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This paper considers the problem of optimizing the burst format of packet transmission to perform enhanced-accuracy estimation
of Doppler-shift and Doppler-rate of the carrier of the received signal, due to relative motion between the transmitter and the
receiver. Two novel burst formats that minimize the Doppler-shift and the Doppler-rate Cramér-Rao bounds (CRBs) for the joint
estimation of carrier phase/Doppler-shift and of the Doppler-rate are derived, and a data-aided (DA) estimation algorithm suitable
for each optimal burst format is presented. Performance of the newly derived estimators is evaluated by analysis and by simulation,
showing that such algorithms attain their relevant CRBs with very low complexity, so that they can be directly embedded into new-
generation digital modems for satellite communications at low SNR.
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1. INTRODUCTION

Packet transmission of digital data is nowadays adopted
in several wireless communications systems such as satel-
lite time-division multiple access (TDMA) and terrestrial
mobile cellular radio. In those scenarios, the received sig-
nal may suffer from significant time-varying Doppler dis-
tortion due to relative motion between the transmitter and
the receiver. This occurs, for instance, in the last-generation
mobile-satellite communication systems based on a con-
stellation of nongeostationary low-earth-orbit (LEO) satel-
lites [1] and in millimeter-wave mobile communications for
traffic control and assistance [2]. In such situations, car-
rier Doppler-shift and Doppler-rate estimation must be per-
formed at the receiver for correct demodulation of the re-
ceived signal.

A number of efficient digital signal processing (DSP) al-
gorithms have already been developed for the estimation of
the Doppler-shift affecting the received carrier [3] and a few
algorithms for Doppler-rate estimation are also available in
the open literature [4, 5]. The issue of joint Doppler-shift
and Doppler-rate estimation has been addressed as well, al-
though to a lesser extent [6, 7]. In all the papers above, the
observed signal is either an unmodulated carrier, or con-

tains pilot symbols known at the receiver. The most common
burst format is the conventional preamble-payload arrange-
ment, wherein all pilots are consecutive and they are placed
at the beginning of the data burst. Other formats are the mi-
damble as in the GSM system [8], wherein the preamble is
moved to the center of the burst, or the so-called pilot sym-
bol assisted modulation (PSAM) paradigm [9], where the
set of pilot symbols is regularly multiplexed with data sym-
bols in a given ratio (the so-called burst overhead). Data-
aided (DA) algorithms, which exploit the information con-
tained in the pilot symbols, are routinely used to attain good
performance with small burst overhead. The recent intro-
duction of efficient channel coding with iterative detection
[10] has also placed new and more stringent requirements
for receiver synchronization on satellite modems. The car-
rier synchronizer is requested to operate at a lower signal-to-
noise ratio (SNR) than it used to be with conventional coding
[11].

Therefore, it makes sense to search for the ultimate ac-
curacy that can be attained by carrier synchronizers. It turns
out that the Cramér-Rao bounds (CRBs) for joint estima-
tions are functions of the location of the reference symbols
in the burst. The issue to find the optimal burst format that
minimizes the frequency CRB has been already addressed in
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Figure 1: 2P burst format, 3P burst format, and 4P burst format.

[12–14], but only for joint carrier phase/Doppler-shift es-
timation. The novelty of the paper is to extend the anal-
ysis to the joint carrier phase/Doppler-shift and Doppler-
rate estimation. It is known [12–15] that the preamble-
postamble format (2P format) described in the sequel min-
imizes the frequency CRB with no Doppler-rate, and with
constraints on the total training block length and on the
burst overhead of the signal. We demonstrate here that such
format is optimal in the presence of Doppler-rate as well,
and that the Doppler-rate CRB is minimized by estima-
tion over three equal-length blocks of reference symbols that
are equally spaced by data symbols (3P format). We also
show that other formats are very close to optimality (4P for-
mat).

In addition to computation of the burst, we also in-
troduce new high-resolution and low-complexity carrier
Doppler-shift and Doppler-rate DA estimation algorithms
for such optimal burst formats.

The paper is organized as follows. In Section 2, we
first outline the received signal model affected by Doppler
distortions. Next, in Section 3 we present and analyze a
low-complexity DA Doppler-shift estimator for the optimal
2P format. Extensions of this algorithm for joint carrier
phase/Doppler-shift and Doppler-rate estimation for the 2P
format, the 3P format, and the sub-optimum 4P format, are
introduced in Sections 4 and 5, respectively. Finally, some
conclusions are drawn in Section 6.

2. SIGNALMODEL

In this paper, we take into consideration three different data
burst formats as depicted in Figure 1.

In all cases, the total number of pilot symbols that are
known to the receiver is equal to N , and the total length of
the “data payload” fields that contain information symbols is
equal toM. The formats differ for the specific pilots arrange-
ment in two/three/four groups of N/2, N/3, N/4 consecutive
pilot symbols equally spaced by data symbols. Hereafter we
will address them as “2P,” “3P,” “4P” formats as in Figures
1(a), 1(b), 1(c), respectively. We denote also with L = N +M
the overall burst length, and with η the burst overhead, that
is, the ratio between the total number of pilot symbols and

the total number of symbols within the burst:

η = N

L
= N

N +M
= 1

1 +M/N
. (1)

We also assume BPSK/QPSK data modulation for the pilot
fields, and additive white Gaussian noise (AWGN) channel
with no multipath. Filtering is evenly split between transmit-
ter and receiver, and the overall channel response is Nyquist.
Timing recovery is ideal but the received signal is affected by
time-varying Doppler distortion. Filtering the received wave-
form with a matched filter and sampling at symbol rate at
the zero intersymbol interference instants yields the follow-
ing discrete-time signal:

z(k) = cke
jϕk + n(k), k = −L− 1

2
, . . . , 0, . . . ,

L− 1
2

,

(2)

where

ϕk = θ + 2πνkT + παk2T2 (3)

is the instantaneous carrier excess phase, {ck} are unit-energy
(QPSK) data symbols and L (odd) is the observation (burst)
length. Also, 1/T is the symbol rate, θ is the unknown initial
carrier phase, ν is the constant unknown carrier frequency
offset (Doppler-shift), and finally α is the constant unknown
carrier frequency rate-of-change (Doppler-rate). For signal
model (2) to be valid, we assumed that the value of the
Doppler-shift ν is much smaller than the symbol rate, and
that the value of the Doppler-rate α is much smaller than
the square of the symbol rate. The noise n(k) is a complex-
valued zero-mean WGN process with independent compo-
nents, each with variance σ2 = N0/(2Es), where Es/N0 repre-
sents the ratio between the received energy-per-symbol and
the one-sided channel noise power spectral density.

Estimation of ν and α from the received signal z(k) re-
quires preliminary modulation removal from the pilot fields.
Broadly speaking, it is customary to adopt BPSK or QPSK
modulation for pilot fields, so that modulation removal is
easily carried out by letting r(k) = c∗k z(k). The result is

r(k) = e jϕk +w(k), k ∈K =
{⋃

NPi

}
, (4)
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whereK is the symmetric set of N time indices correspond-
ing to pilot symbols, and w(k) = c∗k n(k) is statistically equiv-
alent to n(k). We explicitly mention here that we have cho-
sen a symmetrical range K with respect to the middle of
the burst since such arrangement decouples the estimation
of some parameters, as discussed in [12] and in Appendix B.
The signal r(k) will be considered from now on as our ob-
served signal that allows to carry out the carrier synchro-
nization functions. We show in Appendix B that the burst
formats in Figure 1 are optimum so far as the estimation of
parameters ν and α is concerned. To keep complexity low, we
will not take into consideration here “mixed,” partially blind,
methods to perform carrier synchronization that use both the
known pilot symbols and all of the intermediate data sym-
bols of the burst, like envisaged in [16] for the case of channel
estimation.

3. DOPPLER-SHIFT ESTIMATOR: FEPE ALGORITHM

We momentarily neglect the effect of the Doppler-rate α in
(4), to concentrate on the issue of Doppler-shift estimation
only. Under such hypothesis, (4) can be rewritten as follows:

r(k) = e j(θ+2πνkT) +w(k), k ∈ K. (5)

The 2P format minimizes the CRB for Doppler-shift esti-
mation for joint carrier phase/Doppler-shift estimation [12–
15]. Conventional frequency offset estimators for consecu-
tive signal samples [3] are not directly applicable to a burst
format encompassing a preamble and a postamble. In addi-
tion, straightforward solution of a maximum-likelihood es-
timation problem for ν appears infeasible. We introduce thus
a new low-complexity algorithm suitable for the estimation
of the Doppler-shift ν in (4) with the burst format as above.
The key idea of the 2P frequency estimator is really a naive
one: we start by computing two phase estimates, the one on
the preamble section, and the other on the postamble, us-
ing the standard low-complexity maximum-likelihood (ML)
algorithm [17]:

θ̂1=arg

{ −(M−1)/2∑

k=−(N+M−1)/2
r(k)

}
, θ̂2=arg

{ (N+M−1)/2∑

k=(M−1)/2
r(k)

}
,

(6)

where arg{·} denotes the phase of the complex-valued ar-
gument. Then we associate the two phase estimates to the
two midpoints of the preamble and postamble sections, re-
spectively, whose time distance is equal to (M + N/2)T
(Figure 1(a)). After this is done, we simply derive the fre-
quency estimate as the slope of the line that connects the two

points (−(M − 1)/2−N/4, θ̂1) and ((M − 1)/2 +N/4, θ̂2) on
the (time, phase) plane:

ν̂ =
∣∣∣∣θ̂2

∣∣
2π −

∣∣θ̂1
∣∣
2π

∣∣
2π

2π(M +N/2)T
. (7)

This simple algorithm is known as frequency estimation
through phase estimation (FEPE) [15]. The operator |x|2π re-
turns the value of x modulo 2π, in order to avoid phase am-
biguities, and is trivial to implement when operating with
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Figure 2: MEV of FEPE estimator for different values of ES/N0—
simulation only. Preamble + postamble DA ML phase estimation,
N = 44,M = 385.

fixed-point arithmetic on a digital hardware. It is easy to ver-
ify that such estimator is independent of the particular ini-
tial phase θ, that vanishes when computing the phase dif-
ference at the numerator of (7). It is also clear that the
operating range of the estimator is quite narrow. In order
not to have estimation ambiguities, we have to ensure that

−π ≤ |θ̂2|2π−|θ̂1|2π < π, and therefore the range is bounded
to

|ν| ≤ 1
2(M +N/2)T

. (8)

This relatively narrow interval does not allow to use the FEPE
algorithm for initial acquisition of a large frequency offset at
receiver start-up. Its use is therefore restricted to fine esti-
mation of a residual offset after a coarse acquisition or com-
pensation of motion-induced Doppler-shift. Figure 2 depicts
the normalized mean estimated value (MEV) curves of the
FEPE algorithm (i.e., the average estimated value E{ν̂} as a
function of the true Doppler-shift ν) for different values of
Es/N0 as derived by simulation. In our simulations we use
the values N = 44 and M = 385 taken from the design de-
scribed in [11], so that the overhead is η = 10% (typical for
short bursts). MEV curves show that the algorithm is unbi-
ased in a broad range around the true value (here, ν = 0). It
can be shown that this is true as long as ν2NT � 1, so that

the “ancillary” estimates θ̂2 and θ̂1 are substantially unbiased
as well. Such condition is implicitly assumed in (8) since in
the practice M � N/2. The curve labeled Es/N0 = 100 dB
(which is totally unrealistic) has the only purpose of showing
the bounds of the unambiguous estimation range.

It is also easy to evaluate the estimation error variance of

the FEPE estimator. It is known in fact that θ̂1 and θ̂2 in (7)
have an estimation variance σ2

θ̂
that achieves the Cramér-Rao
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Bound (CRB) [17]:

σ2
θ̂
= CRB(θ) = 1

2 ·N/2
1

Es/N0
. (9)

Therefore, considering that the two phase estimates in (7) are
independent, we get

σ2FEPE(ν̂)=
2 · σ2

θ̂

4π2(M +N/2)2T2
= 1
4π2T2N/2(M +N/2)2

1
Es/N0

.

(10)

The vector CRB [18] for the frequency offset estimate in the
joint carrier phase/Doppler-shift estimation with the 2P for-
mat is derived in Appendix A and reads as follows:

VCRB2P(ν)= 3
4π2T2(N/2)

[
4(N/2)2+ 3M2+3MN−1]

1
Es/N0

.

(11)

Both from the expression of the bound (11) and of the
variance (10), it is seen that the estimation accuracy has an
inverse dependence on (N/2)3, and this is nothing new with
respect to conventional estimation on a preamble only. The
important thing is that we also have inverse dependence on
M2, due to the 2P format that gives enhanced accuracy (with
small estimation complexity) with respect to the conven-
tional estimator. From (1), we also have M = N(1/η − 1),
so that the term 3M2 dominates (N/2)2 as long as η < 1/2,
which is always verified in the practice.

Therefore, the ratio between the CRB (11) and the vari-
ance of the FEPE estimator is very close to 1. With N = 44
and M = 385, we get, for instance, σ2FEPE/VCRB2p = 0.99.
The enhanced-accuracy feature is also apparent in the com-
parison of the VCRB2p(ν) as in (11) with the conventional
VCRB(ν) [18] for frequency estimation on a single preamble
with length N , that is obtained by lettingM = 0 in (11). The
reverse of the coin is of course the reduced operating range
(8) of the estimator.

Figure 3 shows curves of the (symbol-rate-normalized)
RMSEE (root mean square estimation error) of the FEPE

algorithm (i.e., T
√
E{(v̂ − v)2}) as a function of Es/N0 for

various values of the true offset ν. In particular, marks are
simulation results for σ2FEPE, whilst the lowermost line is the
VCRB2p(ν). We do not report the curve for (10) since it
would be totally overlapped with (11).

Performance assessment of the FEPE estimator is con-
cluded in Figure 4 with the evaluation of the sensitivity of the
RMSEE to different values of an uncompensated Doppler-
rate α. Just to have an idea of practical values of αT2 to be en-
countered in practice, we mention that the largest Doppler-
rates in LEO satellites are of the order of 200Hz/s [1, 19] for
a carrier frequency of 2.2 GHz, and assuming a symbol rate
of 2 Mbaud, we end up with the value αT2 = 5.10−11. From
simulation results, we highlight that the performance of this
algorithm is affected by α, but only in the case of a normal-
ized Doppler-rate αT2 ≥ 10−7, that is larger than those that
are found in the practice.

Finally, the complexity of the FEPE estimator with re-
spect to conventional methods of frequency estimation [3,
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Figure 3: RMSEE of FEPE estimator for different values of
ES/N0 and relevant bounds—solid lines: theory—marks: simula-
tion. Preamble + postamble DA ML phase estimation, N = 44,
M = 385.

13] is presented in Table 1. It is clear that the strength of the
FEPE algorithm is its very low complexity as compared to
conventional algorithms.

4. DOPPLER-RATE ESTIMATORS IN 2P FRAME:
FREPE AND FREFE ALGORITHMS

We take now back into consideration the presence of a non-
negligible Doppler-rate in the received signal, modeled as in
(3)-(4). We focus again on the 2P format (Figure 1(a)), since
it is the optimal format for Doppler-shift estimation in joint
carrier phase/Doppler-shift andDoppler-rate estimation too,
as demonstrated in Appendix B. A new simple estimator for
α in the 2P format is found by a straightforward general-
ization of the FEPE approach. Assume that we further split
both the preamble and the postamble into two subsections of
equal length, and we compute four (independent) ML phase
estimates on the two subsections. We know in advance that
the time evolution of the phase is described by a parabola.
The four phase estimates can thus be used to fit a second-
order phase polynomial according to the Minimum Mean
Squared Error (MMSE) criterion; taking the origin in the
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first section of the preamble, we obtain the phase model

ϕP(n) = aπ
(
n +

M − 1
2

+
3N
8

)2

+ 2πb
(
n +

M − 1
2

+
3N
8

)
+ c,

(12)

where the regression coefficients a and b directly repre-
sent estimates for the (normalized) carrier Doppler-rate and
Doppler-shift, respectively, and c is an estimate for the initial
phase (that we are not interested into). The coefficients are
found after observing that the MSE is written as

ε(a, b, c) =
4∑

i=1

[
ϕP
(
ni
)− θ̂i

]2 =
4∑

i=1
e2i , (13)

where θ̂i, i = 1, . . . , 4, are the above-mentioned ML phase
estimates on N/4 pilots each, and n1 = −[(M−1)/2+3N/8],
n2 = −[(M − 1)/2 + N/8], n3 = [(M − 1)/2 + N/8], and
n4 = [(M − 1)/2 + 3N/8] are the four time instants that we
conventionally associate to the four estimates (the midpoints
of the four subsections). Equating to zero the derivatives of

Table 1: The FEPE computational complexity comparison.
(Nalg = estimation design parameter.)

Computational complexity of major
Doppler-shift estimation algorithms

Algorithm Reference
Number of real products
and additions

LUT access

L&R [3] 4N
(
Nalg + 1

)− 2 1

M&M [3] Nalg
(
8N − 4Nalg − 3

)− 2 Nalg

S-BLUE [13] 4N2 + 4.5N − 3 1.5N − 2

P-BLUE-2 [13] 4N − 1 1

FEPE — 2N + 3 2

ε(a, b, c) with respect to a, b, and c, we obtain

∂ε(a, b, c)
∂a

=
4∑

i=1
ei ·

[
ni +

(
M − 1

2
+
3N
8

)]2
= 0,

∂ε(a, b, c)
∂b

=
4∑

i=1
ei ·

[
ni +

(
M − 1

2
+
3N
8

)]
= 0,

∂ε(a, b, c)
∂c

=
4∑

i=1
ei = 0,

(14)

and solving for awe get the following so-called frequency rate
estimation through phase estimation (FREPE) algorithm [15]:

α̂FREPE = a

T2
=
(
θ̂4 − θ̂3

)− (θ̂2 − θ̂1
)

πN/2(N/2 +M)T2
(15)

(all differences to be intended modulo-2π). This extremely
simple approach can be viewed as a generalization of the
FEPE introduced in the previous section. In particular, by us-
ing (7), the terms

(
θ̂i − θ̂i−1

)

2π(N/4)T
, i = 2, 4, (16)

represent two Doppler-shift estimations, the first on the
preamble and the second on the postamble, respectively,
which are spaced M + N/2 symbols apart. The Doppler-rate
estimate is thus simply the difference between the two fre-
quency estimates, divided by their time distance (M+N/2)T .

The considerations above allow us to also introduce
the frequency rate estimation through frequency estimation
(FREFE) algorithm [15]

α̂FREFE = ν̂2 − ν̂1
(M +N/2)T

, (17)

wherein the two frequency estimates ν̂1 and ν̂2 can be ob-
tained by any conventional algorithm [3] operating sepa-
rately on the preamble and on the postamble, respectively.
We can choose for instance the L&R algorithm [20] or the
R&B algorithm [21]. Assuming that the selected algorithm
operates close enough to the CRB (as is shown in [3]), the
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variance of (17) is

σ2FREFE(α̂) =
2σ2ν̂

(M +N/2)2T2

= 3
π2T4N/2

(
(N/2)2 − 1

)
(M +N/2)2

1
Es/N0

,

(18)

where we have used σ2ν̂ = 3 · (Es/N0)−1/[2π2T2N/2((N/2)2 −
1)] [17]. This can be compared to the variance of the FREPE
algorithm that is easily found to be

σ2FREPE(α̂) =
4 · σ2

θ̂

π2(N/2)2(M +N/2)2T4

= 4
π2T4(N/2)3(M +N/2)2

1
Es/N0

,

(19)

where now σ2
θ̂
= (Es/N0)−1/(N/2). The relevant vector CRB

for Doppler-rate estimate is (see Appendix B):

VCRB2P(α)

= 45
π2T4

(
(N/2)3−N/2)(16(N/2)2+15M2+30MN/2−4)

1
Es/N0

.

(20)

All expressions inversely depend on (N/2)5 as in conven-
tional preamble-only estimation of the Doppler-rate [6], but
they also bear again inverse dependence onM2 that gives en-
hanced accuracy. For sufficiently large values of N and M,
M� N , we have

σ2FREFE(α̂)
σ2FREPE(α̂)

∼= 3
4
,

VCRBPP(α)
σ2FREFE(α̂)

∼= 1. (21)

Figure 5 shows the MEV curves (i.e., E{α̂}) of the FREPE al-
gorithm for different values of Es/N0, in the case of N = 44,
M = 385, and Doppler-shift vT = 10−3. The estimator is
unbiased with an operating range equal to

∣∣αFREPE
∣∣ ≤ 1

N/2(M +N/2)T2
. (22)

The sensitivity of FREPE to different uncompensated val-
ues of vT is illustrated in Figure 6 in terms of MEV.

The same simulations have been run also for the FREFE
algorithm. In particular, Figure 7 illustrates the MEV curves
for different values of Es/N0 and with vT = 10−3. By using
the L&R algorithm to estimate ν̂1 and ν̂2, the operating range
of FREFE is roughly twice that of FREPE:

∣∣αFREFE
∣∣ ≤ 1

(N/4 + 1)(M +N/2)T2
. (23)

In particular, the term [(N/2 + 1)T]−1 represents the fre-
quency pull-in range of L&R on N/2 pilots [20].

Figure 8 demonstrates that FREPE is also less sensitive
than FREFE to an uncompensated Doppler-shift. Finally,
Figure 9 shows the curve of the Doppler-rate RMSEE of
FREPE and FREFE as a function of Es/N0, for νT = 10−3 and
αT2 = 10−6. The FREPE estimator loses only 10 log10(4/3) =
1.25dB in terms of Es/N0 with respect to the performance of
the more complex FREFE when N � 1.
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5. OPTIMUMDOPPLER-RATE ESTIMATION

5.1. Odd number of pilot fields: FRE-3PE algorithm

We turn now to the issue of optimum burst configuration
for the estimation of the Doppler-rate. We demonstrate in
Appendix B that the 3P format (Figure 1(b)) minimizes the
CRB for Doppler-rate estimation, with the usual constraints
on the total training block length and on the burst over-
head (1). In the following, we develop a new low-complexity
algorithm suitable for Doppler-rate estimation with the 3P
format. We know in advance that the time evolution of the
phase is described by a parabola. As was done for the FREPE
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Figure 7: MEV of FREFE estimator for different values of ES/N0—
simulation only. Preamble + postamble Luise and Reggiannini,N =
44,M = 385, vT = 1.0× 10−3.
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Figure 8: MEV of FREFE estimator for different values of the
Doppler-shift vT—simulation only. FREFE estimator preamble +
postamble Luise and Reggiannini, N = 44, M = 385, Es/N0 =
10 dB.

algorithm in the 2P configuration, a simple estimator of α
in the 3P format is found by computing three (independent)
ML phase estimates on the three blocks of pilots, and then
fitting a second-order phase polynomial. Taking the origin in
the first block of pilots, we obtain this time the phase model

ϕP(n) = aπ
(
n+

N

3
+
M

2

)2
+ 2πb

(
n+

N

3
+
M

2

)
+ c. (24)

The coefficients are found solving the following set of equa-
tions:

ϕP
(
ni
) = θ̂i, i = 1, . . . , 3, (25)
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Figure 9: RMSEE of FREPE, FREFE, FRE-3PE, and FRE-2FREPE
estimators for different values of ES/N0 and relevant bounds,—solid
lines: theory—marks: simulation. Doppler-rate algorithms: FREFE
versus FREPE versus FRE-3PE versus FRE-2FEPE, N = 44(45),
M = 385(384), vT = 1.0× 10−3.

where θ̂i are the above-mentioned ML phase estimates on
N/3 pilots each, and where n1 = −(M/2 + N/3), n2 = 0, and
n3 = (M/2 + N/3) are the three time instants that we con-
ventionally associate to the three estimates (the midpoints of
the three subsections). Solving for a, we get the following so-
called (FRE-3PE) (frequency rate estimation through 3 phase
estimations) algorithm:

α̂FRE-3PE = a

T2
= 18

[(
θ̂3 − θ̂2

)− (θ̂2 − θ̂1
)]

π(2N + 3M − 2)2T2
(26)

(all differences to be intended modulo-2π). The estimator is
unbiased with an operating range equal to:

∣∣α̂FRE-3PE
∣∣ ≤ 18

(2N + 3M − 2)2T2
. (27)

In our simulations (N = 45 andM = 384), |αFRE-3PE · T2| ≤
10−5. This range is narrower than FREPE’s and FREFE’s in
the 2P format, but it still widely includes practical Doppler-
rate values mentioned in Section 3. Figure 10 shows theMEV
curves of the FRE-3PE algorithm for different values of
Es/N0, in the case of N = 45, M = 384, and Doppler-shift
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Figure 10: MEV of FRE-3PE estimator for different values of
ES/N0—simulation only. 3 blocks of pilots DA ML phase estima-
tion, N = 45,M = 384, vT = 1.0× 10−3.

vT = 10−4, while Figure 11 shows the sensitivity of the MEV
to different uncompensated values of the Doppler-shift vT .

The theoretical error variance of the FRE-3PE estimator
can be easily evaluated, similarly to what was done for the
calculation of σ2FREFE(α̂) in Section 4:

σ2FRE-3PE(α̂) =
182 · 6 · σ2

θ̂

π2(2N + 3M − 2)4T4

= 182 · 6
π2T4(2N/3)(2N + 3M − 2)4

1
Es/N0

,

(28)

where now σ2
θ̂
= (Es/N0)−1/(2N/3). Comparing this expres-

sion with the VCRB3P(α) in (B.11) and with the variances of
the FREFE and FREPE algorithms, we note that all expres-
sions inversely depend on N5 as in conventional preamble-
only estimation of the Doppler-rate [6]. On the other hand,
σ2FRE-3PE(α̂) and VCRB3P(α) inversely depend on M4, out-
performing the accuracy of both the traditional preamble-
only format and the 2P format (that depends on M−2). The
enhanced accuracy is highlighted by Figure 9, where we re-
port the simulated RMSEE (marks) of FRE-3PE, FREPE, and
FREFE versus Es/N0. To perform a fair comparison, we also
reported the VCRBP(β), obtained in the case of estimation of
Doppler-rate in the preamble-only configuration. The FRE-
3PE algorithm attains its own CRB, and exhibits a gain of
19 dB in terms of Es/N0 with respect to the 2P format.

As a final remark, we only mention that a simple estima-
tor of Doppler-shift in the 3P format is found by applying the
FEPE algorithm to the two extreme pilot fields of the burst.
Its variance reaches the VCRB3P(ν) calculated setting x = 1
in (B.7) and (B.9), that is 1.5 dB apart from the VCRB2P(ν)
of the optimal 2P format.
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Figure 11: MEV of FRE-3PE estimator for different values of the
Doppler-shift vT—simulation only. 3 blocks of pilots,N = 45,M =
384, ES/N0 = 10 dB.

5.2. Even number of pilot fields: FRE-2FEPE algorithm

When the number of pilot fields is even, the optimum burst
format turns out to be the 4P as shown in Appendix B.
We notice that the ratio of the two bounds for 3P and
4P amounts to VCRB4p(α)/VCRB3p(α) ∼= 9720/108 · 640/
51840 ∼= 1.09M� N , so that 4P is only slightly optimal.

A simple estimator of α in the 4P format is found by a
straightforward generalization of the FEPE and FREFE ap-
proaches. Assume that we split the burst into two 2P sub-
bursts of length (M/3 + N/2), (Figure 1(d)). Each preamble
and postamble is now of length N/4, and we can derive two
FEPE estimates of frequency on each subburst:

ν̂1 =
∣∣∣∣θ̂2

∣∣
2π −

∣∣θ̂1
∣∣
2π

∣∣
2π

2π(M/3 +N/4)T
, ν̂2 =

∣∣∣∣θ̂4
∣∣
2π −

∣∣θ̂3
∣∣
2π

∣∣
2π

2π(M/3 +N/4)T
,

(29)

where θ̂i, i = 1, . . . , 4, are the ML phase estimates computed
on the four pilot fields of N/4 pilots each. The two Doppler-
shift estimates ν̂1 and ν̂2 are associated with the two mid-
point instants of the two 2P subbursts, whose time distance
is equal to (2M/3 + N/2)T (Figure 1(c)). Again, we estimate
the Doppler-rate as the slope of the line that connects the two
points (−(M/3− 1/2)−N/4, ν̂1) and ((M/3− 1/2) +N/4, ν̂2)
in the (time, frequency) plane:

α̂FRE-2FEPE = ν̂2 − ν̂1
(2M/3 +N/2)T

. (30)

We call this algorithm FRE-2FEPE (frequency rate estimation
through two FEPE estimations) .

It is clear that the operating range of the estimator with
respect to ν̂ comes from the application of (8) to the new
configuration and turns out to be |ν| ≤ [2(M/3 +N/4)T]−1.
The MEV curves of FRE-2FEPE are not reported here since
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they basically mimic those in Figures 10 and 11 for the
FRE-3PE algorithm. The estimation error variance of (30)
is found to be

σ2FRE-2FEPE(α̂) =
σ2
θ̂

(2M/3 +N/2)2(M/3 +N/4)2π2T2

= 2 · (Es/N0
)−1

π2T4N(2M/3 +N/2)2(M/3 +N/4)2
.

(31)

Figure 9 shows also the curves of the RMSEE of FRE-2FEPE
and its respective CRB. The FRE-2FEPE algorithm reaches its
own VCRB4p(α) and thus, as demonstrated in Appendix B, it
gains 10 log10(7.19) = 18.5 dB in terms of Es/N0 with respect
to the performance of the previous algorithms with the 2P
format. Also, the FRE-2FEPE loses only 0.4 dB with respect
to the FRE-3PE algorithm and can thus be a valid alternative
to the 3P format.

As a final remark, we briefly address the issue of Doppler-
shift estimation in the 4P format. The best method is found
by applying the FEPE algorithm to the two extreme pilot
fields of the burst. Its variance is close to the VCRB4P(ν) cal-
culated setting x = 1 in (B.8) and (B.9), that is 2.4 dB worse
than the VCRB2P(ν) of the optimal 2P format.

6. CONCLUSIONS

In this paper, we presented and analyzed some very-
low-complexity algorithms for carrier Doppler-shift and
Doppler-rate estimation in burst digital transmission. To
achieve enhanced accuracy, the burst configurations that
minimize the CRB for the estimation of Doppler-shift and
Doppler-rate are derived. Our analysis showed that the 2P
format is optimum for Doppler-shift estimation and that the
3P format is optimum for Doppler-rate estimation. These
two configurations can be practically thought as repetition of
two/three consecutive conventional (preamble-only) bursts.
Despite preventing from real-time processing of the data pay-
load section, the 2P and 3P formats greatly outperform the
estimation based on conventional preamble-only pilot dis-
tribution. Performance assessment has shown that all of the
proposed algorithms are unbiased in practical operating con-
ditions, and that their accuracy in terms of estimation vari-
ance gets remarkably close to their respective CRBs down to
very low Es/N0 values.

APPENDICES

A. VCRB FOR JOINT CARRIER PHASE/DOPPLER-SHIFT
ESTIMATIONWITH 2P FORMAT

In this appendix, we calculate the VCRB for the error vari-
ance of any unbiased estimator of Doppler-shift in the case of
joint estimation of phase/Doppler-shift using the preamble-
postamble (2P) format. We explicitly mention that we have
chosen a set K of pilot locations that is symmetrical with
respect to the middle of the burst, since a symmetricalK de-
couples phase from Doppler-shift estimation, as discussed in

[12]. After modulation removal, the generic sample within
the preamble and the postamble is given by (5).

The Fisher information matrix (FIM) [18] can be written
as

F =
[
Fθθ Fθν

Fνθ Fνν

]

=

⎡
⎢⎢⎢⎢⎣

−Er
{∣∣∣∣∣

∂2 ln p(r | ν̃, θ̃)

∂θ̃2

∣∣∣∣∣

}
−Er

{∣∣∣∣∣
∂2 ln p(r | ν̃, θ̃)

∂θ̃∂ν̃

∣∣∣∣∣

}

−Er
{∣∣∣∣∣

∂2 ln p(r | ν̃, θ̃)

∂ν̃∂θ̃

∣∣∣∣∣

}
−Er

{∣∣∣∣∣
∂2 ln p(r | ν̃, θ̃)

∂ν̃2

∣∣∣∣∣

}

⎤
⎥⎥⎥⎥⎦
,

(A.1)

where p(r | ν̃, θ̃) is the probability density function of r =
{r(k)}, k ∈ K , conditioned on (ν̃, θ̃), and r(k) is a random
Gaussian variable with variance equal to σ2 = N0/(2Es) and
mean value equal to

s̃(k) = e j(θ̃+2πν̃kT). (A.2)

Therefore, we write p(r | ν̃, θ̃) as

p(r | ν̃, θ̃) =
∏

k∈K
p
(
rk | ν̃, θ̃

)

= 1
(
2πσ2

)N exp

{
− 1

2σ2
∑

k∈K

∣∣r(k)− s̃(k)
∣∣2
}
.

(A.3)

Taking the logarithm of (A.3), we obtain

ln p(r | ν̃, θ̃)

= N ln
(

1
2πσ2

)
− 1

2σ2
∑

k∈K

[∣∣r(k)
∣∣2 +

∣∣s̃(k)
∣∣2

− 2Re
{
r(k)s̃∗(k)

}]

=C +
1
σ2

∑

k∈K
Re
{
r(k)s̃∗(k)

}
,

(A.4)

where C is a constant term that includes all the quantities

independent of ν̃ and θ̃. After differentiating twice (A.4) with

respect to ν̃ and θ̃, calculating the expectation of the various
terms with respect to r, we get

F =
[
a′ b′

c′ d′

]
, (A.5)

where

a′ =
(
1
σ2

) ∑

k∈K

{
(1)Er

[
Re
{
r(k)s̃∗(k)

}]}
,

b′ =
(
1
σ2

) ∑

k∈K

{
(2πTk)Er

[
Re
{
r(k)s̃∗(k)

}]}
,

c′ =
(
1
σ2

) ∑

k∈K

{
(2πTk)Er

[
Re
{
r(k)s̃∗(k)

}]}
,

d′ =
(
1
σ2

) ∑

k∈K

{(
4π2T2k2

)
Er
[
Re
{
r(k)s̃∗(k)

}]}
.

(A.6)
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By noticing that

Er
[
Re
{
r(k)s̃∗(k)

}] = 1, (A.7)

we obtain

F = 1
σ2

⎡
⎢⎢⎢⎢⎣

∑

k∈K
(1) 2πT

∑

k∈K
k

2πT
∑

k∈K
k 4π2T2

∑

k∈K
k2

⎤
⎥⎥⎥⎥⎦
, (A.8)

where, considering the symmetry of the rangeK ,

∑

k∈K
(1) = N ,

∑

k∈K
k = 0, (A.9)

∑

k∈K
k2 = N/2

3

[
8
(
N

2

)2
− 6

(
N

2

)
+ 1

+ 3M2 + 3M
(
3
(
N

2

)
− 1

)]
.

(A.10)

After calculation of F−1, the VCRB for ν in case of joint
phase/Doppler-shift estimation is found to be

F−1νν = VCRB2P(ν) = 1
2π2T2

∑
k∈K k2

1
Es/N0

= 3 · (Es/N0
)−1

4π2T2(N/2)
[
4(N/2)2 + 3M2 + 3MN − 1

] .
(A.11)

B. OPTIMAL SYMMETRIC BURST CONFIGURATION
FOR JOINT CARRIER-PHASE/DOPPLER-SHIFT
ANDDOPPLER-RATE ESTIMATION:
2P, 3P, 4P FORMATS

This appendix addresses the optimal signal design for
Doppler-shift ν and Doppler-rate α estimation in the case of
joint phase/Doppler-shift and Doppler-rate estimation when
the received signal is expressed by (2)–(4). The optimal train-
ing signal structure is developed by minimizing the vector
Cramér-Rao bounds (VCRBs) [17, 18] for ν and α, with
constraints on the total training block length and on the
burst overhead (1) of the signal (4). In fact, the Cramér-Rao
bounds (CRBs) for joint estimations are functions of the lo-
cation of the reference symbols in the burst.

The issue of finding the optimal burst format that mini-
mizes the frequency CRB has been already addressed in [12–
14], but only for joint phase/Doppler-shift estimation. We
restrict our analysis to a symmetric burst format. In the se-
quel, we demonstrate that this symmetry also decouples the
estimation of Doppler-shift and Doppler-rate. Our attention
is focused on a generic burst format as in Figure 12, either
with an even (Figure 12(a)) or an odd (Figure 12(b)) num-
ber of blocks of pilots. Just to rehearse notation, we mention
that the length of the burst is L symbols, N is the total num-
ber of pilot symbols, NP is the number of reference symbols
in each subgroup, M is the total number of data symbols,
and MD is the number of data symbols in each subgroup.
In Figure 12(a), 2xeven is the (even) number of subgroups of

NP MD NP MD NP MD NP MD NP MD NP

-Symmetric format-

0

P P P PP P

(a)

NP MD NP MD NP MD NP MD NP MD NP MD NP

0
L

P P P P PP P

(b)

Figure 12: Generic symmetric burst format.

pilot symbols, and (2xeven + 1) is the (odd) number of sub-
groups of data symbols; in Figure 12(b), (2xodd + 1) is the
(odd) number of subgroups of pilot symbols, and 2xodd is
the (even) number of subgroups of data symbols. In the se-
quel we find the values of x that minimize the VCRBs of ν
and α, for fixed values of L, N , andM.

In the case of joint phase/Doppler-shift/Doppler-rate es-
timation, the fisher information matrix (FIM) of the generic
bursts of Figure 12 can be written as

F =

⎡
⎢⎢⎣
Fθθ Fθν Fθα
Fνθ Fνν Fνα

Fαθ Fαν Fαα

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Er
{∣∣∣∣

a′′

∂θ̃2

∣∣∣∣
}

−Er
{∣∣∣∣

a′′

∂θ̃∂ν̃

∣∣∣∣
}
−Er

{∣∣∣∣
a′′

∂θ̃∂α̃

∣∣∣∣
}

−Er
{∣∣∣∣

a′′

∂ν̃∂θ̃

∣∣∣∣
}

−Er
{∣∣∣∣

a′′

∂ν̃2

∣∣∣∣
}

−Er
{∣∣∣∣

a′′

∂ν̃∂α̃

∣∣∣∣
}

−Er
{∣∣∣∣

a′′

∂α̃∂θ̃

∣∣∣∣
}
−Er

{∣∣∣∣
a′′

∂α̃∂ν̃

∣∣∣∣
}

−Er
{∣∣∣∣

a′′

∂α̃2

∣∣∣∣
}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(B.1)

where a′′ = ∂2 ln p(r | α̃, ν̃, θ̃), p(r | α̃, ν̃, θ̃) is the probability
density function of r = {r(k)}, with k ∈K , conditioned on

(α̃, ν̃, θ̃). Now r(k) is a random Gaussian variable with vari-
ance equal to σ2 = N0/(2Es) and mean equal to

s̃(k) = e j(θ̃+2πν̃kT+α̃πk2T2) (B.2)

so that

p(r | α̃, ν̃, θ̃) =
∏

k∈K
p
(
rk | α̃, ν̃, θ̃

)

= 1
(
2πσ2

)N exp

{
− 1

2σ2
∑

k∈K

∣∣r(k)− s̃(k)
∣∣2
}
.

(B.3)

As detailed in Appendix A, after taking the logarithm of
(B.3), and after differentiating with respect to the unknown
parameters, and calculating the expectation of the terms with
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respect to r, we have

F = 1
σ2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑

k∈K
(1) 2πT

∑

k∈K
k πT2

∑

k∈K
k2

2πT
∑

k∈K
k 4π2T2

∑

k∈K
k2 2π2T3

∑

k∈K
k3

πT2
∑

k∈K
k2 2π2T3

∑

k∈K
k3 π2T4

∑

k∈K
k4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B.4)

where, thanks to the symmetry of rangeK ,

∑

k∈K
k = 0,

∑

k∈K
k3 = 0. (B.5)

We finally get the expression of the FIM matrix as

F = 1
σ2

⎡
⎢⎢⎢⎢⎢⎢⎣

N 0 πT2
∑

k∈K
k2

0 4π2T2
∑

k∈K
k2 0

πT2
∑

k∈K
k2 0 π2T4

∑

k∈K
k4

⎤
⎥⎥⎥⎥⎥⎥⎦
. (B.6)

With an even number of pilot fields (Figure 12(a)), we have

∑

k∈K
k2 = 2

xeven−1∑

n=0

N/2xeven∑

l=1

[(
M/

(
2xeven − 1

)− 1
)

2

+ l +
(

N

2xeven
+

M

2xeven − 1

)
n
]2
,

∑

k∈K
k4 = 2

xeven−1∑

n=0

N/2xeven∑

l=1

[(
M/

(
2xeven − 1

)− 1
)

2

+ l +
(

N

2xeven
+

M

2xeven − 1

)
n
]4

(B.7)

while, with an odd number of pilot fields (Figure 12(b)), we
get

∑

k∈K
k2=2

N/(2xodd+1)−1∑

k=1
k2

+2
xodd−1∑

n=0

N/(2xodd+1)∑

l=1

[(
N/
(
2xodd + 1

)− 1
)

2
+l

+
(

N

2xodd
+

M

2xodd+1

)
n+

M

2xodd

]2
,

∑

k∈K
k4=2

N/(2xodd+1)−1∑

k=1
k4

+2
xodd−1∑

n=0

N/(2xodd+1)∑

l=1

[(
N/
(
2xodd + 1

)− 1
)

2
+l

+
(

N

2xodd
+

M

2xodd+1

)
n+

M

2xodd

]4
.

(B.8)

Note that, thanks to the symmetry of the burst, the el-
ements Fθν, Fνθ , Fαν, Fνα are all zero, which means that
the joint phase/Doppler-shift and Doppler-shift/Doppler-
rate estimations are decoupled.

Calculating F−1, we obtain the VCRBs for the estimation
of ν as follows:

F−1νν = VCRB(ν) = 1
2π2T2

∑
k∈K k2

1
Es/N0

, (B.9)

as the one found in (A.11) without any Doppler-rate. The
optimal burst configuration that minimizes the VCRB for ν
is thus the 2P format found in [14] also in the presence of
Doppler-rate effects.

The VCRB for α is

F−1αα = VCRB(α) = − 2N

π2T4
[(∑

k∈K k2
)2−N

∑
k∈K k4

] 1
Es/N0

.

(B.10)

If we compute F−1αα as a function of x through (B.7) and
(B.8), for both configurations of Figure 12, we find that the
minimum for F−1αα is obtained with xodd = 1 in (B.8). This
was found by exhaustive numerical evaluation with practical
values for M and N. We can conclude that the VCRB of the
error variance of any unbiased estimator of α is always mini-
mized for a configuration with three blocks of pilot symbols
equally spaced by two blocks of data symbols (3P format).
Setting xodd = 1 in (B.8) and (B.10), the minimum VCRB
of the error variance of any unbiased estimator of α for the
optimal 3P format is thus

VCRBmin(α)

= F−1αα

∣∣
xodd=1 = VCRB3P(α)

= 9720 · (Es/N0
)−1

/
(
π2T4N

[
108

(
4− 5N2 +N4)

+ 32MN
(
15N2 − 45

)

+ 24M2(35N2 − 45
)

+ 720NM3 + 270M4]).
(B.11)

In order to evaluate the gain in using the 3P for-
mat, we have compared the VCRB3P(α) to the bounds
for α in other configurations. Figure 13 shows the ra-
tios VCRB2P(α)/VCRB3P(α), VCRB4P(α)/VCRB3P(α), and
VCRB2P(α)/VCRB4P(α) as functions of the total number N
of pilots and with η = 10%. It is clear that for practical
values of N = 40 ÷ 70, the 3P format exhibits a gain of
10 log(78.6) = 19 dB in terms of Es/N0 with respect to the
2P format and of 10 log(1.1) = 0.4 dB with respect to the 4P
format. The accuracy of the 3P format and of the 4P format
can be thus considered almost equivalent.
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Figure 13: VCRB2P(α)/VCRB3P(α), VCRB2P(α)/VCRB4P(α) and
VCRB4P(α)/VCRB3P(α) ratios as function of the total number of pi-
lots N .

The various VCRBs can be easily calculated from (B.10)
using the appropriate x and (B.7) and (B.8). We report here
the final expressions

VCRB2P(α)

= F−1αα

∣∣
xeven=1

= 360 · (Es/N0
)−1

π2T4
(
N3 − 4N

)(
4N2 + 15M2 + 15MN − 4

) ,

(B.12)

VCRB4P(α)

= F−1αα

∣∣
xodd=2

=25920 · (Es/N0
)−1

/
(
π2T4N

(
288N4 + 1305N3M

+ 240NM
(
8M2 − 15

)

+ 30N2(77M2 − 48
)

+ 32
(
20M4−75M2 + 36

)))
.

(B.13)
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