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Abstract In this paper, we propose a server architecture rec-
ommendation and automatic performance verification tech-
nology, which recommends and verifies appropriate server
architecture on Infrastructure as a Service (IaaS) cloud with
baremetal servers, container-based virtual servers and virtual
machines. Recently, cloud services are spread, and providers
provide not only virtual machines but also bare metal servers
and container-based virtual servers. However, users need to
design appropriate server architecture for their requirements
based on three types of server performances, and users need
much technical knowledge to optimize their system per-
formance. Therefore, we study a technology that satisfies
users’ performance requirements on these three types of IaaS
cloud. Firstly, we measure performance and start-up time
of a bare metal server, Docker containers, KVM (Kernel-
based Virtual Machine) virtual machines on OpenStack with
changing number of virtual servers. Secondly, we propose
a server architecture recommendation technology based on
the measured quantitative data. A server architecture rec-
ommendation technology receives an abstract template of
OpenStackHeat and function/performance requirements and
then creates a concrete template with server specification
information. Thirdly, we propose an automatic performance
verification technology that executes necessary performance
tests automatically on provisioned user environments accord-
ing to the template. We implement proposed technologies,
confirm performance and show the effectiveness.
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1 Introduction

Infrastructure as a Service (IaaS) cloud services have
advanced recently, and users can use virtual resources such as
virtual servers, virtual networks and virtual routes on demand
from IaaS service providers (for example, Rackspace pub-
lic cloud [1]). Users can install OS and middleware such as
DBMS, Web servers, application servers and mail servers
to virtual servers by themselves. And open-source IaaS soft-
ware also becomesmajor, and adoptions ofOpenStack [2] are
increasing especially. Our companyNTT group has launched
production IaaS services based on OpenStack since 2013
[3].

Most cloud services provide virtual computer resources
for users by virtual machines on hypervisors such as Xen
[4] and Kernel-based Virtual Machine (KVM) [5]. However,
hypervisors have demerits of much virtualization over-
head. Therefore, some providers start to provide container-
based virtual servers (hereinafter, containers), which per-
formance degradations are little, and bare metal servers
(hereinafter, baremetal), which does not virtualize a physical
server.

Providing alternatives of bare metals, containers and vir-
tual machines to users can enhance IaaS adoptions, we think.
It is generally said that bare metals and containers show bet-
ter performance than virtual machines, but an appropriate
usage is not mature based on three types of server perfor-
mances. Therefore, when providers only provide these three
types of servers, users need to design appropriate server
architecture for their performance requirements and need
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Fig. 1 OpenStack architecture
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much technical knowledge to optimize their system perfor-
mance.

Therefore, to reduce users’ efforts of designing and
verifying, we propose a technology that satisfies users’ per-
formance requirements on these three types of IaaS cloud.
Firstly, we measure performance and start-up time of a bare
metal server provisioned by Ironic [6] and Docker [7] con-
tainers, KVM virtual machines on OpenStack with changing
number of virtual servers. Secondly, we propose a server
architecture recommendation technology based on the mea-
sured quantitative data. In OpenStack, Heat [8] provisions
virtual environments based on text format templates.A server
architecture recommendation technology receives an abstract
template ofHeat and function/performance requirements and
then creates a concrete template with server specification
information. Thirdly, we propose an automatic performance
verification technology, which executes necessary perfor-
mance tests automatically on provisioned user environments
based on the template to guarantee performance. We imple-
ment proposed technologies, confirm performance and show
the effectiveness.

The rest of this paper is organized as follows:We introduce
an IaaS platform OpenStack, review three types of servers
and clarify problems in Sect. 2. We measure performance
of the three types of servers on OpenStack and discuss an
appropriate usage in Sect. 3. We propose a server archi-
tecture recommendation technology, which satisfies users’
requirements, and an automatic performance verification
technology, which confirms performance on the provisioned
environments in Sect. 4. We confirm the performance of
proposed technologies in Sect. 5. We compare our work to
other related works in Sect. 6. We summarize the paper in
Sect. 7.

2 Overview of existing technologies

2.1 Outline of OpenStack

OpenStack [2], CloudStack [9] and Amazon Web Services
(AWS) [10] are major IaaS platforms. The basic idea of our
proposed technologies is independent from IaaS platforms.
For the first step, however, we implement a prototype of
the proposed technologies on OpenStack. Therefore, we use
OpenStack as an example of an IaaS platform in this sub-
section. Because OpenStack community would like to catch
up AWS currently, OpenStack major functions are similar to
those of AWS.

OpenStack is composed of function blocks that man-
age each virtual resource and function blocks that integrate
other function blocks. Figure 1 shows a diagram of Open-
Stack function blocks. Neutron manages virtual networks.
OVS (Open Virtual Switch) [11] and other software switches
can be used as virtual switches. Nova manages virtual
servers. Main servers are virtual machines on hypervisors
such as KVM. But Nova also can control containers such
as Docker containers and bare metal servers provisioned by
Ironic. OpenStack provides two storage management func-
tion blocks: Cinder for block storage and Swift for object
storage. Glance manages image files for virtual servers. Heat
orchestrates these function blocks and provisions multiple
virtual resources according to a template text file. A template
is a description of server and virtual resource configuration
for orchestration. Ceilometer is a monitoring function of vir-
tual resource usage. Keystone is a function block that enables
single sign-on authentication among other OpenStack func-
tion blocks. The functions of OpenStack are used through
REST (Representational State Transfer) APIs. There is also
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a Web GUI called Horizon that uses the functions of Open-
Stack.

2.2 Qualitative comparison of bare metal, container,
hypervisor

In this subsection, we compare bare metal, container and
hypervisor qualitatively.

Bare metal is a non-virtualized physical server and same
as an existing dedicated hosting server. IBM SoftLayer pro-
vides bare metal cloud services adding characteristics of
prompt provisioning and pay-per-use billing to dedicated
servers. InOpenStack, Ironic component provides baremetal
provisioning. Because bare metal is a dedicated server,
flexibility and performance are high, but provisioning and
start-up time are long, and it also cannot conduct live migra-
tions.

Containers’ technology is OS virtualization. OpenVZ
[12] or FreeBSD jail was used for VPS (Virtual Private
Server) [13] for many years. Computer resources are iso-
lated with each unit called container, but OS kernel is shared
among all containers. Docker that uses LXC (Linux Con-
tainer) appeared in 2013 and attracted many users because
of its usability. Containers do not have kernel flexibility,
but a container creation only needs a process invoca-
tion, and it takes a short time for start-up. Virtualization
overhead is also small. OpenVZ can conduct live migra-
tions, but Docker or LXC cannot conduct live migrations
now.

Hypervisors’ technology is hardware virtualization, and
virtual machines are behaved on emulated hardware; thus,
users can customize virtual machine OS flexibly. Major
hypervisors are Xen, KVM and VMware ESX. Virtual
machines have merits of flexible OS and live migrations, but
those have demerits of performance and start-up time.

However, because these characteristics are only qual-
itative ones, we evaluate performance and start-up time
quantitatively in Sect. 3.

2.3 Problems of multiple types of IaaS server
provisioning

Here, we clarify a problem of three types of IaaS server pro-
visioning.

Three types of servers increase options of price and per-
formance for users. It is generally said that bare metals and
containers show better performance than virtual machines on
hypervisors. However, there are few works to compare per-
formance and start-up time of those three in same conditions,
and appropriate usage discussions based on quantitative data
are not mature. For example, Fester et al. [14] compared the
performance of bare metal, Docker and KVM, but there are
no data of start-up time or performance with changing num-

ber of virtual servers. Therefore,whenproviders only provide
these three types of servers, users need to select and design
appropriate server architecture for their performance require-
ments and need much technical knowledge or performance
evaluation efforts to optimize their system performance. This
is not only on OpenStack, but also on AWS and other IaaS
platforms for users to design appropriate server architecture
for their requirements.

There are some works of resource allocation on cloud ser-
vices to use server resources effectively (for example, [15]);
these technologies’ targets are mainly to reduce providers
cost such as energy usage by allocating virtual machines
appropriately. On the other hand, a technology that selects
appropriate type servers from multiple types based on users’
performance and other requirements is not sufficient. There-
fore, we study an appropriate type server recommendation
technology in Sect. 4 using performance data of Sect. 3.

Note that a smooth migration among these three types of
servers is another problem. Live migrations cannot be done
between different platforms, migrations need steps of image
extraction and image deployment. For example, VMware
provides a migration tool that helps a migration from other
hypervisors toVMwareESX, and it extracts images, converts
images then deploys images [16]. In this paper, migrations
are out of scope because we use existing vendors’ migration
tools.

3 Performance comparison of bare metal, Docker
and KVM

This sectionmeasures performance and start-up time of three
types of servers with same conditions. We use OpenStack
version Juno as a cloud controller, a physical server provi-
sioned by Ironic as bare metal, Docker 1.4.1 as a container
technology and KVM/QEMU 2.0.0 as a hypervisor. Ironic,
Docker and KVM are de facto standard software in Open-
Stack community. Server instances are Ubuntu 14.04 Linux
serverswithApache2Web servers from10GB imagefile, and
we request three types of instances provisioning to a same
physical server using OpenStack compute component Nova.

Functional characteristic comparisons are generally dis-
cussed whether we can conduct a live migration or not,
whether we can customize a kernel or not, whether we
can scale server resources with short time or not. However,
regarding quantitative comparison of performance and start-
up time, there is no work when we change number of servers.
The work of Fester et al. [14] only compares performance of
three types of serverswith fixed one server. The papers of Seo
et al. [17] andMorabito et al. [18] also compare performances
of two or three types of servers by several benchmarks. In
this section, we confirm server performance and start-up time
when number of servers is changed.
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3.1 Performance measurement items

– Measured servers: bare metal provisioned by Ironic, con-
tainers based on Docker, Virtual machines deployed on
KVM.

– Number of virtual servers: 1, 2, 3, 4

Only 1 for bare metal case, 1–4 containers for Docker
case and 1–4 virtual machines for KVM case. When there
aremultiple virtual servers, all physical resources are equally
separated to these multiple servers.

– Performance measurement.

UnixBench [19] is conducted to acquire UnixBench per-
formance indexes. Note that UnixBench is a major sys-
tem performance benchmark. When we measure multiple
server performance, UnixBench is conducted concurrently.
It should be noted that UnixBench measures more than 10
items such as Double-Precision Whetstone, File Copy and
Process Creation to score Index Values.

– Start-up time measurement.

A time from Nova server instance creation API call to each
Linux and Apache2 server start-up is measured. When we
measure multiple server start-up time, instance creation API
is called concurrently. For bare metal case, we measure not
only total time but also each processing time of start-up, and
we also measure the 1st time boot and the 2nd time boot.

3.2 Performance measurement environment

For a performance measurement environment, we prepared
one physical server on which three types of servers were

provisioned and one physical server which had OpenStack
components (Nova, Ironic, PXE server for Ironic PXE boot
and so on). These servers were connected with Gigabit
Ethernet and Layer 2 switch. Figure 2 shows each server
specification.

3.3 Performance of bare metal, Docker and KVM
measurement environment

3.3.1 UnixBench performance

Figure 3 shows a performance comparison of three types of
servers. Vertical axis shows UnixBench performance index
value, and horizon axis shows each server with changing
number of virtual servers. Showed index values are average
of 3 time measurements. We omit performance result of each
item of UnixBench such as File Copy.

Based on Fig. 3 results, it is clear that Docker containers
performance degradation is about 75% performance com-
pared to bare metal performance. And it is also said that
Docker performance is degraded when we change number
of virtual servers, but it is not inverse proportion. When we
see each item, almost all performances of measured items of
Docker are better than KVMbut File Copy performance is as
same as KVM. Therefore, the total index value of Docker is
about 30% better than that of KVMwhen number of server is
1. KVM virtual machines performance degradation is larger
than Docker containers and only 60% performance com-
pared to bare metal performance when number of server is 1.
However, KVM virtual machines performance degradation
tendency with changing number of virtual servers is as same
as Docker containers. And it is also said that the improve-
ment in Docker performance compared to KVM becomes
little when number of servers is increased.
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Fig. 3 UnixBench performance
index score comparison
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Fig. 4 Start-up time comparison. a Bare metal, Docker and KVM start-up time. b Each processing time of bare metal start-up

Virtual machine and container performance depend on
each virtualization technology of hypervisor and container.
Therefore, basically UnixBench performance is not differed
in other IaaS platforms such as CloudStack.

3.3.2 Start-up time

Figure 4a shows start-up time of three types of servers.
Showed start-up times are average of 3 time measurements.
When virtual servers are multiple, average start-up time is
showed. Figure 4b shows each processing time of bare metal
start-up for the 1st time boot and the 2nd time boot. From
Fig. 4a, bare metal start-up takes much long time than KVM
and Docker. This is because bare metal start-up needs image
writing for PXE boot for the 1st time boot and it takes long
time. For the 2nd time boot, it does not need image writing
and total start-up time is about only 200s (see, Fig. 4b).

Comparing Docker and KVM, Docker containers start-up
is shorter than KVM virtual machines and is less than 15s.
This is because a virtual machine start-up needs OS boot, but
a container creation only needs a process invocation. Pre-

cisely, Docker instance creation only takes several hundred
ms, but OpenStack processing such as API check, port cre-
ation and IP address setting take about 5 s.

Implementation of virtual resource creation API is differ-
ent in each IaaS platform; start-up time may be differed little
on other IaaS platforms, but most of start-up time depends
on eachvirtualization technologyof hypervisor and container
(virtual machine creation or container process invocation).

3.4 Discussion

Here, we discuss appropriate usages of IaaS servers based
on quantitative data. Because bare metal shows better per-
formance than other two types servers, it is suitable to use
large-scale DB processing or real-time processing, which
have performance problems when we use virtual machines.
Containers lack flexibility of kernel, but performance degra-
dation is small and start-up time is short. Thus, it is suitable
for auto-scaling for existing servers or shared usages of basic
services such as Web or mail. Hypervisors are suitable to
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Fig. 5 Processing steps of
proposed method

use for areas, which need system flexibility such as business
applications on specific OS.

Of course, UnixBench and start-up times are not only
ways to compare performances. Various performances may
be needed in production service phase of our proposed sys-
tem. Regarding benchmarks, CPU/memory performances
can be evaluated by UnixBench or GeekBench, network
performance can be evaluated by nuttcp or NDT, storage per-
formance can be evaluated by hdparm or fio, DB transaction
performance can be evaluated by TPC (Transaction Process-
ing Performance Council) and energy consumption can be
evaluated by LINPACK benchmark of Flops/Watt. These are
candidates to measure by cloud providers.

4 Proposal of automatic verification technology of
virtual machines patches

We propose a technology that enables a provider recom-
mends appropriate server architecture and verifies it based on
users performance requirement in this section. In Sect. 4.1,
we explain the steps of server architecture recommendation
and automatic performance verification. The figure shows
OpenStack, but OpenStack is not a precondition of the pro-
posed method. In Sect. 4.2, we explain the process of server
architecture recommendationusingSect. 3 performancedata,
which is one of core process of these steps. In Sect. 4.3, we
explain the process of performance test extraction for provi-
sioned user environment to guarantee performance, which is
another core process of these steps.

4.1 Processing steps

Our proposed system is composed of Server architecture rec-
ommendation and Automatic verification Functions (here-
inafter SAFs), a test case DB, Jenkins and an IaaS controller
such as OpenStack. Figure 5 shows the processing steps of
server architecture recommendation and automatic verifica-
tion. There are eight steps in our proposal.

1. A user specifies an abstract template and requirements
to SAFs. A template is a JSON text file with virtual resource
configuration information and is used by OpenStack Heat
[8] or Amazon CloudFormation [20] to provision virtual
resources in one batch process. Although Heat template
needs server flavor (=specification) information, an abstract
template does not include flavor information. A template also
describes image files for server deployments. Here, SAFs
only recommend IaaS layer server architecture, and PaaS
layer recommendation is currently out of scope. If users
would like to deploy PaaS such as Deis, Flynn or Cloud
Foundry, users need to specify them as image files.

A user also specifies requirements that include each
server functional requirements and non-functional require-
ments of each server performance and total price. Functional
requirements are that OS are normal Linux or non-Linux or
customized Linux and are used to judge whether a container
satisfies requirements. Performance requirements are lower
limit of server performance such as throughput.

Note that if a user would like to replicate existing virtual
environment, we can use a technology of Yamato et al. [21]
to extract a template of existing environment.
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Fig. 6 Example of Web 3-tier
connection pattern

2. SAFsunderstand server connectionpattern and installed
software from a template and image files specified by a user.
If there is a user original image file, SAFs need to get infor-
mation from a volume, which is deployed by the image to
understand what software is installed. In this case, a user
needs to input login information in step 1. After analyzing a
template and images, SAFs recognize a system configuration
(for example, Fig. 6 configuration).

3. SAFs select server types and recommend server archi-
tecture using user requirements specified in step 1. Because
this is a first core step of proposed method, we explain it
in detail in Sect. 4.2. When SAFs recommend server archi-
tecture, SAFs add a specific flavor for each server to Heat
template. Thus, a user can distinct each server type as bare
metal or container or virtual machine by flavor descriptions.

4. A user confirms the recommendation and replies an
acknowledgment to SAFs. If the user does not satisfy
the recommendation, the user may reject the recommen-
dation and modify a concrete template. SAFs propose a
concrete template based on specified function and perfor-
mance requirements, but decision factors may include other
criteria such as ease of use, experiences and interoperabil-
ity.

After acknowledgment or user’s modification of concrete
template, SAFs fix a concrete template with each server fla-
vor.

5. SAFs request an IaaS controller to deploy the concrete
template with the target tenant. An IaaS controller provisions
virtual resources of the user environment on the specified
tenant.

6. SAFs select appropriate performance verification test
cases from the test case DB to show a sufficient performance
of user environment provisioned based on the template. SAFs
select test cases not only each individual server performance
but also multiple servers’ performance such as transaction

processing of Web 3-tier model (for example, Fig. 6 is one
of Web 3-tier model). Because this is a second core step of
proposed method, we explain it in detail in Sect. 4.3

7. SAFs execute performance test cases selected in Step
6. We use an existing tool, Jenkins [22], to execute test cases
selected from the test case DB. Although performance ver-
ification is targeted for servers, verification test cases are
executed for all virtual resources in a user environment. In a
case where virtual machines with Web servers are under one
virtual load balancer, Web server performance needs to be
tested via the virtual load balancer.

8. SAFs collect the results of test cases for each user envi-
ronment using Jenkins functions. Collected data are sent to
users via mail or Web. Users evaluate system performance
by these data and judge to start using IaaS cloud. Users need
to understand the performance result which may be degraded
when other users’ VMs or containers in same nodes usemuch
computer resources. If users do not satisfy the performance
results, users can release the environments.

4.2 Server architecture recommendation technology

In this subsection, we explain in detail step 3 of server archi-
tecture recommendation, which is a first core step of our
proposal. SAFs understand server connection pattern and
installed software from a template and image files speci-
fied by a user. Users’ non-functional requirements specify
lower limit of performance such as UnixBench Index value
or each measured item value [(e.g., Double-Precision Whet-
stone > 1500MWIPS (Million Whetstones Instructions Per
Second)] and higher limit of total system price (e.g., Total
price < 2000USD/month). Based on user requests, SAFs
select servers from a resource pool of bare metal, virtual
machine and container servers. It should be noted that func-
tional and performance requirements are for each server
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selection, but total system price requirement is for checking
all selected servers.

Generally, server prices are container< virtualmachine<
bare metal. Therefore, the basic selection logic is that SAFs
select lower price servers when those servers satisfy users’
requirements.

Firstly, SAFs select bare metal servers, which need high
performance. Throughput or other thresholds are determined
by Sect. 3 performance results. If user performance require-
ments specified in step 1 exceed thresholds such as 3000 of
UnixBench Index score, SAFs select bare metal servers. For
example, because order management DB of Web shopping
system needs strong consistency and is difficult for parallel
processing, bare metal is appropriate when a system is above
a certain scale. If a system does not require strong consis-
tency and allows Eventual Consistency [23], a container or
virtualmachine becomes alternatives for aDB server because
distributed Key-Values store such as memcached [24] can be
adopted to enhance throughput.

Next, SAFs narrow down server type by OS requirements.
SAFs check function requirements whether a server OS is
normal OS or customized OS and select a virtual machine
for latter case. In 2015, Microsoft announced Hyper-V Con-
tainer; thus, we can use containers not only for Linux OS but
also for Windows OS.

Lastly, SAFs select containers for servers which OS are
normal OS.

Figure 7 shows a server selection logic flow of proposed
method. After each server selection, SAFs select remained
servers described in an abstract template recursively. After
all servers are selected, SAFs check total price of selected
candidate servers. If total price limit is satisfied, SAFs reply
users with a concrete template of selected servers. If total
price limit is not satisfied, SAFs may change one server to
other lower price server or may ask users to change.

When physical servers are heterogeneous, performances
are differed according to not only provision type but also
physical server type. Therefore, cloud providers need to
measure performances for each server type beforehand. For
examples of heterogeneous servers, there are servers with
many core CPU and servers with strong GPU. And if a new
virtualization technology is appeared, performance evalua-
tion is also needed. When there are heterogeneous physical
servers and new virtualization technologies, SAFs select
servers similar to Fig. 7. Based on user requests with func-
tional, performance and price requirements, SAFs select
a candidate server which satisfies functional/performance
requirements with lower price. But, note that Fig. 7 flow adds
more branches for heterogeneous servers or new virtualiza-
tion technology to select themwhen those servers appropriate
to user requests in individual server selection phase.

Figure 7 flow is for a system construction phase. There
are APIs to manage Heat stack by templates, stack-create

and stack-update. In construction phase, we use stack-
create API. However, for stack-update during operation
phase such as enhancing scalability for increasing usages,
the start-up time branch is added to the flowchart. If
an added server requirement of start-up time to enable
Apache2 is less than 15s, we need to select contain-
ers. To enhance system scalability (e.g., for temporal Web
access during the event), containers are good options to be
selected.

4.3 Automatic performance verification technology

In this subsection, we explain in detail step 6 of performance
test case extraction, which is a second core step of our pro-
posal.

Previously, we had developed an automatic patch ver-
ification function for periodical virtual machine patches
[25]. A key idea of test case extractions of Yamato [25]
is 2-tier software abstracting to reduce prepared test cases.
The work of Yamato [25] stores relations of software
and software group, which is a concept grouping different
versions of software, and function group, which is con-
cept grouping same functions software, and it extracts test
cases corresponding to upper tier concept. For example, in
case of MySQL 5.6 installed on virtual machines, Yam-
ato [25] method executes DB function group test cases and
MySQL software group test cases. This idea has a merit
for operators not to prepare each software regression test
cases.

However, Yamato [25] can extract only unit regression
tests because it selects test cases corresponding to each vir-
tual server software. The problem is that it cannot extract
performance tests with multiple virtual servers.

To enable performance tests with multiple servers, we
propose a performance test extraction method for each con-
nection pattern of servers using information of Heat template
connection relation and installed software.

Firstly, proposed method stores software information in
test case DB not only Yamato’s [25] software relation infor-
mation of Table 1a but also connection pattern information
of Table 1b. Here, Table 1b second row shows that “con-
nection pattern” is Web 3-tier and “deployment config” is
{Web, AP}{DB}. A deployment config of {Web, AP}{DB}
means one server has aWeb server and an Application server
and another server has a DB server. For example, connection
relations like Fig. 6 can be analyzed by parsing a Heat JSON
template description in step 2. Using connection relations of
templates, installed software and Table 1a software relation
data, user server deployment configurations can be judged as
{Web, AP}{DB}. Adding Table 1b connection pattern infor-
mation, a connection pattern also can be judged asWeb 3-tier
model.
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Fig. 7 Server type selection flow for initial server construction

Next, proposed method adds a “connection pattern” col-
umn to [25]’s test case information of Table 2 and enables
to define test cases corresponding to each connection pat-
tern. For example, Table 2 fourth row shows that TPC-C
benchmark [26] test can be used for regression tests for Web
3-tier connection pattern. There are following performance
test case examples in addition to TPC-C. Performances of
mail systems that may consist of several servers can be eval-
uated by SPEC MAIL2001. Big data analysis performances
of Hadoop cluster can be evaluated by TestDFSIO and Test-
Sort. Web performances of Apache server can be evaluated
by Apache Bench.

By these improvements, SAFs judge connection patterns
by templates created in step 3 and installed software extracted
in step 2. For example of Fig. 6, Tables1, 2 case, SAFs judge
a connection pattern as Web 3-tier. Then, when SAFs extract
test cases in step 6, those extract not only each server Web
or DB performance test cases but also TPC-C test for Web
3-tier connection pattern.

It should be noted that our proposed technology conducts
performance test cases from prepared common test cases
for installed software and server connection patterns. There-

fore, SAFs do not conduct performance tests fully matched
applications which users run. These application performance
tests are conducted by users, after users confirm common
performance test results and judge of servers utilization
start. But, to increase satisfactions of users’ performance
test demands, cloud providers may increase common test
cases of test case DB or may conduct users’ application per-
formance test cases which are provided by users instead of
users.

5 Performance evaluation of proposed method

We implemented server architecture recommendation and
automatic performance verification functions of Fig. 6. We
implemented the system on OpenStack Folsom. It is imple-
mented on Ubuntu 12.04 OS, Tomcat 6.0, Jenkins 1.5 by
Python 2.7.3.

We confirmed correct behaviors of proposed functions by
selecting and executingWeb 3-tier performance test of TPC-
C for {Web}{AP}{DB}, {Web,AP}{DB}or {Web,AP,DB}
deployment configurations of Web 3-tier virtual servers.
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Table 1 (a) Software relation
data, (b) connection pattern data

Function group Software group Software

(a)

OS Windows Windows Server 2012

OS Windows Windows 8.1

OS RHEL RHEL 7.0

OS RHEL RHEL 6.1

DB Oracle Oracle11g

DB Oracle Oracle 10g

DB MySQL MySQL 5.0

DB MySQL MySQL 4.0

Web Apache Apache 2.1

Web Apache Apache 2.2

AP Tomcat Tomcat 6.0

AP Tomcat Tomcat 7.0

Connection pattern Deployment config

(b)

Web 3-tier {Web}{AP}{DB}

Web 3-tier {Web, AP}{DB}

Web 3-tier {Web}{AP, DB}

Web 3-tier {Web, AP, DB}

Table 2 Test case data

Connection pattern Function group Software group Software Test case Test case class

DB Table CRUD DB function group

DB character garbling check DB function group

DB MySQL Access by phpMyAdmin MySQL software group

Web Apache Apache Bench Apache software group

Web 3-tier TPC-C benchmark test Web 3-tier connection pattern

Mail system SPEC MAIL2001 Mail connection pattern

Hadoop cluster TestDFSIO Hadoop cluster connection pat-
tern

Hadoop cluster TestSort Hadoop cluster connection pat-
tern

Our technology creates virtual resources based on a Heat
concrete template and executes performance verification test
cases. We evaluated the performance of the total process-
ing time and each section processing time with changing the
number of concurrent processing threads.

5.1 Performance measurement conditions

Processing steps to bemeasured: template deployment, tester
resource preparation such as Internet connection settings, test
case selection and test case execution.

User tenant configuration:

– Each user tenant has two virtual machines, two volumes,
two virtual Layer-2 networks, and one virtual router.

– Each virtual machine’s specifications are one CPU with
one Core, 1 GB RAM, and one attached volume with a
size of 10 GB, and the installed OS is CentOS 6.

– Apache 2.1 and Tomcat 6.0 are installed on one volume,
and MySQL 5.6 is installed on one volume for virtual
machines’ software.

Selected test case: TPC-C test case.
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Fig. 8 Test environment for proposed method confirmation

Number of concurrent processing threads: 1, 3, 5
Automatic verifications are started by a command line

interface, and parallel concurrent processing is managed by
a script in this performance measurement.

5.2 Performance measurement environment

Figure 8 shows the test environment. Meanwhile, there are
many servers for OpenStack virtual resources; the main
server of thismeasurement is an automatic verification server.
These servers are connected with Gigabit Ethernet.

In detail, Fig. 8 shows the physical and virtual servers
and the modules in each server. For example, in the Open-
Stack API server case, this server is a virtual server, it is in
both the Internet segment and the Control segment, and its
modules are a Cinder scheduler, Cinder API, nova-api, key-
stone, glance-registry and nova-scheduler. Two servers are
used for redundancy. Other servers are the proposed auto-
matic verification server, a user terminal and an operator
terminal, Glance application servers for image upload, NFS
storage for images, template servers for tenant replication,
a DB for OpenStack and test cases, OpenStack servers for

virtual resources, iSCSI storage for the data of these servers,
and load balancers for load balancing.

Table 3 lists the specifications and usage for each server.
For example, in the DB case (6th row), the hardware is HP
ProLiant BL460cG1, the server is a physical server, the name
is DB, the main usage is OpenStack and Test case DB, the
CPU is a Quad-Core Intel Xeon 1600MHz×2 and the num-
ber of cores is 8, RAM is 24 GB, the assigned HDD is 72
GB, and there are four NICs (Network Interface Cards).

5.3 Performance measurement results

Figure 9 shows each processing time of automatic per-
formance verification. When there were several threads of
concurrent processing, the average processing time is shown.
In all cases of concurrent processing (1, 3 and 5), the tem-
plate deployment takes a lot of time, while performance test
case execution takes only 15min. Most of these times are
copy times fromGlance to Cinder of OpenStack side. Even if
OpenStackvirtual resource provisioning takesmuch time,we
can complete within one and half hour with 3 of concurrent
processing threads from batch provisioning to performance
evaluations. If users design server architecture and measure
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Fig. 9 Processing times of proposed automatic verification

performance based on their performance requirements by
themselves, it takes much more time. Through this result, we
evaluate our proposed technologies are effective to reduce
users’ efforts.

6 Related work

Like OpenStack, OpenNebula [27] and CloudStack [9]
are open-source Cloud software. OpenNebula is a virtual
infrastructure manager of IaaS building. OpenNebula man-
ages VM, storage, network of company and virtualizes
system resources to provide Cloud services. Our group also
contributes to developments of OpenStack itself. Some bug
fixes and enhancements of OpenStack are our group contri-
butions [28,29].

When we use other IaaS platforms like CloudStack and
Amazon Web Services, some efforts are needed. Regard-
ing performance comparisons, start-up times depend on each
IaaS platform because start-up is executed via each IaaS plat-
form’s API. Therefore, we need to measure start-up times on
each IaaS platforms. Regarding batch provisioning, Cloud
Formation [18] is a template base provisioning technology
on Amazon Web Services, and CloudStack also has a tem-
plate base provisioning technology. Therefore, SAFs can use
batch provisioning by implementing functions to parse each
different format template and call each IaaS platform API of
template deployment.

The paper [15] is a research of dynamic resource allo-
cation on cloud. This work allocates data center resources
based on application demands and support green computing
by optimizing the number of servers in use. There are some
works of resource allocation on cloud services to use server
resources effectively keeping user policy [30,31]. As same as

Xiao et al. [15], ourwork is also a resource allocation technol-
ogy on OpenStack, but our work targets to resolve problems
of appropriate server type selection from 3 types of servers.
There is no similar technology to recommend appropriate
server architecture on IaaS cloud with bare metals, contain-
ers and virtual machines.

The work of Fester et al. [14] compared performance of
bare metal, Docker and KVM. However, there are no data
of start-up time or performance with changing number of
virtual servers, and appropriate usage discussions of three
types of servers are not mature. We measured performance
of a bare metal provisioned by Ironic, Docker containers and
KVM virtual machines with same conditions and evaluated
quantitatively.

AmazonCloudFormation [20] andOpenStackHeat [8] are
major template deployment technologies on the IaaS Cloud.
However, there is no work using these template deployment
technologies for automatic performance verifications of vir-
tual servers because each user environment is different. We
use Heat to provision user virtual environments by a concrete
template and execute performance test cases automatically to
show a guarantee of performance to users.

Some tools enable automatic tests, for example, Jenk-
ins [22] and Selenium [32]. However, these tools are aimed
at executing automatic regression tests during the soft-
ware development life cycle, and there is no tool to extract
performance test cases dynamically based on each user envi-
ronment. Themethod proposed byWillmor and Embury [33]
is intended to generate automatic test cases ofDB. It needs the
specifications of preconditions and post-conditions for each
DB test case. However, collecting user system specifications
is impossible for IaaS virtual machine users. Our technology
can select and execute performance tests automatically based
on installed software and connection patterns of templates.
For example, it selects and executes TPC-C benchmarkwhen
a user system is composed of Web 3-tier model.

7 Conclusion

In this paper, we proposed a server architecture recommen-
dation and automatic performance verification technology,
which recommends and verifies appropriate server architec-
ture on Infrastructure as a Service cloud with bare metals,
containers and virtual machines. It receives an abstract tem-
plate of Heat and function/performance requirements from
users and selects appropriate servers.

Firstly, we measured UnixBench performance of a bare
metal, Docker containers, KVM virtual machines controlled
by OpenStack Nova to collect necessary data of appropriate
recommendation. In the results, a Docker container showed
about 75% performance compared to a bare metal, but a
KVM virtual machine shows about 60% performance. Sec-
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ondly, we proposed a server architecture recommendation
technology based on the measured data. It selected appropri-
ate server types and created a concrete template using server
OSflexibility requirements and performance requirements of
uniform management servers. Thirdly, we proposed an auto-
matic performance verification technology which executed
necessary performance tests automatically on provisioned
user environments according to the template. It selected
a performance test case using information of connection
patterns and installed software. We implemented proposed
technologies and confirmed performance that only one hour
is needed for provisioning and performance verifications.
Because users needed much more time to design server
architecture by themselves, we evaluated our proposed tech-
nologies are effective to reduce users’ efforts.

In the future, we will expand target area of our proposal
such as other IaaS platforms and PaaS layer provisioning
and performance verification.We will also increase the num-
ber of performance test cases for actual use cases of IaaS
virtual servers. Then, we will cooperate with IaaS Cloud
service providers to provide managed services in which ser-
vice providers recommend appropriate server architecture
and guarantee performance.
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