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Abstract
Online social media provide multiple ways to find interesting content. One important
method is highlighting content recommended by user’s friends. We examine this
process on one such site, the news aggregator Digg. With a stochastic model of user
behavior, we distinguish the effects of the content visibility and interestingness to
users. We find a wide range of interest and distinguish stories primarily of interest to a
users’ friends from those of interest to the entire user community. We show how this
model predicts a story’s eventual popularity from users’ early reactions to it, and
estimate the prediction reliability. This modeling framework can help evaluate
alternative design choices for displaying content on the site.

1 Introduction
The explosive growth of the SocialWeb hints at collective problem-solving made possible
when people have tools to connect, create and organize information on a massive scale.
The social news aggregator Digg, for example, allows people to collectively identify in-
teresting news stories. The microblogging service Twitter has created a cottage industry
of third-party applications, such as identifying trends from the millions of conversations
taking place on the site and notifying you when your friends are nearby. Other sites enable
people to collectively create encyclopedias, develop software, and invest in social causes.
Analyzing records of complex social activity can help identify communities and important
individuals within them, suggest relevant readings, and identify events and trends.
Effective use of this technology requires understanding how the social dynamics

emerges from the decisions made by interconnected individuals. One approach is a
stochastic modeling framework, which represents each user as a stochastic process with a
few states. As an example, applying this approach to Digg successfully described observed
voting patterns of Digg’s users [–]. However, quantitative evaluation of the model was
limited by the poor quality of data, which was extracted by scraping Digg’s web pages.
In this paper we present two refinements to this modeling approach for Digg. First, we

explicitly allow for systematic differences in interest in news stories for linked and unlinked
users. This distinction is a key aspect of social media where links indicate commonality of
user interests. We also include additional aspects of the Digg user interface in the model,
thereby accounting for cases where the existing model identified anomalous behaviors.
As the second major contribution, we describe how to measure confidence intervals of
model predictions. We show that confidence intervals are highly correlated with the er-
ror between the predicted and actual votes stories accrue. Thus the confidence intervals
indicate the quality of the model’s predictions on a per-user or per-story basis.
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This paper is organized as follows. The next section describes Digg and our data set. We
then present a stochastic model of user behavior on Digg that explicitly includes depen-
dencies on social network links. Using this model, we quantify these dependencies and
discuss how the model predicts eventual popularity of newly submitted content. Finally,
we compare our approach with other studies and discuss possible applications of stochas-
tic models incorporating social network structure.

2 Digg: a social news portal
At the time data was collected, Digg was a popular news portal with over  million regis-
tered users. Digg allowed users to submit and rate news stories by voting on, or ‘digging,’
them. Every day Digg promoted a small fraction of submitted stories to the highly visible
front page. Although the exact promotion mechanism was kept secret and changes oc-
casionally, it appears to use the number of votes the story receives. Digg’s popularity was
largely due to the emergent front page created by the collective decisions of itsmany users.
Below we describe the user interface that existed at the time of data collection.

2.1 User interface
Submitted stories appear in the upcoming stories list, where they remain for about 
hours or until promoted to the front page. By default, Digg shows upcoming and front page
stories in recency lists i.e., in reverse chronological order with themost recently submitted
(promoted) story at the top of the list. A user may choose to display stories by popularity
or by some broad topic. Popularity lists show stories with the most votes up to that time,
e.g., the most popular stories submitted (promoted) in the past day or week. Each list is
divided into pages, with  stories on each page, and the user has to click to see subsequent
pages.
Digg allows users to designate friends and track their activities. The friend relationship

is asymmetric. When user A lists user B as a friend, A can follow the activities of B but
not vice versa. We call A the fan, or follower, of B. The friends interface shows users the
stories their friends recently submitted or voted for.a

In this paper, we focus on the recency and ‘popular in the last  hours’ lists for all stories
and the friends interface list for each user. These lists appear to account for most of the
votes a story receives.

2.2 Evolution of story popularity
Most Digg users focus on front page stories, so upcoming stories accrue votes slowly.

When a story is promoted to the front page, it becomes visible to many more users and
accrues votes rapidly. Figure  shows the evolution of the number of votes for a story sub-
mitted in June . The slope abruptly increases at promotion time (dashed line). As the
story ages, accumulation of new votes slows down, and after a few days stories typically
no longer receive new votes.
The final number of votes varies widely among the stories. Some promoted stories accu-

mulate thousands of votes, while others muster only a few hundred. Stories that are never
promoted receive few votes, in many cases just a single vote from the submitter, and are
removed after about  hours.
A challenge for understanding this variation in popularity is the interaction between

the stories’ visibility (how Digg displays them) and their interestingness to users. Models
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Figure 1 Voting behavior: the number of votes vs. time, measured in Digg hours, for a promoted
story. The curve shows the corresponding solution from our model and the dashed vertical line indicates
when the story was promoted to the front page. This story eventually received 452 votes.

accounting for the structure of the Digg interface can help distinguish these contributions
to story popularity.

2.3 Data set
We used Digg API to collect complete (as of  July ) voting histories of all stories
promoted to the front page of Digg in June .b For each story, we collected story id,
submitter’s id, and the list of voters with the time of each vote. We also collected the time
each story was promoted to the front page. The data set contains over  million votes on
, promoted stories.We did not retrieve data about stories that were submitted toDigg
during that time period but were never promoted. Thus, in contrast to prior models that
included promotion behavior [], our focus is on the behavior of promoted stories, which
receive most of the attention from Digg users.
We define an active user as any user who voted for at least one story on Digg during the

data collection period. Of the , active users, , designated at least one other
user as a friend.We extracted the friends of these users and reconstructed the fan network
of active users, i.e., a directed graph of active users who are following activities of other
users.
Over the period of a month, some of the voters in our sample deleted their accounts and

were marked ‘inactive’ by Digg. Such cases represent a tiny fraction of all users in the data
set; therefore, we take the number of users to be constant.

2.4 Daily activity variation
Activity on Digg varies considerably over the course of a day, as seen in Figure . Adjust-

ing times by the cumulative activity on the site accounts for this variation and improves
predictions. Following [, ] we define the ‘Digg time’ between two events (e.g., votes on a
story) as the total number of votes made during the time between those events. With our
data, this only counts votes on stories that were eventually promoted to the front page. In
our data set, there are on average about , votes on front page stories per hour, with a
range of about a factor of  in this rate during the course of a day. This behavior is similar
to that seen in an extensive study of front page activity in  [], and as in that study we
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Figure 2 Voting rate (diggs per hour) on front page stories during June 2009. The indicated dates are
the start of each day (0:00 GMT). The minimum in daily activity is around noon GMT.

scale the measure by defining a ‘Digg hour’ to be the average number of front page votes
in an hour.

3 Social dynamics of Digg
A key challenge in stochastic modeling is finding a useful combination of simplicity, ac-
curacy and available data to calibrate the model. Stochastic models of online social me-
dia describe the joint behavior of their users and content. Since these web sites receive
much more content than users have time or interest to examine, one important property
to model is how readily users can find content. A second key property is how users re-
act to content once they find it. Thus an important modeling choice for social media is
the level of detail sufficient to distinguish user behavior and content visibility. Following
the practice of population dynamics [] and epidemic modeling [] we consider groups of
users and content. We assume that individuals within each group have sufficiently similar
behavior that their differences do not affect the main questions of interest. In the case of
Digg, one such question is the number of votes a story receives over time. In our approach,
we focus on how a single story accumulates votes, based on the combination of how easily
users can find the story and how interesting it is to different groups of users.
Following Refs. [, ], we start with a simplemodel in which story visibility is determined

primarily by its location on the recency and friends lists, and use a single value to describe
the story’s interestingness to the user community. We use the ‘law of surfing’ [] to relate
location of the story to how readily users find it. This model successfully captured the
qualitative behavior of typical stories on Digg and how that behavior depended on the
number of fans of the story’s submitter [, ].
However, the simple model did not quantitatively account for several behaviors in the

new data set. These included the significant daily variation in activity rates seen in Fig-
ure  and systematic differences in behavior between fans of a story’s submitter and other
users. In particular, the new data was sufficiently detailed to show users tend to find stories
their friends submit as more interesting than stories friends vote on but did not submit.
Another issue with the earlier model is a fairly large number of votes on stories far down
the recency list. This is especially relevant for upcoming stories where the large rate of
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Figure 3 State diagram for a user with respect to a particular story.

new submissions means a given story remains near the top of the recency list for only a
few minutes. To account for such votes, the model’s estimated ‘law of surfing’ parameters
indicated users browse an implausibly large number of pages while visiting Digg.
These observations motivate the more elaborate model described in this paper. This

model includes systematic differences in interestingness between fans and other users and
additional ways Digg makes stories visible to users.

3.1 User model
We allow for differences between users by separating them into groups, and assume that
visibility of stories and voting behavior of users within each group is statistically the same.
We refine the previous stochastic model of Digg [] by not only distinguishing votes from
fans and non-fans [], but also allowing for differences between fans of the submitter and
fans of other voters who are not also fans of the submitter. The state diagram Figure 
shows the resulting user model. The state submitter’s fans includes all users who
are fans of the submitter and have not yet seen the story; the other fans state includes
all users who are fans of other voters but not the submitter, who have not yet seen the
story; and the non-fans state includes all users who are neither fans of the submitter
nor other voters, and have not yet seen the story. The state no vote includes all users
who have seen the story and decided not to vote for it. With respect to votes on a given
story treated in this model, users visit Digg according to a Poisson process with average
rate ω in terms of Digg time.
Users transition between states stochastically by browsing Digg’s web pages and voting

for stories. The submitter provides a story’s first vote. All of her fans start in the submit-
ter’s fans state, and all other users start in the non-fans state. Each vote causes
non-fan users who are that voter’s fans and who have not yet seen the story to transition
from the non-fans state to the other fans state. A user making this transition is not
aware of that change until later visiting Digg and seeing the story on her friends list.
Once a user sees a story, she will vote for it with probability given by how interesting she

finds the story. Nominally people become fans of those whose contributions they consider
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Figure 4 State diagram for a story. A story not promoted after sufficient time (usually within a day) is
removed (a state transition not shown in the diagram).

interesting, suggesting fans have a systematically higher interest in stories than non-fans.
Our model accounts for this by having the probability a user votes on a story depend on
the user’s state. Users in each state also have a different probability to see stories, which is
determined by the story’s visibility to that category of users. Users vote at most once on a
story, and our focus is on the final decision to vote or not after the user sees the story.
The visibility of stories changes as stories age and accrue votes. Figure  shows the state

diagram of stories. A story starts at the top of the upcoming stories recency list. The loca-
tion increases with each new submission. A promoted story starts at the top of the front
pages. The location increases as additional stories are promoted.
These state diagrams lead to a description of the average rates of growth [] for votes

from submitter fans, other fans and non-fans of prior voters, vS , vF and vN , respectively:

dvS
dt

= ωrSPSS, ()

dvF
dt

= ωrFPFF , ()

dvN
dt

= ωrNPNN , ()

where t is the Digg time since the story’s submission and ω is the average rate a user visits
Digg (measured as a rate per unit Digg time).We find only a small correlation between vot-
ing activity and the number of fans. Thus we use the average rate users visit Digg, rather
than having the rate depend on the number of fans a user has. vN includes the vote by
the story’s submitter. PS , PF and PN denote the story’s visibility and rS , rF and rN denote
the story’s interestingness to users who are submitter fans, other fans or non-fans of prior
voters, respectively. Visibility depends on the story’s state (e.g., whether it has been pro-
moted), as discussed below. Interestingness is the probability a user who sees the story
will vote on it.
These voting rates depend on the number of users in each category who have not yet

seen the story: S, F and N . The quantities change as users see and vote on the story, with
average rate of change given by

dS
dt

= –ωPSS, ()

dF
dt

= –ωPFF + ρN
dv
dt

, ()

dN
dt

= –ωPNN – ρN
dv
dt

, ()

with v = vS + vF + vN the total number of votes the story has received. The quantity ρ is
the probability a user is a fan of the most recent voter, conditioned on that user not having
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Figure 5 Distribution of each type of vote a story accumulates 24 hours after promotion for 2,962
stories.

seen the story nor being a fan of any voter prior to the most recent voter. For simplicity,
we treat this probability as a constant over the voters, thus averaging over the variation
due to clustering in the social network and the number of fans a user has. The first term in
each of these equations is the rate the users see the story. The second terms arise from the
rate the story becomes visible in the friends interface of users who are not fans of previous
voters but are fans of the most recent voter.
Initially, the story has one vote (from the submitter) and the submitter has S fans, so

vS() = vF () = , vN () = , S() = S, F() =  and N() =U – S –  where U is the total
number of active users at the time the story is submitted. Over time, a story becomes less
visible to users as it moves down the upcoming or (if promoted) front page recency lists,
thereby attracting fewer votes and hence fewer new fans of prior voters. If the story gathers
more votes than other stories, it ismoved to the top of the popularity list, so becomesmore
visible.
Figure  shows the range of votes the stories receive by  hours after promotion. Gen-

erally, stories have most votes from non-fans, somewhat fewer from other fans and a rel-
atively small number from submitter’s fans. The number of votes from submitter’s fans
is weakly correlated with the numbers from other fans (correlation coefficient .) and
non-fans (.). The numbers from other fans and non-fans are highly correlated (.).

3.2 Story visibility
A fan easily sees the story via the friends interface, so we take PS = PF =  for front page
stories. While the story is upcoming, it appears in the friends interface but users do not
necessarily choose to view upcoming stories friends liked. Users can readily make this
choice because the friends interface distinguishes upcoming from front page stories. We
characterize the lower visibility of upcoming stories with constants cS and cF which are
less than . The corresponding visibility is then PS = cS and PF = cF .
Users who are not fans of prior voters must find the story on the front or upcoming

pages. Thus PN depends on how users navigate through these pages and the story’s loca-
tion at the time the user visits Digg. This navigation is not given by our data. Instead, we
use a model of user navigation through a series of web pages in which users estimate the
value of continuing at the site, and leave when that value becomes negative []. This ‘law
of surfing’ leads to an inverse Gaussian distribution of the number of pagesm a user visits

http://www.epjdatascience.com/content/1/1/5
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before leaving the web site,

e–λ(m–μ)/(mμ)
√

λ

πm ()

with mean μ and variance μ/λ []. We use this distribution for user navigation on Digg
[].
The visibility of a story on the mth front or upcoming page is the fraction of users who

visit at least m pages, i.e., the upper cumulative distribution of Equation (). For m > ,
this fraction is

fpage(m) =


(
Fm(–μ) – eλ/μFm(μ)

)
, ()

where Fm(x) = erfc(αm(m –  + x)/μ), erfc is the complementary error function, and αm =√
λ/((m – )). Form = , fpage() = . The visibility of stories decreases in two distinct ways

when a new story arrives. First, a story moves down the list on its current page. Second,
a story at the th position moves to the top of the next page. For simplicity, we model
these processes as decreasing visibility in the same way through m taking on fractional
values within a page, e.g.,m = . denotes the position of a story half way down the list on
the first page.
Digg presents several lists of stories. We focus on two lists as the major determinants of

visibility for front page stories: reverse chronological order (‘recency’) andmost popular in
the past  hours (‘popularity’). Users can also find stories via other means. For instance,
Digg includes other lists showing recent and popular stories in specific topics (e.g., sports
or business) and popularity over longer time periods, e.g., the previous week. Stories on
Digg may also be linked to from external web sites (e.g., the submitter’s blog).
For front page votes, the recency and popularity lists provide the bulk of non-fan votes

while the stories are close to the top of at least one of these lists, as illustrated in Figure .

Figure 6 Distribution of front page non-fan votes by location of the story on recency and popularity
lists (for votes within 24 hours of story promotion), for a sample of 100 stories with a total of 41,615
such votes. The colors indicate the visibility for each location predicted by the model parameters using
Equation (9), ranging between 0 and 1 as indicated on the legend.

http://www.epjdatascience.com/content/1/1/5
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The rank on the recency list is the number of stories promoted more recently than that
story and the rank on the popularity list is the number of stories, promoted within the
 hours prior to the vote, with more votes. Since a page shows  stories, the location in
terms of number of pages, as shown in the figure, is /th the rank, starting from page .
Some votes occur while stories are far down both the recency and popularity lists, so the
user likely finds the story by another method.
From these observations, we account for three ways users who are not connected to

prior voters find a story: via the recency list, via the popularity list or via one of the other
methods described above. We combine visibility from these three methods assuming in-
dependent choices by users, giving the probability to see the story as

Pvisibility(t, v) =  –
(
 – fpage

(
p(t)

))(
 – fpage

(
ppopularity(v)

))
( – β), ()

where p(t) and ppopularity(v) are the locations of the story on the recency and popularity
lists, respectively, and β is the probability to find the story by another method. Although
the positions of the stories on these lists depend on the specific stories submitted or pro-
moted shortly after the story, these locations are approximately determined by the time t
and number of votes v the story has, as described below. For visibility by other methods,
we take β to be a constant, independent of story properties such as time since submission
or number of votes. That is, we do not explicitly model factors affecting the visibility of
stories by other methods. Moreover, the data does not provide information on how users
find a story nor the number who find the story but choose not to vote on it. These data
limitations preclude a more detailed model of these other methods by which users find
stories. For our focus on promoted stories, this is a minor limitation because the recency
and popularity lists account for the bulk of the non-fan votes determined by our parameter
estimates discussed below.
The location of a story on the recency and popularity lists could be additional state

variables, which change as new stories are added and gain votes. Instead of modeling this
in detail, we approximate these locations using the close relation between location and
time (for recency) or votes (for popularity).

Position of a story in the recency list
Using Digg time to account for the daily variation in activity on the site, the rate of story
submission and promotion is close to linear. Thus the page number of a story on either
the upcoming or front page recency list is []

p(t) =

⎧⎨
⎩
kut +  if t < Tpromotion,

kf (t – Tpromotion) +  otherwise,
()

where Tpromotion is the time the story is promoted to the front page and the slopes are given
in Table . Since each page holds  stories, these rates are /th the story submission and
promotion rates, respectively.

Position of a story in the popularity list
The position of a story on the popularity list is the number of stories submitted or pro-
moted in the previous  hours with more votes, for stories on upcoming or front page

http://www.epjdatascience.com/content/1/1/5
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Table 1 Model parameters, with times in Digg hours

Parameter Value

average rate each user visits Digg ω = 0.16± 0.01/hr
number of active users U = 248,000± 3,000
page view distribution μ = 0.92± 0.04

λ = 0.9± 0.1
visibility by other methods β = 0.05± 0.01
probability a user is a voter’s fan ρ = 1.7× 10–5

upcoming stories location ku = 59.8 pages/hr
front page location kf = 0.31 pages/hr

fraction viewing upcoming pages
submitter fans cS = 0.57± 0.03
other fans cF = 0.10± 0.01
non-fans cN = 0.11± 0.01

story specific parameters
interestingness to submitter fans rS
interestingness to other fans rF
interestingness to non-fans rN
number of submitter’s fans S0
promotion time Tpromotion

Error ranges are 95% confidence intervals for the parameter estimates.

Figure 7 Relation between rank on the popularity list and number of votes for front page stories on a
log-log plot. The curve is the fit to a double-Pareto lognormal distribution.

lists, respectively. The distribution of votes among stories in a  hour period is similar
from day to day. Thus we expect that a story’s position on the popularity list, determined
by the location of its number of votes in this distribution, is approximately a function of
its number of votes alone, with only minor variation depending on the time (i.e., the set
of other stories from the past  hours). To evaluate this expectation, we determined the
popularity rank of a sample of front page votes within -hours of story promotion and
compared the rank to the number of votes, as shown in Figure . Aswe expected, the figure
shows that the rank is well-determined by the number of votes. Thus we model the posi-
tion of a story on the popularity list as depending only on the number of votes the story
has at the time, i.e., consider ppopularity(v) as a function of the number of votes the story
has. This gives a simple, approximate relation between the actual location and number

http://www.epjdatascience.com/content/1/1/5
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of votes - ignoring the minor variations due to the specific stories promoted at different
times.
To identify a suitable functional approximation for ppopularity(v), we note that a story

typically accumulates votes at a rate proportional to how interesting it is to the user popu-
lation. From a prior analysis of votes in  on Digg [] we expect the interestingness to
be approximately lognormally distributed. Thus if we observe a sample of votes on stories
over the same time interval for each story, the distribution of votes, and hence location on
the popularity list, would follow a lognormal distribution. However, the popularity list in-
cludes stories of various times up to  hours since submission or promotion. Thus some
stories of high interest will have few votes because they were just recently submitted or
promoted, and conversely some stories with only moderate interestingness will have rel-
atively many votes because they have been available for votes for nearly  hours. The
combination of lognormal distribution of rates for accumulating votes and this variation
in the observation timesmodifies the tails of the lognormal to be power-law, i.e., a double-
Pareto lognormal distribution [].
Such a distribution fits the observed positions on the front page popularity list, as indi-

cated in Figure . The fit for the rank (i.e., number of stories above the given one in the
popularity list, so the story promoted in the past  hours with the most votes has rank )
is

rank = S
(
 –�(a,b,ν,σ ; v)

)
, ()

where S = .± . is the average number of stories promoted in  hours and �(. . . ; v)
is the cumulative distribution of a double-Pareto lognormal distribution, i.e., fraction of
cases with fewer than v votes. The parameters a = . ± . and b = . ± . are
the power-law exponents for the upper and lower tails of the distribution, respectively,
and the parameters ν = . ± . and σ = .± . characterize the location and
spread of the lognormal behavior in the center of the distribution. This fit captures the
power-law tail relating stories near the top of the popularity list with the number of votes
the story has. These are the cases for which the popularity list contributes significantly
to the overall visibility of a story. More precisely, the Kolmogorov-Smirnov (KS) statistic
shows the vote counts are consistent with this distribution (p-value .). We use this
distribution, combined with the rate stories are promoted, to relate the number of votes a
story has to its position on the popularity list, providing a functional form for ppopularity(v).
The popularity rank for upcoming stories submitted in the past  hours is more com-

plicated than for the front pages due to the promotion. Nevertheless, the main factor de-
termining a story’s location on the popularity list is its number of votes, particularly after
adjusting for most of the daily variation in activity by using Digg time described in Sec-
tion .. Stories withmany votes aremore likely to be promoted, and hence removed from
the popularity list for upcoming stories. This removal alters the upper tail of the distribu-
tion and hence the numbers of votes for stories appearing near the top of the popularity
list. Moreover, out of the ≈, stories submitted each day, our data includes only the
≈ stories per day eventually promoted. However, popularity significantly contributes
to visibility only for stories near the top of the popularity list. Thus for our model, it is
sufficient to determine the relation between votes and rank for upcoming stories with rel-
atively many votes. Such stories are likely to be promoted eventually and hence included

http://www.epjdatascience.com/content/1/1/5
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in our sample. Instead of a power-law tail, our data on the eventually promoted stories is
better fit by an exponential for the upcoming stories with relatively many votes, and hence
near the top of the popularity list:

rank = ec–dv ()

with c = . ± . and d = . ± .. This fits well for upcoming stories submit-
ted within the past  hours with more than  votes, corresponding to rank of about
 or less on the upcoming popularity list. For stories with few votes, e.g., fewer than 
or , this fit based on the stories eventually promoted substantially underestimates the
rank. Nevertheless, the estimated rank for such stories is still sufficiently large that the law
of surfing parameters we estimate indicate users do not find such stories via the popu-
larity list. Thus this underestimate does not significantly affect our model’s behavior for
upcoming stories.

Friends interface
The fans of the story’s submitter can find the story via the friends interface. As additional
people vote on the story, their fans can also see the story. We model this with F(t), the
number of fans of voters on the story by time t who are not also fans of the submitter and
have not yet seen the story. Although the number of fans is highly variable, we use the
average number of additional fans from an extra vote, ρN , in Equation ().

4 Parameter estimation
We estimate model parameters using  stories from the middle of our sample.

4.1 Estimating parameters from observed votes
In our model, story location affects visibility only for non-fan voters since fans of prior
voters see the story via the friends interface. Thus we use just the non-fan votes to estimate
visibility parameters, via maximum likelihood. Specifically, we use the non-fan votes to
estimate the ‘law of surfing’ parameters μ and λ, as well as the probability for finding the
story some other way, β .
This estimation involves comparing the observed votes to the voting rate from the

model. As described above, the model uses rate equations to determine the average be-
havior of the number of votes. We relate this average to the observed number of votes by
assuming the votes from non-fan users form a Poisson process whose expected value is
dvN (t)/dt, given by Equation ().
For a Poisson process with a constant rate v, the probability to observe n events in time

T is the Poisson distribution e–vT (vT)n/n!. This probability depends only on the number
of events, not the specific times at which they occur. Estimating v involves maximizing
this expression, giving v = n/T . Thus the maximum-likelihood estimate of the rate for a
constant Poisson process is the average rate of the observed events.
In our case, the voting rate changes with time, requiring a generalization of this estima-

tion. Specifically consider a Poisson process with nonnegative rate v(t) which depends on
one ormore parameters to be estimated. Thus in a small time interval (t, t+�t), the proba-
bility for a vote is v(t)�t, and this is independent of votes in other time intervals, by the def-
inition of a Poisson process. Suppose we observe n votes at times  < t < t < · · · < tn < T
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during an observation time interval (,T). Considering small time intervals �t around
each observation, the probability of this observation is

P
(
no vote in (, t)

)
v(t)�t

× P
(
no vote in (t, t)

)
v(t)�t

. . .

× P
(
no vote in (tn–, tn)

)
v(tn)�t

× P
(
no vote in (tn,T)

)
.

The probability for no vote in the interval (a,b) is

exp

(
–

∫ b

a
v(t)dt

)
.

Thus the log-likelihood for the observed sequence of votes is

–
∫ T


v(t)dt +

∑
i

log v(ti). ()

The maximum-likelihood estimation for parameters determining the rate v(t) is a trade-
off between these two terms: minimizing v(t) over the range (,T) to increase the first
term while maximizing the values v(ti) at the times of the observed votes. If v(t) is con-
stant, this likelihood expression simplifies to –vT + n log v with maximum at v = n/T as
discussed above for the constant Poisson process. When v(t) varies with time, the maxi-
mization selects parameters giving relatively larger v(t) values where the observed votes
are clustered in time.
We combine this log-likelihood expression from the votes on several stories, and max-

imize the combined expression with respect to the story-independent parameters of the
model, while determining the interestingness parameters separately for each story.

4.2 User activity
Our model involves a population of active users who visit Digg during our sample period
and vote on stories. Specifically, the model uses the rate users visit Digg, ωU . We do not
observe visits in our data, but can infer the relevant number of active users, U , from the
heterogeneity in the number of votes by users. The data set consists of , users who
voted at least once during the sample period, giving a total of ,, votes. Figure 
shows the distribution of this activity. Most users have little activity during the sample
period, suggesting a large fraction of users vote infrequently enough to never have voted
during the time of our data sample. This behavior can be characterized by an activity rate
for each user. A userwith activity rate ν will, on average, vote on νT stories during a sample
time T . We model the observed votes as arising from a Poisson process whose expected
value is νT and the heterogeneity arising from a lognormal distribution of user activity
rates []:

Plognormal(μ,σ ; r) =
√

πrσ
exp

(
–
(μ – log(r))

σ 

)
, ()
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Figure 8 User activity distribution on logarithmic scales. The curve shows the fit to the model described
in the text.

where parameters μ and σ are the mean and standard deviation of log(r).
This model gives rise to the extended activity distribution while accounting for the dis-

crete nature of the observations. The latter is important for the majority of users, who
have low activity rates and vote only a few times, or not at all, during our sample period.
Specifically, for nk userswith k votes during the sample period, thismixture of lognormal

and Poisson distributions [, ] gives the log-likelihood of the observations as

∑
k

nk logP(μ,σ ;k),

where P(μ,σ ;k) is the probability of a Poisson distribution to give k votes when its mean is
chosen from a lognormal distribution Plognormal with parameters μ and σ . From Equation
(),

P(μ,σ ;k) =
√

π σk!

∫ ∞


ρk–e–(log(ρ)–μ)/(σ)–ρ dρ

for integer k ≥ .We evaluate this integral numerically. In terms of ourmodel parameters,
the value of μ in this distribution equals νT .
Since we do not observe the number of users who did not vote during our sample period,

i.e., the value of n, we cannot maximize this log-likelihood expression directly. Instead,
we use a zero-truncated maximum likelihood estimate [] to determine the parameters
μ and σ for the vote distribution of Figure . Specifically, the fit is to the probability of
observing k votes conditioned on observing at least one vote. This conditional distribution
is P(μ,σ ;k)/( – P(μ,σ ; )) for k > , and the corresponding log-likelihood is

∑
k>

nk logP(μ,σ ;k) –U+ log
(
 – P(μ,σ ; )

)
,

where U+ is the number of users with at least one vote in our sample. Maximizing this
expression with respect to the distribution’s parameters μ and σ gives νT lognormally
distributed with the mean and standard deviation of log(νT) equal to –. ± . and
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.±., respectively. Based on this fit, the curve in Figure  shows the expected num-
ber of users with each number of votes. This is a discrete distribution: the lines in the
figure between the expected values serve only to distinguish the model fit from the points
showing the observed values.
With these estimated parameters, P(μ,σ ; ) = ., indicating % of the users had suf-

ficiently low, but nonzero, activity rate that they did not vote during the sample period.
We use this value to estimate U , the number of active users during our sample period:
U =U+/( – P(μ,σ ; )).

4.3 Links among users
We observe u = , users with fans, and these users have a total of c = ,, con-
nections. Our data has , distinct voters, of which , have no fans. There is little
correlation between links and voting activity, so we estimate the fraction of users with zero
fans from the ratio of these values, i.e., about %. Thus the average number of fans per
user, including users without fans, is c/(.u) ≈ ..
We estimate the model parameter ρ of Equations () and () as the probability a fan link

connects the first to the second user of a randomly selected pair of users, corresponding
to the average number of fans per user divided by the number of active users U .

4.4 Visibility to submitter’s fans
Because stories are always visible to fans and we know the number of fans of the story’s
submitter, the model behavior (Equations () and ()) can be solved without reference to
the rest of the model. We have PS =  when the story is on the front page and PS = cS < ,
reflecting users’ preference for front page stories. Thus, these equations have two story-
independent parameters, i.e., the rate users visit Digg (ω) and the probability users view
upcoming stories submitted by their friends (cS), and two story-dependent parameters,
i.e., the interestingness (rS) and number of fans of the submitter (S). S is given in our
data, while we estimate the other parameters from the data, i.e., votes by fans of the stories’
submitters.

4.5 Visibility to non-fans
In our model, story location affects visibility only for non-fan voters since fans of prior
voters see the story via the friends interface. Thus we use just the non-fan votes to estimate
visibility parameters, via maximum likelihood. A story typically receives only a few dozen
votes before promotion, mostly from fans. With the value of ρ , estimated as described
above, Equation () gives N(t) ≈ U up to a few hours after promotion. Over this time
period, Equation () simplifies to dN/dt ≈ ωUrNPN with PN depending on story location
on the recency and popularity lists. rN is constant for a given story, so PN determines the
time variation in the voting rate by non-fans.
For front page stories, in ourmodel PN = Pvisibility(t, v) fromEquation (), which has three

parameters: μ and λ characterizing the browsing behavior for the recency and popularity
lists, and the probability to find the story by other methods, β . We estimate these param-
eters by maximizing the likelihood of observing the non-fan front page votes according
to the model, as described above for estimating a Poisson process with a time-dependent
rate in Equation (). This estimation also determines rN for each story.
For upcoming stories, we take PN = cNPvisibility(t, v), giving a single additional parameter,

cN , to estimate, since we assume browsing behavior on the upcoming pages is the same as
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for front pages. This assumption has little effect on themodel behavior because of the large
number of submissions and relatively fewnon-fan votes for upcoming stories. A submitted
story remains near the front of the recency list for only about a minute after submission
and stories reaching the front of the popularity list (due to having many votes) are soon
promoted to the front page. Thus moderate variations in how deeply users browse the
upcoming recency or popularity lists (i.e., the values for μ and λ) have little effect on the
non-fan votes. Instead, the relatively few non-fan upcoming votes arise mainly through
users finding the story by other means. That is, in most cases Pvisibility ≈ β for upcoming
stories. Thus PN = cNPvisibility(t, v) ≈ cNβ and any difference between β for upcoming and
front page stories wouldmerely rescale the value of cN . This parameter is readily estimated
using Equation () with the upcoming non-fan votes.

4.6 Visibility to other fans
From Equation (), dvF/dt changes abruptly when the story is promoted since PF changes
from cF to  upon promotion. Thus we estimate cF by the change in voting rate by fans
other than those of the submitter by comparing the votes a story receives one hour before
promotion and the votes received during the hour after promotion.
With all story-independent parameters estimated, we can then solve the full model for

a story to determine dvF/dt as a function of time. This gives the expected rate of other
fan votes as a function of time. We determine rF for the story as the value maximizing the
log-likelihood (Equation ()) for the other fan votes the story receives.

4.7 Summary
Table  lists the estimated parameters. All of these parameters, except the three story in-
terestingness parameters rS , rF and rN , are either known (e.g., the number of submitter’s
fans) or estimated from data from a sample of stories and then used for all stories. The
interestingness parameters are estimated individually for each story from its votes.

5 Results
Figure  compares the solution of the rate equations with the actual votes for one story.
This illustrates that themodel captures themain qualitative features of the vote dynamics:
an abrupt jump in votes after promotion followed by a slowing of the voting rate.
Figure  shows how visibility estimated by our model (indicated by color) compares

with the distribution of front page votes. Many votes occur when the story is recently
promoted (so near the top of the recency list) or has received many votes within  hours
after promotion (so near the top of the popularity list). This is consistent with our model,
which predicts higher visibility for stories in these positions on the lists.

5.1 Interestingness for fans and non-fans
We use the model to evaluate systematic differences in story interestingness between fans
and non-fans. The estimated r values indicate the stories have a wide range of interesting-
ness to users, as shown in Figure , along with fits to lognormal distributions. The figure
shows rN values tend to be much smaller than the interestingness for fans, as also seen in
an earlier study with a smaller data set from  []. The r-values are weakly correlated,
with Spearman rank correlation between rS and rF of ., between rS and rN of ., and
between rF and rN of .. Moreover, there is a large range in the ratio of interestingness
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Figure 9 Distribution of interestingness for each type of user for 2,962 stories. The curves are
lognormal fits to the values. The plots have different axes scales.

Table 2 Parameters for lognormal distribution of interestingness for 2,962 stories

Vote type μ σ

submitter fan –3.48± 0.04 0.84± 0.03
other fan –2.20± 0.02 0.37± 0.01
non-fan –6.41± 0.03 0.66± 0.02

Error ranges are 95% confidence intervals for the parameter estimates.

to fans and non-fans, suggesting stories with particularly large ratios are mainly of niche
interest.
Table  summarizes the lognormal distribution parameters. The lognormal fits provide a

concise description of the distribution of interestingness values and are useful as prior dis-
tributions for prediction from early votes, as discussed in Section .. However bootstrap
tests [] based on the Kolmogorov-Smirnov (KS) statistic show the estimated r-values
are unlikely to arise from these distributions (p-values all less than .). This test and the
others reported in this paper account for the fact that we fit the distribution parameters
to the data [].
The relationship between interestingness for fans and other users indicates a consider-

able variation in how widely stories appeal to the general user community. Moreover, we
find other fans have somewhat higher interest in stories than submitter fans, i.e., rF tends
to be larger than rS . Since we have cS > cF (Table ), we find submitter fans are more likely
to view the story while upcoming, but less likely to vote for it, compared with other fans.
This suggests people favor the submitter as a source of stories to read, while the fact that
a friend, not the submitter, voted for the story makes it more likely the user will vote for
the story. Identifying these possibilities illustrates how models can suggest subgroups of
behaviors in social media for future investigation.

5.2 Predicting popularity from early votes
In this section we use the model to predict popularity of Digg stories. We focus on the
 of the  stories in the calibration data set that were promoted within  hours of
submission. Most stories are promoted within  hours of submission (if they are ever
promoted) and this restriction simplifies the model’s use of the ‘popular in last  hours’
list by not requiring it to check for removal from the list if the story is still upcomingmore
than  hours after submission.
Predicting popularity in social media from intrinsic properties of newly submitted con-

tent is difficult []. However, users’ early reactions provide somemeasure of predictability
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[, , , ]. The early votes on a story allow estimating its interestingness to fans and
other users, thereby predicting how the story will accumulate additional votes. These pre-
dictions are for expected values and cannot account for the large variation due, for exam-
ple, to a subsequent vote by a highly connected user which leads to a much larger number
of votes.
We can improve predictions from early votes by using the lognormal distributions of

r-values, shown in Figure , as the prior probability to combine with the likelihood from
the observations according to Bayes theorem. Specifically, instead of maximizing the like-
lihood of the observed votes, P(r|votes), as discussed above, this approach maximizes the
posterior probability, which is proportional to P(r|votes)Pprior(r) where Pprior is taken to be
the lognormal distribution Plognormal in Equation () with parameters from the fits shown
in Figure .
For a prediction at time T , we use the votes up to time T to estimate the r values by

finding the values that maximize

L = log
(
P(rS, rF , rN |votes)) + log

(
Pprior(rS)Pprior(rF )Pprior(rN )

)
. ()

We then solve the model starting at time T and use the values from that solution as the
predictions at later times. Solving the model equations starting at time T requires initial
values, i.e., the number of votes vS(T), vF (T), vN (T) and the size of the user groups who
have not yet seen the story: S(T), F(T), N(T). The numbers of votes is available in our
data but the sizes of the user groups is not. Instead, we estimate user group sizes from
the voting rates and the estimated r values. That is, at the prediction time T we use the
times of recent votes to estimate the derivative in number of each type of vote at time T .
With estimates of the r values and voting rates, we use the model equations to estimate
the group size at time T . For instance, Equation () gives

S(T) =


ωrSPS

dvS
dt

. ()

We estimate the voting rates from the number of votes in the  minutes prior to time T ,
except if there are fewer than five votes in this time we extend the time interval to include
the five previous votes. For simplicity, to avoid treating the discontinuity in visibility at
promotion, we based this estimate on front page votes whenT is after the promotion time.
This approach to estimating user group sizes is reasonable while the story is accumulating
votes rapidly, i.e., when it is recently promoted. In that case the story is highly visible and
we have a good estimate of the voting rate. This is the situation of interest for prediction
based on users’ early response to a story. On the other hand, old stories have low visibility
and accumulates votes slowly, if at all, as seen in Figure . In that case, the group size
estimate, based on the ratio of voting rate and visibility, will be highly uncertain.
We focus on behavior after promotion. Figure  compares predicted to actual votes

for one story  hours after promotion. Votes from submission to promotion are used to
estimate r values for the three groups of users. The model solutions extend from the time
of these estimates, i.e., the story’s promotion time, to t =  Digg hours after promotion.
The model quantitatively reproduces the observed votes for this story.
Generalizing from this example for a single story, Figure  shows the prediction errors

for each type of vote the story receives Digg hours after promotion, based on estimating
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Figure 10 Predictions compared to actual votes (dots) for each type of user for one story. The figure
shows predictions made at promotion (black line) and the growth in the 95% confidence interval of the
prediction up to 24 hours after promotion. The dashed vertical line shows the story’s promotion time.

Figure 11 Median error between predicted and observed votes 24 Digg hours after promotion for
predictions made 0, 2, 4 and 6 Digg hours after promotion for 500 stories.

r-values from votes received by time T for various times T at and shortly after promotion.
For context of the size of these errors, Figure  shows the range of number of votes the
stories have at the times of these predictions, i.e.,  hours after promotion.
As expected, errors generally decreasewhen predictions aremade later. Ofmore interest

is the difference among the type of votes, particularly for votes from other fans. Early
votes are mainly from submitter’s fans and non-fans, so the ability to predict differences
in behavior for those groups based on early votes could be useful in quickly distinguishing
stories likely to be of broad or niche interest to the user community.
Overall, the model reasonably predicts votes from submitter’s fans and non-fans, but is

much less accurate for votes fromother fans. One reason for this difference is the relatively
small number of other fan votes while a story is upcoming. Specifically, the number of
other fans F starts at zero. Only a vote by a non-fan can increase F , and upcoming stories
have low visibility to non-fan voters. Even after a number of other fans becomes available,
it takes some time for those users to return to Digg. Thus there are relatively few early
other fan votes, leading to poor estimates for rF values. Moreover, the relatively small
number of other fans means a single early voter with many fans can significantly change
F away from its average value used in the model. These factors lead to the relatively large
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Table 3 Spearman rank correlation between predicted and observed number of each type of
votes 24 Digg hours after promotion, for predictions made at various times T after promotion
(measured in Digg hours) for 500 stories

T – Tpromotion Correlation
Submitter fan Other fan Non-fan

0 0.86 0.29 0.42
2 0.94 0.74 0.91
4 0.97 0.78 0.93
6 0.97 0.81 0.95

Table 4 Classification errors on whether a story receives more than the median number of
votes from each type of voter received by 24 Digg hours after promotion, for predictions
made at various times T after promotion (measured in Digg hours) for 500 stories

T – Tpromotion Classification error
Submitter fan Other fan Non-fan

0 0.12 0.41 0.37
2 0.09 0.45 0.16
4 0.07 0.33 0.11
6 0.07 0.30 0.10

errors in predicting the other fan votes. As a direction for future work, this observation
suggests predictions would benefit from including measurements of the social network
of the voters to determine the value of F at the time of prediction rather than using an
estimate based on the model.
Another view of prediction quality is how well the model predicts the rank ordering of

stories, i.e., whether the story is likely to be relatively popular. We measure this with the
Spearman rank correlation between the model’s prediction and the observed number of
votes  Digg hours after promotion, as shown in Table . Even for other fan votes, where
the absolute prediction error is relatively large, the predicted values give a good indication
of the relative rank of the stories.
Predicting whether a story will attract a large number of votes, rather than the precise

number of votes, is a key issue for web sites such as Digg. Such predictions form the basis
of using crowd sourcing to select a subset of submitted content to highlight []. As an
example of this distinction, we predict whether a story will receive more than the median
number of votes of each type of user based on votes received up to various times. This
amounts to a binary classification task. Table  compares predictions made at different
times. The classification error rate is the fraction of stories forwhich prediction of whether
the story receives more than the median number of votes differs from the actual value.

5.3 Confidence intervals
We can use the model to estimate how well it predicts future votes. For a given set of
parameter values, prediction variability comes from differences in estimated r values. If r
is poorly determined, predictions will be unreliable.
To quantify this behavior, we numerically evaluate the second derivative matrixD of the

log-likelihood combined with the priors based on votes on the story up to time T , L(r)
given in Equation (), at the maximum r = rmax, where r = (rS, rF , rN ). This gives

L(r) = L(rmax) +


(r – rmax)D(r – rmax) ()
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to second order in |r – rmax|. To this order of expansion, the likelihood is

exp
(
–(r – rmax)D(r – rmax)/

)
. ()

This corresponds to a multivariate normal distribution for r with mean rmax and covari-
ance matrix –D–. Since we are expanding around a maximum, the nd derivative matrix
is negative definite so this gives a well-defined normal distribution, i.e., with a positive def-
inite covariance matrix. This covariance includes both individual variances in the values
of rS , rF and rN and correlations among their variations around the maximum.
If L(r) is a fairly flat function of r around themaximum, thenmaximum likelihood poorly

constrains the values, corresponding to large variances in the normal distribution. Con-
versely, if L(r) is sharply peaked, the distribution will be narrow.
We apply this observation to estimate confidence intervals for the predictions. We first

numerically evaluate the second derivative matrix D at the maximum. We then generate
random samples of r from themultivariate normal distribution. For each of these samples,
we solve the model starting from the time T to any desired time for predicting the votes,
e.g.,  hours after promotion. After collecting these predictions from many samples, we
use quantiles of their ranges as the confidence intervals. In the examples presented here,
we generate , random samples and determine the % confidence interval from the
variation in r values as the range between the .% and .% quantiles of these samples.
As one example, Figure  shows how confidence intervals grow with time after the

prediction for predictions made from votes at the time a story is promoted. Predictions
made at later times, when more votes are available, generally have smaller confidence in-
tervals. More generally, Figure  shows the relation between % confidence interval and
prediction error  Digg hours after promotion, based on prediction made at the time of
promotion. Large errors tend to be associated with large confidence intervals. To quantify
this relationship, correlations between prediction error and confidence interval size for
the stories shown in Figure  are ., . and . for submitter fans, other fans and
non-fans, respectively. Thus the confidence intervals, which are computed from the vote
information available at the time of prediction, indicate how well the model can predict
votes. However, the confidence intervals based on variation in the estimate of r values do
not account for all the sources of error. For instance, Figure  shows some cases where the
error is considerably larger than the confidence interval. Furthermore, only about a third

Figure 12 Size of 95% confidence interval vs. prediction error 24 Digg hours after promotion for
predictions based on votes up to each story’s promotion time, for 500 stories. The diagonal lines
correspond to errors equal to the size of the confidence interval.
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of the actual votes  hours after promotion are within the confidence intervals, whereas
we would expect about % of the stories to be within the intervals. Additional variation
could be due, for instance, to votes by exceptionally well-connected users that significantly
increase the story’s visibility compared to the average value assumedwith themodel. Large
prediction errors can also arise from poor estimates of the sizes of the groups of each type
of user at the time of prediction.

6 Related work
Models of social dynamics can help explain and predict the popularity of online content.
The broad distributions of popularity and user activity on many social media sites can
arise from simple macroscopic dynamical rules []. A phenomenological model of the
collective attention on Digg describes the distribution of final votes for promoted stories
through a decay of interest in news articles []. Likewise, amodel that accounted for shifts
in public attention, e.g., brought about by exogenous events, reproduced in simulation the
aggregate distribution of popularity of Web pages [], but did not model dynamics of in-
dividual items. Yet another study [] offered a qualitative explanation for the observed
dynamics of popularity of individual news stories in terms of the dueling effects of pref-
erence for recent stories and those already featured in the news; however, no attempt was
made to connect this model to empirical data. Stochastic models [, ] offer an alterna-
tive explanation for the popularity distribution of Digg news stories. Rather than novelty
decay (or bias for recent news), they explain the votes distribution by the combination of
variation in the stories’ inherent interest to users and effects of user interface, specifically
decay in visibility as the story moves to subsequent pages. Stochastic modeling frame-
work explains both the dynamics of popularity of an individual news story, as well as the
distribution of final popularity of many stories. Crane and Sornette [] found that collec-
tive dynamics was linked to the inherent quality of videos on YouTube. From the number
of votes received by videos over time, they could separate high quality videos from junk
videos. This study is similar in spirit to our own in exploiting the link between observed
popularity and content quality.We assume all users explore stories using the same param-
eters for the ‘law of surfing’ []. More generally, such models could be adjusted to accom-
modate a range of surfing persistence among different groups of users []. Web-based
experiments allow directly manipulating visibility to distinguish its effect from social in-
fluence and content quality, e.g., by reversing the order in which content is shown to users
[]. State-based models, such as we used here, apply to forecasting user behavior in a
wide variety of contexts, including web searches [] which are one mechanism by which
users could find content without relying on visibility explicitly provided by the social me-
dia site. However, while these studies aggregated data from thousands of individuals, our
method focuses instead on the microscopic dynamics, modeling how individual behavior
contributes to content popularity.
Statistically significant correlation between early and late popularity of content is found

on Slashdot [], Digg andYouTube []. Specifically, similar to our study, Szabo andHuber-
man [] predicted long-term popularity of stories on Digg. Through large-scale statistical
study of stories promoted to the front page, they were able to predict stories’ popularity
after  days based on its correlation with popularity one hour after promotion. Similarly,
Lerman and Hogg [] predicted popularity of stories based on their pre-promotion votes.
We also quantitatively predict stories’ future popularity, but unlike earlier works, we also
estimate confidence intervals of these predictions for each story.
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Previous works found social networks to be an important component to information
diffusion. Niche interest content tends to spread mainly along social links in Second Life
[], in blogspace [], as well as onDigg [], and does not end up becoming very popular
with the general audience. Models based on biased random walks to select actions []
providemore detailed descriptions of information diffusion in social media [] than used
in our modeling approach. Aral et al. [] found that social links between like-minded
people, rather than causal influence, explained much of information diffusion observed
on a network. Our modeling approach allows us to systematically distinguish users who
are linked to those who are not linked and study diffusion separately for each group.
Commercial recommendation systems, such as those used by Amazon and Netflix, use

collaborative filtering [] to highlight new products for users. They ask users to rate prod-
ucts and compare ratings to identify users with similar opinions and recommend to them
new products other users with similar opinions liked. Researchers have recognized that
links between users in a recommender system can be induced from the declarations of
user interest, and that these links can used tomake new recommendations []. However,
unlike socialmedia sites, collaborative filtering-based systems do not allow users to explic-
itly declare their social links. Nevertheless, such techniques can be useful in automatically
helping social media users find others with similar interests [–] and thereby encour-
age users to make implicit links explicit in social media web sites. In our context, such
methods could increase the visibility of similar users to each other, thereby improving the
sorting of users between the fan and non-fan categories studied in our model.

7 Discussion
Highlighting friends’ contributions is a common feature of social media sites, including
Digg. To evaluate the effects of this behavior, we explicitly distinguish votes from submit-
ter’s fans, other fans and non-fans in our model, while separating the effects of differences
in visibility and interestingness among these groups of users. This identifies that submit-
ter’s fans are, on average, far more likely to find the story interesting. Our model adjusts
for the higher visibility of stories to fans, thereby identifying that increased attention from
fans is not just due to the increased visibility. Identifying stories of particularly high in-
terest to fans could be a useful guide for highlighting stories in the friends interface, i.e.,
emphasizing those with relatively large interestingness to friends as reflected in the early
votes. Moreover, this information could be useful to recommend new fans to users, based
on visibility-adjusted similarity in voting rather than, as commonly done in collaborative
filtering [], just using the raw score of similar votes. This could be particularly impor-
tant for users with relatively infrequent votes, where variations due to how visible a story
is could significantly affect the similarity of the vote pattern with that of other users.
For more precise estimates, the web site could track the fraction of users seeing the

story that vote for it, thereby directly estimating interestingness and accounting for the
large variability in number of fans among the voters, in contrast to our model which used
an average value. Exploiting such details of user behavior becomes more important as
the complexity of the web site interface increases, offering many ways for users to locate
content. Recording which method leads each user to find the story can aid in identifying
any systematic differences in interests among those users.
We find a wide range of interestingness ratios between fans and non-fans. This explains

prior observations of the effect of relatively high votes from fans on indicating popularity
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to the general user population, and also suggests stories that are of niche interest to the fans
rather than the general user population. Our assumption that fans of prior voters easily
see the story is reasonable for users with relatively few friends, so only a few stories will
appear in their friends interface. For users with many friends, visibility of a story would
decrease when many newer stories appear on the friends interface. This possibility could
be included in the model using the ‘law of surfing’ for the stories appearing in each users’
friends interface.
For prediction, we find the largest errors with votes from other fans. This likely arises

from the relatively small number of such votes, especially while the story is upcoming. In
that case, the large variation in number of fans per user can have a dramatic effect not
accounted for in the model. This suggests the main source of the prediction error arises
from the long-tail distribution of fans per user, which the model treats as a single average
value based on the parameter ρ . We could test this possibility by collecting additional
data on the actual fans of each voter, thereby using the observed value of F(t) at the time
of prediction when estimating r-values. In cases where F(t) is particularly large, e.g., due
to an early vote by a user with many fans, this will result in a smaller estimated value for
rF and hence smaller predicted number of other fan votes.
Models can suggest improved designs for user-contributory web sites. Our results sug-

gest it may be useful to keep popular stories visible longer for users who return to Digg
less often - giving them more chance to see the popular stories before they lose visibility.
This would be a fine-tuned version of ‘popular stories’ pages, adjusted for each user’s ac-
tivity rate. That is, instead of showing stories in order of recency only, selectively move
less popular stories down the page (once there are enough votes to determine popularity),
thereby leaving the more popular ones nearer the top of the list for users who come back
to Digg less often.
We examined behavior over a relatively short time (e.g., up to a day after promotion).

Over longer times, additional factors could become significant, particularly a decrease in
the interestingness as news stories submitted to Digg become ‘old news’ [].
Modeling visibility depends on how the web site user interface exposes content. This

highlights a challenge for modeling social media: continual changes to the user interface
can alter how visibility changes for newly submitted content. Thus accurate models re-
quire not only data on user behavior but also sufficient details of the user interface at the
time of the data to determine the relation between visibility and properties of the content.
The lognormal distribution of interestingness seen here and in other web sites [] is

useful as a prior distribution for estimating interestingness from early behavior on web
sites. The use of such priors will be more important as models make finer distinctions
among groups of users, e.g., distinguishing those who find the content in different ways as
provided by more complex interfaces. In such cases, many groups will not be represented
among the early reaction to new content and use of priors will be especially helpful.
User-contributory web sites typically allow users to designate others whose contribu-

tions they find interesting, and the sites highlight the activity of linked users. Thus our
stochastic model, explicitly distinguishing behavior of users based on whether they are
linked to users who submitted or previously rated the content, could apply to many such
web sites.
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Endnotes
a At the time of data collection Digg offered a social filtering feature which recommended stories, including

upcoming stories, that were liked by users with a similar voting history. It is not clear how often users employed
these features and we do not explicitly include them in our model.

b The data set is available at http://www.isi.edu/~lerman/downloads/digg2009.html.
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