does exist a unique trace, but it is not integer-
valued on idempotents. For example, in the “noncommutative torus” quantization of T

2,
for irrational values of h̄, the set of traces of idempotents is dense in [0, 1] (see [13]). That
explains why the noncommutative torus can be defined over I = R, violating Fedosov’s
restrictions on h̄.

In order to go beyond Fedosov’s result and find general restrictions on I, we must
not assume a priori that there exist any traces on a strict deformation quantization.
Nevertheless, Fedosov’s ideas do give an important heuristic guideline.

4. Berezin-Toeplitz Quantization

The Berezin-Toeplitz construction [1] is a fairly general and very well behaved quanti-
zation construction. It provides some hints to the possible structure of an arbitrary strict
deformation quantization of S2.

Let M be a compact, connected Kähler manifold with symplectic form ω and such
that the cohomology class [ ω

2π] ∈ H2(M) is integral. Then there exists a holomorphic
line bundle L → M with a Hermitian inner product and curvature equal toω.

The N-fold tensor power L⊗N is also a holomorphic line bundle with inner product
and has curvatureNω. Using the inner product and the symplectic volume form, we can
construct a Hilbert space L2(M,L⊗N) from sections of L⊗N. The set of holomorphic
sections of L⊗N is a finite dimensional Hilbert subspace HN ⊂ L2(M,L⊗N). Let
ΠN : L2(M,L⊗N) →→ HN be the orthogonal projection onto this subspace.

The Hilbert space L2(M,L⊗N) is a module of the algebra C(M) of continuous
functions. For any f∈ C(M) and ψ∈ HN, TN(f)|ψ〉 := ΠNf|ψ〉 defines a map TN :
C(M) → L(HN) from functions to operators (matrices) on HN.

This defines an algebraically closed, infinite order, strict deformation quantization of
M as follows. The index set is

I :=
{

0, . . . , 1
3,

1
2, 1

}

.

The algebras are A0 := C∞ (M), A0 := C(M), A1/N := L(HN). The quantization
maps areQ1/N = TN (restricted to A0). These quantization maps are actually surjective
and define a unique continuous field structure on {Ah̄}h̄∈I.

Now consider the sphere. LetM = S2 ⊂ R
3 be the standard unit sphere in Euclidean

space with the symplectic form equal to the induced volume form. This means that

∫

S2
ω = 4π

so 1
2ω satisfies the integrality condition. With this choice, the Poisson brackets of the

Cartesian coordinates (of the embedding) satisfy the standard su(2) relations. The down-
side of this normalization is that we should take L to have curvature 1

2ω, and identify

h̄ = 2
N.

The sphere S2 is of course an SU(2)-symmetric space, and the quantization can be
carried out equivariantly. The Hilbert space HN is N + 1-dimensional, carrying the
spin-N

2 irreducible representation of SU(2).
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Let xi ∈ C∞ (S2) be the Cartesian coordinates of the embedding S2 ⊂ R
3. The

quantizations of these functions are

Qh̄(xi) = TN(xi) = 2
N+2J

i,

where Ji are the standard self-adjoint su(2)-generators.
Again, letσi ∈ Mat2(C) be the Pauli matrices and eBott ∈ Mat2(A0) the Bott projec-

tion (3.3). Applying the quantization map gives a matrixQh̄(eBott) = 1
2 + 1

N+2σiJ
i ∈

Mat2(Ah̄) with only two eigenvalues, 0 and N+1
N+2. This is easily corrected to give a

projection,

e(h̄) = N+2
2(N+1)

+ 1
N+1σiJ

i. (4.1)

From this, we can explicitly compute the trace, Tr e(h̄) = N+ 2.
In fact, by comparing the traces Tr 1 = N+1 = 2

h̄ +1 and Tr e(h̄) = N+2 = 2
h̄ +2

with Eqs. (3.2) and (3.4), we can deduce that if a formal deformation quantization is
extracted from this Berezin-Toeplitz quantization, then its characteristic class is

∫

S2 θ =
2
h̄ + 1. See [4] for a more general result.

The projection e(h̄) extends the Bott projection eBott, so the K-theory class [e(h̄)]−

[1] ∈ K0(Ah̄) extends [eBott] − [1] ∈ K0(S2). The usual trace on the matrix algebra Ah̄
gives a homomorphism [Tr] : K0(Ah̄) → Z ⊂ R, and the trace of this particular class is

[Tr]([e(h̄)] − [1]) = 1.

This trace (in general, any finite trace) factors through degree 0 cyclic homology via the
Chern character as

[Tr] : K0(Ah̄)
ch0−−→ HC0(Ah̄)

Tr−→ C.

The cyclic homology groupHC0(Ah̄) is just the quotient ofAh̄ by the subspace spanned
by commutators. The degree 0 part of the Chern character of an idempotent is represented
by its partial trace:

Definition 4.1. The partial trace tr : Matm(Ah̄) → Ah̄ maps a matrix over Ah̄ to the
sum of its diagonal entries.

The partial trace of our idempotent is tr e(h̄) = 1 + 1
N+1, and the Chern character

ch0([e(h̄)] − [1]) is represented by

tr e(h̄) − 1 = 1
N+1 ∈ Ah̄. (4.2)

Although (4.2) is a multiple of 1 ∈ Ah̄, this is not typical. Because the construction
of e(h̄) was SU(2)-equivariant, tr e(h̄) is inevitably invariant, and thus a multiple of 1
since HN is irreducible.

Imagine now that we forget about the SU(2) action and quantize S2 using a non
equivariant Kähler structure. We can still construct e(h̄) by the same procedure, but
now tr e(h̄) − 1 ∈ Ah̄ will (probably) not be a multiple of 1. However, for h̄ small
enough, e(h̄) will have the same class in the K-theory K0(Ah̄) as the equivariant one
(see [4]). This implies that the (complete) trace of tr e(h̄) − 1 is the same. So, applying
the normalized trace T̃r : Ah̄ → C, a �→ (Tra)/(N+ 1) should give

T̃r[tr e(h̄) − 1] = 1
N+1

for N sufficiently large.
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Now what can we deduce about the value ofN from the existence of the trace onAh̄
without actually using the trace? The trick is to note that the normalized trace on Ah̄
is a state. This implies that if a self-adjoint element a = a∗ ∈ Ah̄ is bounded by real
numbers as α ≤ a ≤ β, then T̃ra satisfies the same bound, α ≤ T̃ra ≤ β. Applying
this to tr e, we see that if α ≤ tr e(h̄) − 1 ≤ β then

α ≤ 1
N+1 ≤ β.

So, if tr e is sufficiently close to a multiple of the identity (β−α � 1
2 h̄

2), then there will
be a unique value ofN ∈ N fitting this bound. I will show in the next section (Lem. 5.2)
that an integer can be extracted from a projection in this way quite generally.

5. General Results

Before proceeding further, I will need a simple result about the spectrum of a sum of
bounded operators.

Lemma 5.1. If a, b ∈ A are self-adjoint elements of a C∗-algebra, then the spectrum of
the sum satisfies

Spec(a+ b) ⊆ Speca+ [−‖b‖, ‖b‖], (5.1)

where the sum denotes the set of all sums of elements of the two sets.

Proof. If λ 	∈ Speca, then (a − λ)−1 is contained in the commutative C∗-subalgebra
generated bya and 1 in the unitalization ofA. That is the algebra C(Spec a) of continuous
functions on the spectrum. The norm of (a− λ)−1 is the supremum over Speca of the
inverse of the distance to λ. Equivalently, it is the inverse of the infimum of the distance,

∥
∥
∥(a− λ)−1

∥
∥
∥ = (dist[λ,Speca])−1

.

Now, suppose that ‖b‖ < dist[λ,Speca]. This implies that
∥
∥
∥
∥
b

1

a− λ

∥
∥
∥
∥

≤ ‖b‖
dist[λ,Speca]

< 1

and the power series,

1

a− λ

∞
∑

j=0

[

−b
1

a− λ

]j

(5.2)

converges to an element of A. Multiplying (5.2) by a + b − λ shows that this sum
must equal the inverse of a + b − λ. In particular, that inverse exists and therefore
λ 	∈ Spec(a+ b).

Equivalently, λ ∈ Spec(a + b) implies dist[λ,Speca] ≤ ‖b‖. Since a and b are
self-adjoint, Speca,Spec(a+ b) ⊂ R, and this gives Eq. (5.1). ��

The next lemma is my most important tool for proving the main results.
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Lemma 5.2. LetA be any unital C∗-algebra, and e = e2 = e∗ ∈ Mat2(A) a projection.
If there exist real numbers α ≤ β ∈ R bounding the partial trace

α ≤ tr(e) − 1 ≤ β

then either α ≤ 0 ≤ β or there exists an integer k ∈ Z such that

α ≤ 1
k ≤ β.

Proof. If α ≤ 0 ≤ β, then the claim is true. If α,β < 0, then we could equivalently
consider the complementary projection 1−e instead. So, it is sufficient to prove the case
when 0 < α,β.

If we denote the entries of this matrix as

e =

(

Z X
X∗ 1−W

)

,

then the properties e = e∗ and e2 = e give relations among X,Z,W ∈ A,

Z = Z∗, W = W∗, (5.3a)

ZX = XW, (5.3b)

Z(1− Z) = XX∗, W(1−W) = X∗X. (5.3c)

The relations (5.3) have several implications for the spectra of Z and W.
First, Eqs. (5.3a) and (5.3c) imply that

SpecZ,SpecW ⊂ [0, 1].

Second, suppose λ 	∈ SpecZ,SpecW. By (5.3c) and (5.3b),

W(1−W) = X∗X = X∗(Z− λ)−1(Z− λ)X = X∗(Z− λ)−1X(W − λ).

Multiplying this equation by (W − λ)−1 on the right gives,

X∗(Z− λ)−1X = W(1−W)(W − λ)−1.

The left-hand side explicitly extends to a continuous function of λ 	∈ SpecZ. However,
the right-hand side only extends continuously to λ ∈ SpecW if λ = 0 or 1. This shows
that SpecW ⊆ {0, 1} ∪ SpecZ. By a symmetrical argument, SpecZ ⊆ {0, 1} ∪ SpecW,
and so

SpecZ ∪ {0, 1} = SpecW ∪ {0, 1}. (5.4)

Third, using the bounds on tr(e) − 1 = Z−W, Lemma 5.1 shows that,

SpecZ ⊂ SpecW + [α,β]. (5.5)

Relation (5.5) implies that sup(SpecZ) − sup(SpecW) ≥ α > 0. If 1 	∈ SpecZ,
then Eq. (5.4) would imply that sup(SpecW) = sup(SpecZ), therefore by contradiction
1 ∈ SpecZ.

Combining relations (5.4) and (5.5) gives

SpecZ ⊂ ({0, 1} ∪ SpecZ) + [α,β]

= [α,β] ∪ (SpecZ+ [α,β])
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since 1+ α > 1. Iterating this gives

SpecZ ⊂
∞
⋃

k=1

[kα, kβ].

Now, 1 ∈ SpecZ implies that there exists k ∈ N such that kα ≤ 1 ≤ kβ. ��
There is no way to avoid requiring that A is unital in this theorem. Without a unit, it
would be meaningless to compare an element of A with real numbers.

Any idempotent matrix of functions can be extended to an idempotent over a formal
deformation quantization. This next lemma is the analogous result for strict deformation
quantization.

Lemma 5.3. If (I,A,Q) is an order n ≥ 0 strict deformation quantization, and

a = a∗ ∈ Γ
(n)
Q (I,A) such that a(0) = a2(0) is a projection, then there exists a

neighborhood I ′ ⊆ I of 0 (in the relative topology of I) such that

e :=
1

2πi

∮

dλ

λ− a|I′
(5.6)

where the contour is the circle of radius 1
2 centered at 1, defines a projection e = e∗ =

e2 ∈ Γ(n)
Q (I ′, A).

Proof. The function ‖a(h̄) − a2(h̄)‖ is continuous and vanishes at h̄ = 0, therefore,
(by local compactness of I) there exists a neighborhood I ′ ⊆ I of 0 over which it is
bounded by some c < 1

4. The spectrum of a restricted to I ′ is contained in

Speca|I′ ⊆
{

λ ∈ R
∣
∣ |λ− λ2| ≤ c

}

⊆
{

λ ∈ R
∣
∣ |λ− λ2| < 1

4

}

=
(

1
2 − 1√

2
, 1

2

)

∪
(

1
2,

1
2 + 1√

2

)

.

So the contour does not intersect Speca|I′ and e ∈ Γ(I ′, A) is well defined by (5.6).
Because a|I′ is self-adjoint, e is automatically a projection. Because a(0) is already a
projection and the contour encloses 1 but not 0, e(0) = a(0).

This proves the lemma for n = 0, so now suppose that n ≥ 1. I need to show that

e ∈ Γ(n)
Q (I ′, A). Any polynomial of a|I′ is automatically contained in Γ

(n)
Q (I ′, A), so it

is sufficient to show that e is approximated well enough by polynomials of a|I′ .
Consider the polynomial,

p(x) = 3x2 − 2x3.

This has the properties that p(0) = 0, p(1) = 1, and p ′(0) = p ′(1) = 0. Iterating p
gives polynomials whose derivatives vanish at 0 and 1 to any desired order.

Note that a − a2 ∈ Γ
(n)
Q (I,A) vanishes at h̄ = 0, so a − a2 = O1(h̄). Define

e0 := a|I′ and iteratively define ej := p(ej−1) for j ≥ 1. For numbers x ∈ R such that

|x− x2| < 1
4, the polynomial p satisfies

∣
∣
∣p(x) − p2(x)

∣
∣
∣ =

∣
∣
∣3+ 4x− 4x2

∣
∣
∣

∣
∣
∣x− x2

∣
∣
∣

2 ≤ 4

∣
∣
∣x− x2

∣
∣
∣

2
.
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So,
∥
∥
∥ej(h̄) − e2j (h̄)

∥
∥
∥ ≤ 4

∥
∥
∥ej−1(h̄) − e2j−1(h̄)

∥
∥
∥

2

≤ 1
4

(

4

∥
∥
∥e0(h̄) − e20(h̄)

∥
∥
∥

)2j

= O2j
(h̄).

By definition, e is constructed from e0 = a|I′ by the contour integral (5.6). However,
the polynomial pmaps the parts of Spec e0 above and below 1

2 to points above and below
1
2, so the same contour integral with ej in place of e0 gives the same projection, e.

The contour integral is equivalent to applying the step function θ(x− 1
2) to ej, since

this function is holomorphic on the spectrum.
The polynomial ej − e2j is one measure of the failure of ej to be a projection; the

difference e− ej is another. To compare these, consider
∣
∣
∣x− x2

∣
∣
∣ =

(∣
∣
∣x− 1

2

∣
∣
∣ + 1

2

) ∣
∣
∣

∣
∣
∣x− 1

2

∣
∣
∣ − 1

2

∣
∣
∣ ≥ 1

2

∣
∣
∣

∣
∣
∣x− 1

2

∣
∣
∣ − 1

2

∣
∣
∣ = 1

2

∣
∣
∣x− θ

(

x− 1
2

)∣
∣
∣ .

The last term measures the difference between the identity and the step function. Applying
this to ej shows,

∥
∥e(h̄) − ej(h̄)

∥
∥ ≤ 2

∥
∥
∥ej(h̄) − e2j (h̄)

∥
∥
∥ = O2j

(h̄).

For 2j ≥ n+ 1, this error is of order better than on(h̄),

e ≈ ej mod on(h̄).

The space of sections Γ
(n)
Q (I ′, A) is an algebra and ej is just a polynomial of e0, therefore

ej ∈ Γ(n)
Q (I ′, A) and so e ∈ Γ(n)

Q (I ′, A). ��
There is a fairly natural notion of equivalence of quantizations.

Lemma 5.4. If (I,A,Q) is an order n strict deformation quantization and Q ′ : A0 →

Γ
(n)
Q (I,A) such that Q ′

0 = Q0, then (I,A,Q ′) is also an order n strict deformation
quantization, the quantization mapsQ andQ ′ determine gauge equivalent products on

A0[h̄]/h̄n+1, and Γ
(n)
Q ′ (I,A) = Γ

(n)
Q (I,A).

Proof. Note that this is vacuously true for n = 0, so we can assume n ≥ 1. For any

a ∈ A0, Q ′(a) ∈ Γ
(n)
Q (I,A), so by definition there exists a degree n polynomial

G(a) ∈ A0[h̄] such that

Q ′(a) ≈ Q[G(a)] mod on(h̄),

and this is unique by Lemma 2.1. It is elementary to check thatG(a) depends C-linearly
on a, so this defines a C[h̄]-linear map G : A0[h̄] → A0[h̄].

Let ∗n and ∗′n be the (approximately associative) products determined byQ andQ ′
in eq. (2.5). By definition ∀a, b ∈ A0[h̄],

Q[G(a ∗′n b)] ≈ Q ′(a ∗′n b) ≈ Q ′(a)Q ′(b) mod on(h̄)
≈ Q[G(a)]Q[G(b)] ≈ Q[G(a) ∗n G(b)] mod on(h̄).
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ThereforeG(a∗′nb) ≡ G(a)∗nG(b) mod h̄n+1. Since the mapG equals the identity
modulo h̄, it is invertible modulo h̄n+1 and therefore a gauge equivalence between these
products on A0[h̄]/h̄n+1.

By definition, any section a ∈ Γ(n)
Q (I,A) has a “Taylor expansion” (2.7) in terms

of Q. Since G is invertible modulo h̄n+1, there also exist a ′
0, . . . , a

′
n ∈ A0 such that

a0 + · · · + anh̄
n ≡ G(a ′

0 + · · · + a ′
nh̄

n) mod h̄n+1.

This implies that

Q ′
h̄(a ′

0 + · · · + a ′
nh̄

n) ≈ Qh̄[G(a ′
0 + · · · + a ′

nh̄
n)] mod on(h̄)

≈ Qh̄(a0 + · · · + anh̄
n) ≈ a(h̄) mod on(h̄),

i.e., this is an expansion of a in terms of Q ′. Therefore, Γ
(n)
Q ′ (I,A) = Γ

(n)
Q (I,A).

This shows in particular that these maps give cohomologous Hochschild cocycles
C1 and C ′

1 for A0. Thus (I,A,Q ′) is a quantization for the same (noncommutative)
Poisson structure on A0. ��

Lemma 5.2 only applies to unital C∗-algebras, so it is not directly applicable to an
arbitrary strict deformation quantization of S2. Fortunately, an arbitrary strict deforma-
tion quantization (of a unital algebra) can always be made unital.

Lemma 5.5. If (I,A,Q) is an order n ≥ 0 strict deformation quantization of a unital
algebra A0 ⊂ A0, then there exists an order n unital strict deformation quantization
(I ′, A ′,Q ′) of A0, where I ′ ⊆ I is a neighborhood of 0, A ′ ⊆ A|I′ is a continuous
subfield of C∗-algebras, and

Q ′ : A0 → Γ
(n)
Q (I ′, A) ∩ Γ(I ′, A ′).

Proof. 1 ∈ A0 is a projection, so by Lemma 5.3, we can correct Q(1) to a projection

e ∈ Γ(n)
Q (I ′, A) given by Eq. (5.6). Define the algebras A ′

h̄ := eAh̄e for h̄ ∈ I ′. These
form a continuous subfield, because e is a continuous projection. The projection e(h̄)
becomes the unit in A ′

h̄.

Define V := eQ(1)e ∈ Γ(n)
Q (I ′, A ′); this is invertible in this algebra. By construc-

tion, V ≈ e mod O1(h̄). So,

V−1/2 ≈
n

∑

j=0

(
−1

2

j

)

(V − e)j mod On+1(h̄)

∈ Γ(n)
Q (I ′, A ′).

Define Q ′(a) := V−1/2Q(a)V−1/2. This satisfies Q ′(a) = eQ ′(a) = Q ′(a)e, so
in fact Q(a) ∈ Γ(I ′, A ′). On the unit, this gives Q ′(1) = V−1/2Q(1)V−1/2 = e, so
Qh̄ : A0 → A ′

h̄ is unital.

For any a ∈ A0, Q ′(a) ∈ Γ(n)
Q (I ′, A) because V ∈ Γ(n)

Q (I ′, A). ��
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6. The Obstruction

Now consider some strict deformation quantization of S2. As always, the dense
subalgebra A0 ⊂ C(S2) must be closed under the Poisson bracket. I will also need
to assume that it is closed under solution of the Poisson equation. In order to use the
Bott projection, I will also require that the Cartesian coordinates xi ∈ C(S2) of the unit
sphere S2 ⊂ R

3 are contained in A0.
The most natural choices of algebra A0 ⊂ C(S2) would be the algebra of smooth

functions C∞ (S2) or the algebra of polynomials (in the coordinate functions xi). Both
of these algebras satisfy all of the conditions above.

In order to apply Lemma 5.2, we need a projection whose partial trace is sufficiently
close to a multiple of the identity. That is the purpose of the next lemma. Let ∆ denote
the Laplacian.

Lemma 6.1. If (I,A,Q) is an order n ≥ 2, unital, strict deformation quantization of
S2, such that A0 � xi and ∀f ∈ C(S2),

∆f ∈ A0 =⇒ f ∈ A0, (6.1)

then there exists a projection e ∈ Γ
(n)
Q [I ′,Mat2(A)] defined over a neighborhood

I ′ ⊆ I of 0, such that e(0) = eBott and

tr e ≈ 1+ ϑ−1
(n−2) mod on(h̄),

where ϑ(n−2) ∈ 2
h̄ + C[h̄] is a degree n− 2 Laurent polynomial.

Proof. The quantization maps naturally extend to matrices by linearity, giving a quan-
tization of Mat2(A0). So, Lemma 5.3 applies and a projection e can be constructed by
applying functional calculus to Q(eBott). This satisfies e(0) = eBott.

It is a little easier to work with the equivalent grading operator u := 2e− 1. As any
2× 2 matrix, it can be decomposed in terms of Pauli matrices in the form,

u = τ+ σix̂
i
,

where τ, x̂
i ∈ Γ(n)

Q (I ′, A). In this case, e(0) = eBott means that τ(0) = 0, and x̂
i
(0) =

xi. The identity u2 = 1 implies the commutation relations,

τ x̂
i
+ x̂

i
τ = − i

2ε
i
jk[x̂

j
, x̂

k
] ≈ h̄

2ε
i
jkQ({xj, xk}) = h̄Q(xi) ≈ h̄x̂

i
mod O2(h̄).

Therefore τ ≈ 1
2 h̄ mod O2(h̄) and

tr e = 1+ τ ≈ 1+ 1
2 h̄ mod O2(h̄).

Since tr e ∈ Γ(n)
Q (I ′, A), this implies that

tr e ≈ 1+ 1
2 h̄+ h̄2Q(g) mod o2(h̄) (6.2)

for some g ∈ A0.
This shows that tr e equals a multiple of the identity to order O2(h̄). The next step is

to improve u, so that tr e will equal a multiple of the identity to order o2(h̄).
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First, add to u some self-adjoint δ ∈ Γ(n)
Q [I ′,Mat2(A)] (to be chosen below), and

then define u ′ by “correcting” u+δwith functional calculus so that u ′2 = 1. My choice
of δ is

δ := Q(f) − uQ(f)u = u[u,Q(f)] = 1
2[u, [u,Q(f)]] (6.3)

for some f ∈ A0. This vanishes at h̄ = 0, so δ = O1(h̄).
This δ was deliberately chosen such that it anticommutes with u, i.e., uδ = −δu.

So, (u+ δ)2 = 1+ δ2 and we can write u ′ explicitly as

u ′ = (1+ δ2)−1/2(u+ δ)

≈ u+ δ− 1
2uδ

2 mod O3(h̄). (6.4)

We need to compute tru ′ to second order in h̄. Surprisingly, we only need the first
2 terms of (6.4), because the partial trace of the third term is actually of order O3(h̄).

The reason is that τ is scalar up to first order, so [τ, x̂
i
] = O3(h̄). Hence,

tru ′ − tru ≈ tr(Q(f) − uQ(f)u) = 1
2 tr[u, [u,Q(f)]] mod o2(h̄)

= [x̂
i
, [x̂

i
,Q(f)]] + [τ, [τ,Q(f)]]

≈ −h̄2Q({xi, {xi, f}}) ≈ h̄2Q(∆f) mod o2(h̄).

Therefore, this will change the partial trace of the projection to

tr e ′ ≈ tr e+ 1
2 h̄

2Q(∆f) mod o2(h̄).

Now we have already seen that tr e ≈ 1 + 1
2 h̄ + h̄2Q(g) mod o2(h̄). We need to

replace the function g with its average value,

c :=
1

4π

∫

S2
gω.

The function g − c integrates to 0 and is therefore (by the Hodge decomposition) in
the image of the Laplacian. So, by the hypothesis (6.1), there exists f ∈ A0 such that
−2∆f = g− c, and so

tr e ′ ≈ 1+ 1
2 h̄+ ch̄2 ≈ 1+

(
2
h̄ − 4c

)−1
mod o2(h̄).

This proves the claim up to second order. To correct u from order n− 1 to order n,
we can use exactly the same procedure, except with u+ h̄n−2δ. ��

It would have been simpler to equivalently state that tr e is approximated by a poly-
nomial 1 + 1

2 h̄ + . . . . However, this awkward formulation of Lemma 6.1 in terms of
ϑ(n−2) simplifies Theorem 6.2, and the notation ϑ is motivated by Theorem 6.3 below.
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Theorem 6.2. If (I,A,Q) is an order n ≥ 2, unital, strict deformation quantization of
S2, such that A0 � xi and ∀f ∈ C(S2)

∆f ∈ A0 =⇒ f ∈ A0,

then there is no connected neighborhood of 0 in I and in particular I is not connected.
More precisely, there exists a degree n−2 Laurent polynomial ϑ(n−2) ∈ 2

h̄ +C[h̄] such
that ∀h̄ 	= 0 ∈ I,

dist [ϑ(n−2)(h̄),Z] = on−2(h̄). (6.5)

This Laurent polynomial is unique modulo adding a constant integer. If the quantization
is unital, then ϑ(n−2) is the same as in Lemma 6.1.

Proof. The first claim will follow from (6.5). Note that (6.5) is true if and only if it is
true for a neighborhood I ′ ⊂ I of 0, so by Lemmas 5.4 and 5.5, it is sufficient to prove
(6.5) for a unital quantization.

So, assume the quantization is unital and let e be the projection andϑ(n−2) the Laurent
polynomial from Lemma 6.1. Define

E(h̄) :=
∥
∥
∥tr(e) − 1− ϑ−1

(n−2)

∥
∥
∥.

By Lemma 6.1, this is of order on(h̄). For any nonzero h̄ ∈ I, Lemma 5.2 says that
there exists k ∈ Z such that

ϑ(n−2)(h̄)−1 − E(h̄) ≤ 1

k
≤ ϑ(n−2)(h̄)−1 + E(h̄).

Since E(h̄)|ϑ(n−2)(h̄)| = on−1(h̄), it converges to 0 and is less than 1 for h̄ sufficiently
small, and

dist [ϑ(n−2)(h̄),Z] ≤ |ϑ(n−2)(h̄) − k| ≤ E(h̄)ϑ2
(n−2)(h̄)

1− E(h̄)|ϑ(n−2)(h̄)| = on−2(h̄).

This proves the existence of ϑ(n−2) .
Now, suppose that ϑ ′

(n−2) ∈ 2
h̄ + C[h̄] is another degree n − 2 Laurent polynomial

satisfying Eq. (6.5). Then ϑ(n−2) − ϑ ′
(n−2) ∈ C[h̄] and

dist[ϑ(n−2)(h̄) − ϑ ′
(n−2)(h̄),Z] = on−2(h̄). (6.6)

Taking the limit h̄ → 0 shows that m := ϑ(n−2)(0) − ϑ ′
(n−2)(0) ∈ Z. So,

ϑ(n−2)(h̄) − ϑ ′
(n−2)(h̄) −m = O1(h̄)

is smaller than 1
2 for h̄ sufficiently small, and thus (6.6) becomes

ϑ(n−2)(h̄) − ϑ ′
(n−2)(h̄) −m = on−2(h̄),

but ϑ(n−2) −ϑ ′
(n−2) is of degree n−2, so this proves that ϑ(n−2)(h̄) = ϑ ′

(n−2)(h̄)+m.

Forn = 2, we can write ϑ(n−2) = 2
h̄ +c. So, for all sufficiently large integers k ∈ Z,

2
(

k− c+ 1
2

)−1 	∈ I.
Since 0 ∈ I is an accumulation point, this shows that I— or any neighborhood of 0 in I
— cannot be connected. ��
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If the quantization was only first order, then we would still have that

tr e ≈ 1+ 1
2 h̄ mod o1(h̄),

but this would not restrict the values of h̄ at all. Even if the error is of order O2(h̄), this
would be inadequate. In that case, 2/h̄ is restricted to a sequence of intervals around
integers, but the width of the intervals is only bounded (rather than convergent to 0), so
the intervals may overlap.

The next (and final) theorem connects Theorem 6.2 with Fedosov’s integrality condi-
tion.

Theorem 6.3. If (I,A,Q) is an infinite order, strict deformation quantization of C∞ (S2)

and θ ∈ h̄−1H2(S2)[[h̄]] is the characteristic class of the corresponding formal defor-
mation quantization, then for any n ≥ 2 ∈ N the Laurent polynomial ϑ(n−2) in
Lemma 6.1 and Theorem 6.2 is the truncation of

ϑ :=

∫

S2
θ.

In other words, ϑ(h̄) is the asymptotic expansion of some map I� {0} → Z.

Proof. Let ∗ be the formal deformation quantization product obtained by asymptotically
expandingQ(f)Q(g). BecauseH2(S2) is 1-dimensional, any formal deformation quan-
tization of S2 is gauge equivalent to an SU(2)-equivariant formal deformation quantiza-
tion. Let ∗′ be such an equivalent equivariant formal product, and letG : C∞ (S2)[[h̄]] →

C∞ (S2)[[h̄]] be the equivalence; that is,

G(f ∗ g) = G(f) ∗′ G(g).

By equivariance, there exist R = 1+ . . . and η = h̄+ · · · ∈ C[[h̄]] such that

xi ∗′ xi = R2

and

[xi, xj]∗′ = iηε
ij
kx

k.

However, by a minor rescaling, we can always choose ∗′ such that R2 = 1− 1
4η

2.

Letu ′
0 := σix

i = 2eBott −1. The ∗′ product with itself isu ′
0∗′u ′

0 = 1+ 1
4η

2+ηu ′
0.

So, (u ′
0 + 1

2η) ∗′ (u ′
0 + 1

2η) = 1 and

e ′
h̄ := eBott + 1

4η

is a projection for the product ∗′. This has partial trace tr e ′
h̄ = 1+ 1

2η.
Since tr e ′

h̄ ∈ C[[h̄]], the algebraic index theorem shows that

Trh̄e
′
h̄ =

∫

S2
eθ ∧ ch eBott = 1+

∫

S2
θ

!
=

(

1+ 1
2η

)

Trh̄1 =
(

1+ 1
2η

) ∫

S2
θ.

Therefore,
∫

S2
θ = 2η−1 = 2h̄−1 + . . . .
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Now let G(n) be the truncation of G up to order h̄n. The idea is thatQ ◦G(n) is an
approximately equivariant quantization map. Define,

e0 := Q[G(n)(eBott)]

and observe that

e20 ≈ Q[G(n)(eBott ∗′ eBott)] mod on(h̄).

So if we correct e0 to a projection e by functional calculus, then it is approximately

e ≈ e0 + 1
4η mod on(h̄).

This has partial trace

tr e = 1+ 1
2η ≈ 1+

(∫

S2
θ(n−2)

)−1

mod on(h̄),

where θ(n−2) is the truncation of θ at degree h̄n−2. ��
Note that this reproves Lemma 6.1, but with different hypotheses. Lemma 6.1 applies

to any order ≥ 2 quantization with minor restrictions on A0. Theorem 6.3 requires an
infinite order quantization with A0 = C∞ (S2), although the proof could probably be
extended to finite orders by generalizing the classification results for formal deformation
quantization in the literature. I have retained Lemma 6.1 because the hypotheses are
slightly more general and the proof is explicit and constructive.

7. Remarks

Theorem 6.2 shows that I� {0} is very close to being discrete. It is contained in a union
of smaller and smaller intervals, and for an infinite order quantization, these intervals
shrink faster than any power of h̄.

This seems to be the strongest possible result. Consider the following variant of the
Berezin-Toeplitz quantization of S2. Let

I := {0} ∪
∞
⋃

N=0

[
2
N − e−N, 2

N + e−N
]

,

and for h̄ ∈ [ 2
N − e−N, 2

N + e−N], Ah̄ := L(HN), and Qh̄ := TN. This defines
an infinite order, algebraically closed, strict deformation quantization of S2. The only
peculiar feature of this quantization is thatQh̄ is locally constant away from h̄ = 0, but
an additional axiom to rule that out would probably rule out the trivial quantization of a
manifold with 0 Poisson structure.

The Bott projection is not the only 2×2 projection over S2. In fact, a 2×2 projection
on S2 is equivalent to a map from S2 to CP1 = S2. The degree of the map gives the
Chern number of the projection.

Suppose that we started with a 2 × 2 projection with Chern number s, and applied
the Berezin-Toeplitz quantization of S2. Then the normalized trace would be T̃r[e(h̄)] =
s/(N + 1). This is not always the reciprocal of an integer. So, how does Lemma 5.2
“know” that we started with the Bott projection?
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The answer is that eBott and 1 − eBott are the only nontrivial equivariant 2 × 2

projections on S2. Any other such projection is rather far from being equivariant. Conse-
quently, if we quantize it, then tr e(h̄) is never close to a multiple of the identity; its
spectrum is always too wide for Lemma 5.2 to be nontrivial.

It would be nice to show that the quantization of S2 is essentially unique, i.e., that
the algebrasAh̄	=0 are all simple matrix algebras, and the Berezin-Toeplitz maps define
continuous sections of the continuous field. However, the present axioms are not strong
enough to imply this.

Given Lemma 6.1, the proof of Lemma 5.2 can be extended slightly to show that
Ah̄ contains a subalgebra isomorphic to Matk(C), where k is the closest integer to
|ϑ(n−2)(h̄)|, and that these subalgebras form a continuous subfield of A with structure
equivalent to that given by Berezin-Toeplitz quantization. This is what Rieffel essentially
proved in the equivariant case.

However, this does not show thatAh̄
∼= Matk(C). I believe that would require some

additional irreducibility axiom. The idea would be to require that any “subquantization”
of (I,A,Q) is essentially the whole thing. However, I do not know of a reasonable
formulation of such an axiom.

For example, the trivial quantization of R should not be ruled out by the axioms. In
this case, I is an interval, A0 = Ah̄ = C0(R) andQh̄ is the identity map. This has proper
subquantizations corresponding to bundles of open subintervals in R× I, although these
are isomorphic to (I,A,Q).

It is plausible that the missing axiom is simply the condition that the quantization
be algebraically closed (i.e., ImQh̄ is a ∗-subalgebra). Indeed, it may be that algebraic
closedness would imply that I is disconnected for S2, without requiring the quantization
to be second order. I only know that the technique I used in Lemma 6.1 requires a second
order quantization.

It would be interesting to find an alternative proof using algebraic closedness, or
alternatively to find an example of a first order, algebraically closed, strict deformation
quantization of S2 with I connected.

The next major step should be to generalize Theorem 6.3 to general symplectic mani-
folds. The key to this is perhaps some generalization of Lemma 5.2 to larger matrices.
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