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Abstract The primary goal of the 60th anniversary
symposium of the Ecological Society of Japan (ESJ) was
to re-examine the role of the Society. The first of five
lectures, ‘‘Development of Long-term Ecological Re-
search in Japan,’’ discussed the increasingly important
role of long-term and networked research studies. Eco-
logical research in Asia faces many challenges, because
Asia features natural and anthropogenic landscapes with
highly diverse ecosystems. ‘‘Developing Strategies of the
Ecological Society of Japan for Worldwide Societies of
Ecology with Special Reference to Strategies for Asia’’

emphasized the role of ESJ in promoting ecological re-
search and outreach in Asia. Ecosystem sustainability is
a key issue in both the theory and practice of ecosystem
management. A framework concept of an environmental
and biodiversity cycle was proposed in the session
‘‘Linking Community and Ecosystem Dynamics’’ for
understanding the mechanisms driving the sustainability
of ecosystems. Ecosystem services are essential aspects
of land use and conservation planning and management.
‘‘Integrating Models of Ecosystem Services and Land Use
Changes’’ reviewed recently-developed models that sim-
ulate patterns of land-use change and analyze its effects
on ecosystem services and also recommended future
directions for collaboration among researchers. ‘‘Disas-
ter Resilience and Coastal Ecology’’ highlighted the
contributions of ecologists to evaluating the resilience of
damaged coastal ecosystems and provided sound pro-
posals to local communities and governments for reha-
bilitation plans. The past achievements and future
directions of ESJ were discussed by the panelists and the
audience in ‘‘Past and Future of the Ecological Society of
Japan.’’

Keywords Asia Æ Community and ecosystem
dynamics Æ Disaster resilience Æ Land use change Æ
Long-term ecological research

Introduction

The Ecological Society of Japan (ESJ) was established in
1953 to promote research and education in all aspects of
ecology. ESJ celebrated its 60th anniversary in 2013.
How the society envisions itself has changed over time.
In addition to promoting research in the basic field of
ecology and related sciences, ESJ has come to play other
roles. These include contributing to finding solutions to
social and environmental problems, such as the loss of
biodiversity, and addressing global climate change.
These goals are often pursued by establishing close
relationships with various types of international and
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domestic organization (governmental, industrial, and
non-profit).

The 50th anniversary meeting of ESJ that was held in
Tsukuba, Japan, in 2003 provided an opportunity to
highlight the following three roles of ESJ: (1) to promote
ecological research at large spatial and temporal scales;
(2) to contribute not only to conservation of natural
ecosystems but also to the recovery and rehabilitation of
damaged or lost ecosystems; and (3) to promote inter-
national activities, especially within the East Asian re-
gion. The 50th anniversary meeting of ESJ prompted the
establishment of two new ESJ committees, the Com-
mittee of Large-Scale and Long-Term Ecology and the
Committee of Ecosystem Management, and promoted
connections with the East Asian Federation of Ecological
Societies (EAFES). In 2003, EAFES was established
collaboratively by the ecological societies of China, Ja-
pan, and Korea to promote ecological science in East
Asia.

A symposium titled ‘‘Progress in the 21st Century: A
Roadmap of the Ecological Society of Japan’’ was held
during the 60th annual meeting of ESJ in Shizuoka,
Japan, on 6 March, 2013. This symposium was orga-
nized to evaluate the past activities and future roles of
ESJ. The symposium consisted of five lectures and a
general discussion. The themes of the five lectures were
based on the achievements of the 50th anniversary
meeting. The first two lectures mainly reviewed the
achievements of ESJ over the past decades, whereas the
last three focused on the current and future directions of
the society’s activities. However, the selected topics did
not cover every challenge facing ESJ. This paper sum-
marizes the symposium, following the sequence of the
lectures and ending with the final panel discussion. The
symposium consisted of two parts: (1) an overview of
long-term ecological research (LTER) in Japan and the
international role of ESJ; and (2) a review of recent
ecological research.

The overview addressed two topics. The first topic
introduced the history of LTER in Japan since the
conclusion of the International Biological Program
(IBP) of 1964–1974. LTER has long been recognized as
providing important data and knowledge; LTER net-
works in the United States (US LTER) and interna-
tionally (ILTER) have been established to build a global
network (Kim 2006). This section of the meeting de-
scribed the relatively long gap between the establishment
of LTER and the initiation of an effective LTER net-
work in Japan. It also emphasized the current and future
need for ecologists in Japan to participate in several new
projects associated with LTER. The second topic de-
scribed the international efforts of ESJ since the con-
clusion of the IBP. The section reviewed past and
current strategies of the ESJ to promote worldwide re-
search projects and to establish international organiza-
tions and societies designed to encourage ecological
research.

The second part of the symposium was divided into
three topics related to advances in the theory, modeling,

and practices of ecosystem management. The first topic
introduced one of the most important subjects in ecol-
ogy today on a global scale: elucidating the links be-
tween community and ecosystem ecology. The
discussion on the sustainability of ecosystems addressed
a key issue for both the theory and practice of ecosystem
management. The section provided a framework con-
cept of an environmental and biodiversity cycle to pro-
vide a better understanding of ecosystem sustainability.
The second topic reviewed recently-developed models
that simulate the patterns and consequences of land-use
and land-cover change. Ecosystem services are essential
aspects of land use and conservation planning and
management. The section described various models and
emphasized that developing integrated models of eco-
system services and land-use changes is essential. The
third topic addressed the Great East Japan Earthquake
of 11 March, 2011, described the resilience of coastal
ecosystems in light of this and other disasters, and
integrated other topics related to coastal ecology. Sci-
entific knowledge related to ecology helps people eval-
uate how catastrophic disturbances damage ecosystems
and emphasizes ecosystem resilience. Such information
allows ecologists to make sound proposals to local
communities, stakeholders, and decision-makers for
improving rehabilitation plans. Finally, a summary of
the general discussion held at the symposium is given in
the last part of this review, with emphasis on some
proposals for future activities of ESJ.

History and the roles of ESJ

Development of long-term ecological research in Japan

Long-term ecological research is important because it
elucidates (1) processes that occur slowly, (2) the effects
of rare and episodic events, (3) processes with large
fluctuations, and (4) processes with complicated inter-
actions. Recently, LTER has also been expected to
provide scientific findings to help solve global environ-
mental issues. The foundations of LTER were laid in the
early 1980s, when the IBP was completed (Table 1). The
IBP established a basis for large-scale ecosystem studies
and clarified factors involved in biological production as
well as in matter and energy cycling in various types of
ecosystem. The program also established a number of
research sites with the potential to integrate more re-
search and/or comparative studies. US scientists estab-
lished the US-LTER network in 1980 to extend IBP
activities and include discussions on the significance of
long-term research (Franklin 1987). US-LTER initially
established 17 domestic research sites, and then ex-
panded into an international and global network upon
the creation of the International LTER (ILTER) in
1993.

In contrast, the research sites established during the
IBP in Japan were not directly integrated into a system
similar to the US-LTER. Some of the sites were not
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maintained, although a small number have been pre-
served through the personal efforts of individuals. In
some cases, valuable data were lost. The IBP studies in
Japan made outstanding contributions to documenting
productivity and nutrient cycling in various ecosystems,
and the results were found to be very useful interna-
tionally (Kira et al. 1978). However, the research foci of
ecologists have shifted over time, and the IBP frame-
work was not successfully implemented in subsequent
decades. Thus, a rather long gap exists from the con-
ception to the establishment of long-term ecological
studies and an associated network in Japan.

Since the early 1990s, global environmental issues
such as climate change and biodiversity loss have shifted
the focus of many ecological studies. Site-based eco-
logical research is important to these issues. The Inter-
national Geosphere–Biosphere Programme (IGBP) and
DIVERSITAS, both of which were established to pro-

mote international collaboration in studies involving
biodiversity, commenced operations in 1990 and 1993,
respectively. Long-term and networked studies seem to
be very effective in answering questions related to these
issues. For instance, the studies on Barro Colorado Is-
land (BCI), Panama, which were initiated by the
Smithsonian Tropical Research Institute, provided con-
siderable new insight on biodiversity in tropical forests
(Hubbell and Foster 1983). The institute also started to
establish a network of studies in various regions of the
tropics (Table 2).

In response to these research trends, some long-term
study activities also emerged in Japan (Nakashizuka
1991) and a voluntary network was established among
them. Members of the network have met several times
and collaborated on a publication describing the
importance of long-term and networked studies (Nak-
ashizuka 2001). Also, they have operated an exchange

Table 1 History of long-term ecological studies and related issues since 1970

Year Climatic change Biodiversity Ecosystem Acts in Japan

1970
1971
1972
1973
1974 End of IBP
1975
1976
1977
1978 JIBP Synthesis
1979
1980 US LTER, BCI plot
1981
1982
1983
1984
1985
1986
1987 Permanent Plotter
1988 IPCC
1989
1990 IGBP
1991 DIVERSITAS I Center of Ecological Research, Kyoto Univ.
1992 UNFCCC CBD
1993 ILTER DIWPA
1994
1995 Tree of Life
1996 ILTER-EAP conference in Tsukuba
1997 Kyoto Protocol
1998 US–Japan Young Scientists exchange
1999 WG of Long-Term Research in ESJ
2000
2001 DIVERSITAS II, GBIF, IBOY ESSP Research Institute for Humanity and Nature
2002 GCP WSSD, MDG
2003 GLP Monitoring sites 1000
2004 Barcode of Life
2005 ImoSEB, MA report GEOSS Committee for long-term and large scale studies
2006 Stern Review JaLTER
2007 IPCC AR4
2008 GEO BON
2009 APBON JBON
2010 TEEB
2011 IPBES Data paper in Ecological Research
2012 Future Earth NEON
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program between US-LTER and young Japanese sci-
entists. ESJ also created a working group to promote
LTER in 1999 and in 2005 promoted the group into a
committee. In 2003, the Japanese Ministry of the Envi-
ronment began ecosystem monitoring activities in Japan
(Monitoring Site 1000) and the ecologist group decided
to collaborate with this effort. Also, the Global Earth
Observation System of Systems (GEOSS) was estab-
lished, and Japanese scientists played key roles in plan-
ning its activities. Based on new requirements and
policies, LTER scientists were expected to make a sig-
nificant contribution. Supported by these activities, Ja-
pan LTER (JaLTER) was officially established in 2006
and joined the ILTER network in 2007 (Enoki et al.
2007), 27 years after US-LTER was established. JaLT-
ER has 20 Core and 36 Associate research sites (in 2012)
and has become one of the most active ILTER net-
works.

The role of long-term and networked research studies
has become increasingly important. The Group on Earth
Observations Biodiversity Observation Network (GEO-
BON) was established under GEOSS, with the ILTER
sites serving as key observation points in this program.
Some new issues are also emerging. In 2012, the US
initiated another, even larger activity, the National
Ecological Observatory Network (NEON), to provide

answers to global environmental problems. Thus, the
activities of LTER and NEON complement each other
somewhat; LTER sites study processes to integrate
findings from the bottom up, while NEON will assess
large-scale change based on systematic monitoring.
Another trend is to enlarge research projects and make
them more multi-disciplinary. In 2011, the International
Council of Science (ICSU) reformed the conventional
framework of international science programs into the
Future Earth framework. This program integrates nat-
ural sciences with social and human sciences. Japanese
ecologists are expected to be involved with such inter-
national concepts and projects more actively than pre-
viously. In this case, the framework of the LTER
network must be used to its full capacity, although some
new perspectives and mechanisms must be added to
enable integrated multi-disciplinary studies.

Developing strategies for ESJ related to worldwide
societies of ecology with special reference to strategies
for Asia

ESJ was established in 1953. The 1950s were a time when
researchers studying environmental sciences engaged in
intense international collaboration. In 1951, when Japan

Table 2 Abbreviations and URLs of referenced organizations, projects, and networks

Name Abbreviation URL

Asia–Pacific Biodiversity Observation Network AP-BON http://www.esabii.org/ap-bon/index.html
Barcode of Life Barcode of Life http://www.barcodeoflife.org
Convention on Biological Diversity CBD http://www.cbd.int
DIVERSITAS DIVERSITAS http://www.diversitas-international.org/
DIVERSITAS in the Western Pacific and Asia DIWPA http://diwpa.ecology.kyoto-u.ac.jp/index.html
East Asian Federation of Ecological Societies EAFES http://www.e-eafes.org
Ecological Society of Japan ESJ http://www.esj.ne.jp
Earth System Science Partnership ESSP http://www.essp.org
Future Earth FE http://www.icsu.org/future-earth
Global Biodiversity Information Facility GBIF http://www.gbif.org
Global Carbon Project GCP http://www.globalcarbonproject.org
Group on Earth Observations Biodiversity Observation Network GEO BON http://www.earthobservations.org/geobon.shtml
Global Earth Observation System of Systems GEOSS http://www.epa.gov/geoss/
Global Land Project GLP http://www.globallandproject.org
International Biodiversity Observation Year IBOY
International Biological Program IBP http://www.nasonline.org/about-nas/history/

archives/collections/ibp-1964-1974-1.html
International Council of Science ICSU http://www.icsu.org/
International Geosphere–Biosphere Programme IGBP http://www.essp.org/?id=22
International Geophysical Year (IGY)’’ IGY http://www.nas.edu/history/igy/
International Human Dimensions Programme IHDP http://www.ihdp.unu.edu/
International Long-Term Ecological Research Network ILTER http://www.ilternet.edu/
International Mechanism of Scientific Expertise on Biodiversity ImoSEB
Intergovernmental Platform on Biodiversity & Ecosystem Services IPBES http://www.ipbes.net
Intergovernmental Panel on Climate Change IPCC http://www.ipcc.ch/index.htm
Japan Long-Term Ecological Research Network JaLTER http://www.jalter.org/
Millennium Development Goals MDG http://www.un.org/millenniumgoals/
National Ecological Observatory Network NEON http://www.neoninc.org/
Economics of Ecosystems and Biodiversity TEEB http://www.teebweb.org
Tree of Life web project Tree of Life http://tolweb.org/tree/
United Nations Framework on Climate Change UFCCC http://unfccc.int/2860.php
US Long-Term Ecological Research Network US LTER http://www.lternet.edu/
World Climate Research Programme WCRP http://www.wcrp-climate.org/
World Summit on Sustainable Development WSSD http://www.who.int/wssd/en/
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had not yet become independent (prior to the effective
date of the San Francisco Treaty) researchers working in
the environmental sciences proposed The International
Geophysical Year (IGY), with a comprehensive series of
global geophysical activities. During the final stage of
the IGY in 1957 and 1958, 67 countries participated.
Under the worldwide trend for international collabora-
tion, ESJ initiated developmental strategies for the
world starting in the 1960s. One of the main concerns for
ESJ was biodiversity.

To promote the IBP, ESJ started to examine the
foundation of the Joint Usage Center for freshwater
biology, using Kyoto University’s Otsu Hydrobiological
Station (OHBS) as a basis (Center for Ecological Re-
search 2011). This led the establishment of the Center for
Ecological Research (CER), Kyoto University, by reor-
ganizing the OHBS and the Plant Ecological Research
Station in 1991 when DIVERSITAS was launched
(Center for Ecological Research 2011). In 1992, the re-
search program SymBiosphere: Ecological Complexity
for Promoting Biodiversity proposed by CER was
adopted by IUBS, SCOPE, and UNESCO (Kawanabe
et al. 1993; Kawanabe 1996); this encouraged ESJ to
take the lead in biodiversity research Japan (Kawanabe
1996). Thus, ESJ cultivated a closer connection to
DIVERSITAS, launching DIVERSITAS in the Western
Pacific and Asian regions (DIWPA) in 1993 (Center for
Ecological Research 2011).

Why concentrate on the Western Pacific and Asia? In
October 1992, Prof. Kawanabe and his colleagues held
an international symposium at La Selva, Costa Rica,

and discussed the most important regions of the world
for biodiversity research where financial and manpower
sources were limited (Kawanabe 1996). Interestingly,
they identified the unique ecosystems of the Western
Pacific and Asia as being most important, including the
terrestrial Green Belt from Siberia to New Zealand and
the marine Blue Belt along its eastern border (Kawanabe
1996). Places with high primary production were ex-
pected to have high biological diversity, so those
researchers eventually decided to focus on the biodi-
versity in that region (Kawanabe 1996).

DIWPA has organized many international meetings,
built capacity through an international field biology
course, organized the International Observation Year of
Biodiversity (DIWPA-IBOY) in 2001, published several
books (nine volumes as of May 2013), and publishes
newsletters (28 as of May 2013) (DIWPA Newsletter
1995, 2003, 2004).

In 2003, the East Asian Federation of Ecological
Societies (EAFES) was formed through the collabora-
tion of ecological societies in China, Japan (ESJ), and
Korea to promote ecological science in East Asia. EA-
FES plans symposia, meetings, joint research projects,
and other activities to contribute to the development
ecological science and ecological societies in this region.
The three national ecological societies take turns orga-
nizing the joint EAFES Congress at least once every
2 years; five congresses have been held thus far.

One of ESJ’s important recent activities related to
Asian biodiversity is the Asia–Pacific Biodiversity
Observation Network (AP-BON), which was launched in

Fig. 1 Environment–biodiversity cycle. The abiotic environment
consists of (1) internal components such as soil nutrients, which are
rapidly modified by local ecosystem activity, and (2) external
components such as climate, which may change slowly. Biodiver-
sity has three important components: local species composition;

bulk quantity, such as total biomass or forest size; and the regional
pool of biodiversity. (3) Ecosystem processes include both
ecosystem functions and services. Drivers of ecosystem changes
appear at both local and regional scales
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2009 and collaborates with GEO-BON. GEO-BON
collects and analyzes data on the status of and trends in
the world’s biodiversity, with special attention paid to
ecosystems, species, genes, and ecosystem services. AP-
BON has organized several international workshops
(Yahara et al. 2012) and published a book on biodi-
versity research in Asia (Nakano et al. 2012).

ESJ has been supporting the startup of Future Earth
(Asian Conservation Ecology 2013), because imple-
mentation of a symbiotic society will strengthen the links
between human beings and ecosystems. Future Earth will
also concentrate on the links between human beings and
biodiversity, one of the important challenges for ecolo-
gists.

Biodiversity is a global resource of tremendous value
to the present and future well-being of humanity.
However, anthropogenic threats to species and ecosys-
tems have never been as serious as they are today. We
hope ESJ will continue its activities in support of the
sustainable use of biodiversity and ecosystems to create
a symbiotic society.

Landscape ecology and ecosystem services

Linking community and ecosystem dynamics: the role
of competition

A fundamental question in ecology today is the origin of
ecosystem sustainability, although it has not often been
addressed (e.g., Cropp and Gabric 2002). If the origin of
life on Earth does not automatically imply the estab-
lishment of a sustainable ecosystem, there should be
undiscovered mechanisms at the levels above the single
individual and population in support of the long-term
persistence of ecosystems. Elucidating this issue will not
only contribute to establishing a fundamental theory of
ecology but also provide conceptual and practical solu-
tions for sustainable management of human-dominated
ecosystems.

A conceptual framework that integrates the interac-
tions among major components in ecosystems (Chapin
et al. 2000, 2009; Miki 2009) has been developed in the
last two decades to improve our understanding of the
mechanisms producing sustainable ecosystems. Here, we
present an environment–biodiversity cycle in a simplified
ecosystem (Fig. 1) that describes (1) endogenous feed-
backs among the abiotic environment, the biotic com-
munity (biodiversity), and ecosystem processes and (2)
the modification of these endogenous feedbacks by hu-
man and natural disturbances. By addressing the role of
competition, we first review three major questions that
have been extensively investigated. Second, we recom-
mend a few ideas for future research from the commu-
nity ecology perspective.

The first question is: what determines the structure of
a community and local biodiversity (see arrows 1 and 5
in Fig. 1)? Competition (and other ecological interac-
tions) and disturbance have been identified as the

determinants in population and community ecology
(Connell 1978; Tilman 1980; Interlandi and Kilham
2001; Molino and Sabatier 2001). However, in other
fields (e.g., biogeography and macroecology), species
composition has been understood as an additive sum of
individual species preferences and adaptations to local
environments (Brown 1995; Gaston 2000; Pearson and
Dawson 2003). The second question is: what are the
patterns and mechanisms of the relationship between
biodiversity and ecosystem function (see arrow 2 in
Fig. 1). At a local scale, the relationship is characterized
by (1) the selection effect, (2) functional complemen-
tarity and insurance, and (3) functional redundancy
(Loreau et al. 2001; Hooper et al. 2005; Reich et al.
2012). Competition is responsible for all three compo-
nents by determining (1) species abundance distribution,
(2) niche differentiation, and (3) niche overlap. The third
question is: what are the consequences of the feedback
process between local components of the abiotic envi-
ronment (e.g., soil nutrients), the entire community (e.g.,
total biomass of key players such as plants), and eco-
system functions (e.g., nutrient cycling) (see arrows 1, 2,
and 3 in Fig. 1). The direction of feedback determines
ecosystem resilience and the likelihood of state shifts
among multiple steady states (Scheffer and Carpenter
2003; Folke et al. 2004; Chapin et al. 2009). Competition
is sometimes, but not always, involved in the feedback
loop (e.g., competition for resources and space among
functional types, Berendse 1994; McCook 1999).

From a basis in community ecology, we propose
three research directions for a better mechanistic
understanding the environment–biodiversity cycle. The
first direction would be integrating the processes in-
volved in these three questions to help researchers
understand the entire environment–biodiversity cycle.
We should incorporate biodiversity into studies of eco-
logical resilience (the third question) by considering the
impact of local environmental conditions on local bio-
diversity (the first question) and the impact of local
biodiversity on the local environment via ecosystem
processes (the second question). For example, the
strength and direction of local control by the community
of the abiotic environment (through their ecosystem
functions) is not only determined by dominant func-
tional traits (e.g., of plants) but also modified by bio-
diversity and functional traits in other functional groups
(e.g., soil decomposers) (Naeem et al. 2000; Duffy et al.
2007; Miki et al. 2010; Miki 2012). The second direction
is to develop our understanding of large-scale commu-
nity ecology concepts. The roles of competition and
other ecological interactions in creating community
structure variation and in changing the biodiversity
gradient at large spatial scales still remain unclear, but
‘global’ community ecology is one of several emerging
fields in global change biology (Araújo and Luoto 2007;
Brook 2009; Gilman et al. 2010). As for the third
direction, the development of a quantitative model
based on community ecology is necessary; such a model
could quantitatively predict the impacts of human
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activities (Drivers of ecosystem changes, MA 2005) on
biodiversity and the impacts of biodiversity changes on
ecosystem processes (e.g., Miki et al. 2013). For these
new research questions and directions, large ecological
datasets will be increasingly important. Therefore, long-
term and large-scale ecological observations and exper-
iments will play central roles in community ecology in
the next 10 years.

Integrating models of ecosystem services and land use
changes

Land-use and land-cover (LULC) change may affect
ecosystem function. Ecologists often study and quantify
the impacts of land-use changes on ecosystems and their
functions. Numerous land-use models, including sto-
chastic, optimization, dynamic process-based simula-
tion, and empirical models, have been developed to
simulate the patterns and consequences of LULC for
various purposes. The models are classified into different
categories. For instance, Parker et al. (2003) designated
land-use models as Equation-based, Econometric, Sta-
tistical, System, Expert, and Evolutionary models as well
as Cellular Automata and Agent-based Models and
Hybrid Models.

The conversion of land use and its effects (CLUEs) is
a hybrid land-use model that simulates land-use changes
using empirically quantified relationships between land
use and its driving factors in dynamic land-use modeling
(Verburg et al. 2002; Verburg and Veldkamp 2004; Lin
et al. 2007). In CLUEs land-use modeling, the allocation
of each land-use type is based on a combination of
empirical and spatial analyses along with dynamic
modeling (Verburg et al. 2002; Lin et al. 2007). How-
ever, quantifying all of the potential interactions be-
tween the different land uses and drivers in a logistic
regression model is difficult for three reasons: (1) the
lack of a thorough understanding of all the factors in-
volved; (2) insufficient information about the interac-
tions; and (3) restrictions on the functional form of the
logistic regression model (Lambin and Geist 2006; Lin
et al. 2011). Artificial neural networks (ANNs) consider
any nonlinear complex relationship between the drivers
and land uses (Pijanowski et al. 2002, 2005; Dai et al.
2005) without additional information or functional
forms and have been applied in land-use change mod-
eling (e.g., Pijanowski et al. 2005; Almeida et al. 2008;
Liu and Seto 2008).

The Slope, Land use, Excluded land, Urban extent,
Transportation, and Hillshading (SLEUTH) model
combines an urban growth model with the land-cover
change model developed by Clarke (Clarke 1997; Lin
et al. 2008), which generates multiple simulations of the
growth of cities using Monte Carlo routines (Lin et al.
2008). SLEUTH is a bottom-up simulation model that
uses adaptive cellular automata to simulate the growth
and environmental changes of cities. Moreover, in urban
growth module, urban dynamics are simulated using the

growth rules of SLEUTH (Claggett et al. 2004). Agent-
based modeling (ABM) is widely used to simulate land-
use changes that result from variations in individual
decisions and actions (Matthews et al. 2007; Parker et al.
2003; Robinson et al. 2007; Valbuena et al. 2010). Be-
cause ABM defines different decision-making units or
agents, it can model the interactions between humans
and natural systems (Valbuena et al. 2010) and simulate
land-use changes. However, SLEUTH and ABM can be
classified as bottom-up models. In addition to models
designed to explore possible land-use change under
plausible scenarios in the near future, policymakers
determine the optimal land-use configurations in terms
of costs and effects using various tools (Loonen et al.
2007; Lin et al. 2009). A land-use model based on a
spatial pattern optimization could be used to comple-
ment and support landscape conservation design and
planning (Duh and Brown 2005; Loonen et al. 2007; Lin
et al. 2009).

Ecosystem services are the benefits that humans de-
rive from ecosystems (MA 2005). The Millennium Eco-
system Assessment Report (2005) categorized ecosystem
services into four groups: supporting, provisioning,
regulating, and cultural services. Recently, the impor-
tance of research into ecosystem services has been widely
recognized. The mapping of ecosystem services is re-
garded as a key element in having institutions and
decision-making bodies recognize the value of ecosystem
services (Daily and Matson 2008; Burkhard et al. 2009).
In recent years, many scientists have developed ap-
proaches for mapping ecosystem services (e.g. Troy and
Wilson 2006; Egoh et al. 2008; Naidoo et al. 2008;
Burkhard et al. 2009; Nelson et al. 2009; Tallis and
Polasky 2009).

Integrated Valuation of Ecosystem Services and
Tradeoffs (InVEST) and Artificial Intelligence for Eco-
system Services (ARIES) are Geographical Information
System (GIS)-based ecosystem services tools (Vigerstol
and Aukema 2011) used to map ecosystem services
across landscapes. InVEST 2.1 beta version was devel-
oped by Tallis et al. (2011). It comprises a suite of
models that use LULC patterns to estimate the levels
and economic values of ecosystem services, biodiversity
conservation, and the market values of commodities
provided by the landscape (Nelson et al. 2009). InVEST
models are spatially explicit, use maps as information
sources, and produce maps as outputs (Tallis et al.
2011). ARIES (Villa et al. 2009) is a web-based tool used
to map ecosystem services. It allows users to evaluate
trade-offs among ecosystem services and to identify
stakeholders who may benefit from services in a study
area (Vigerstol and Aukema 2011). Moreover, ARIES
identifies relationships between user input data and
ecosystem service values using probabilistic Bayesian
networks. To map beneficiaries, ARIES can often be run
with a single spatial data layer or simple GIS operations
rather than Bayesian networks (Bagstad et al. 2011).
However, there is a dearth of spatially-explicit values of
ecosystem services across landscapes that might inform
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land-use and management decisions (Balmford et al.
2002; MA 2005; Nelson et al. 2009), so further studies
are needed.

Recently, a multi-disciplinary research community
has identified the goods and services provided by eco-
systems in sites scattered across the world (Nelson and
Daily 2010). By understanding how changes in LULC
and land management cause changes in ecosystem ser-
vices across a landscape, researchers (e.g., Nelson and
Daily 2010) can design and implement policy interven-
tions to improve ecosystem service values and marketed
economic returns on the landscape. However, LULC
models have been widely used in modeling LULC
changes. Ecosystem service modeling is just beginning to
be applied in the policy arena (Nelson and Daily 2010).
GIS is a potential tool that can be used to model, ana-
lyze, and map ecosystem services and LULC for land
management and conservation planning. For instance,
InVEST and ARIES are both GIS-based models. Thus,
integrating models of land use and ecosystem services in
a GIS-based platform provides essential information
used in land-use and conservation planning and man-
agement; this method can simulate land-use changes and
their effects on ecosystems and ecosystem services or
functions.

Disaster resilience and coastal ecology

The coastal areas of northeastern Japan were heavily
damaged by the 11 March, 2011, mega-earthquake and
tsunami. We realized how vulnerable human society,
even in highly-developed countries, is to catastrophic
disasters that occur on time scales of hundreds to
thousands of years. How can we, as ecologists, con-
tribute to enhancing the resilience of damaged coastal
ecosystems and help local societies recover after such a
disaster? The major goals of natural science are to
quantitatively assess and evaluate the impacts of such
catastrophic events on ecosystems and to estimate the
ecosystem resilience. Based on the scientific data col-
lected after such disasters, we can then make sound
proposals to local communities, stakeholders, and deci-
sion-makers to improve rehabilitation plans.

One of the difficulties in effectively assessing the im-
pact of catastrophic events such as tsunamis is that
quantitative data on ecosystems are not always available
prior to the disturbances because they are unpredictable.
Long-term monitoring data of biodiversity and ecosys-
tems collected prior to such events, if they exist, allow
evaluation of the impact through before/after compari-
sons (Whanpetch et al. 2010). A long-term ecosystem
monitoring program, entitled Monitoring Sites 1000,
covers three coastal sites on the Sanriku (northeastern
Tohoku) coast that were heavily affected by the tsunami.
By continuing the same type of monitoring after the
tsunami, we could quantitatively examine its impact on
these sites. The tsunami’s impact was remarkably vari-
able among habitat types. A tidal flat in Fukushima and

two seagrass beds in Iwate were heavily impacted by the
tsunami, with a large decrease in species diversity and in
the abundance of major organisms, whereas the diversity
and abundance of an algal community in Miyagi did not
change greatly after the tsunami. The level of impact
varied even within a single seagrass bed in areas with
different depth gradients and topographical settings.
Large differences within a small spatial scale were also
reported in the impact assessment of the 2004 tsunami
along the Andaman Sea coast of Thailand (Whanpetch
et al. 2010). Similar tsunami impact assessments have
been ongoing by various marine scientists and fisheries
researchers who have been studying the areas since be-
fore the disaster happened (Urabe et al. 2013; Takami
et al. 2013). Mate analysis incorporating these individual
studies across a large spatial extent and diverse envi-
ronmental gradients provide promising ways to under-
stand general characteristics of how the tsunami’s
impacts and subsequent recovery processes varied.

A further challenge to ecologists is to develop a way
to effectively use our science-based knowledge for deci-
sion making for and by coastal human communities,
such as designing rehabilitation plans to maintain
coastal biodiversity and effectively restoring marine re-
sources. Some ongoing attempts include plans to de-
velop marine protected areas (and their potential
candidates), to enhance recovery of severely-damaged
habitats using surviving local populations, and to
establish new management plans for fisheries and
aquaculture that are reasonably sustainable over the
long run.

A recent highlight in ecology is that the ecosystem
connectivity among different types of adjacent habitat,
such as between forest and river or between terrestrial
and marine ecosystems, is seen to play an important role
in structuring the biological community and material
flows in each system (Polis and Hurd 1996; Nakano and
Murakami 2001). Incorporating the concept of connec-
tivity can contribute to better rehabilitation planning in
damaged coastal areas. In most coastal areas of Japan,
including the Sanriku regions, natural connectivity
among terrestrial, river, and marine ecosystems had
been substantially lost since the mid-20th century with
the expansion of industrial activities such as reclamation
and the construction of ports and embankments along
the coastline (Shikita and Koarai 1997). The tsunami
damaged these man-made structures, which ironically
led to the recovery of natural connectivity in some areas.
Scientists, environmental administrators, and some local
citizens are working together to incorporate these newly
recovered ecosystem links into rehabilitation plans to
enhance the resilience of coastal ecosystems and their
services; for example, some guidelines established by the
Ministry of the Environment illustrate this technique
(2013). Our next challenge is to consider how we can
incorporate these guidelines into actual rehabilitation
plans at each local site. Discussion with local stake-
holders, decision makers, and other interested persons is
required for fairness in the development of coastal
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rehabilitation plans that consider the conservation of
biodiversity and sustainable use of ecosystem services in
damaged areas.

In conclusion, ecologists can contribute to enhancing
the disaster resilience of areas affected by the tsunami in
a variety of ways, ranging from a general understanding
of the tsunami’s impacts on marine ecosystems to the use
of new science-based knowledge for rehabilitation
activities at various levels (local, regional, and national).
The achievements are worthwhile not only for increased
resilience in disaster-damaged regions in northeastern
Japan but also for other regions of the world where
catastrophic events will occur in the future.

Past and future of ESJ; sketches of questionnaires
and discussions during the 60th anniversary symposium

During the discussion session of the 60th anniversary
symposium, the past achievements and future directions
of ESJ were discussed by the panelists and audience. To
facilitate this discussion, the organizing committee col-
lected various opinions from ESJ members and used a
web-based questionnaire distributed with the meeting
announcement via the ESJ mailing lists to ensure that a
diversity of perspectives were considered. Sixty-three
ESJ members responded to the questionnaires between
19 December, 2012, and 4 March, 2013. The question-
naire asked the following four questions:

Q1. What major discoveries and significant progress
have been made in ecology in Japan during the past
decade?

Q2. What research area in ecology in Japan is ex-
pected to be emphasized in the coming decade?

Q3. What is the global role of the Ecological Society
of Japan?

Q4. Do you believe national policies and the needs of
the public affect your research currently?

The responses to the first question highlighted a wide
diversity of opinions addressing many aspects of ecology
in Japan. The organizing committee of the symposium
used a few representative comments to facilitate dis-
cussion during the meeting. Some comments addressed
long-term advances in ecological research (e.g., Enoki
et al. 2007; Ohte et al. 2012), including the improved
understanding of non-steady state phenomena. Progress
made in the production and use of analytical tools for
mega-ecological data was also emphasized (Cornwell
et al. 2008; Ishihara et al. 2011). Also, some responders
noted the rising popularity of ‘‘biodiversity’’ as a com-
mon keyword for the ecological community and general
public during the last decade (Fujikura et al. 2010;
Larigauderie et al. 2012; Vihervaara et al. 2013). Others
commented on an abundance of project-based large-
scale ecological research studies compared with fewer
small-scale studies conducted by individuals (DIVERS-
ITAS; IGBP; Kohyama et al. 2007).

During the symposium’s discussion, some panelists
mentioned that ecologists in Japan are dealing with a

wider variety of ecological data, including the long-term
monitoring of biogeophysical parameters as powerful
indicators of environmental conditions and ecosystem
functions (e.g. Ishihara et al. 2011; Iken et al. 2010;
Yoshida et al. 2006). The other panelists noted that we
have developed and applied various new analytical
technologies to ecological research, such as molecular
biology (Azuma et al. 2006; Okubo and Sugiyama 2009),
remote sensing (Hiura 2005; Yamaji et al. 2008; Nagai
et al. 2010), GIS (Ileva et al. 2009; Yoshida and Noguchi
2009), and numerical modeling (Sato et al. 2007; Ka-
tsuyama et al. 2009; Miki et al. 2010).

Regarding the future direction of ESJ, some re-
sponses to the questionnaire emphasized the need for
further progress on biodiversity conservation, ecosystem
management, and ecosystem rehabilitation with Asia-
wide perspectives to contribute not only to ecological
interests but also to societal needs (Nakano et al. 2012).
Others pointed to basic and pure ecological studies, such
as taxonomy, natural history, physiology, and the clar-
ification of mechanisms within ecosystems, as important
research topics. Some insisted that unique research
themes that do more than simply copy those in the
United States and Europe should be critical to ecological
studies within the ESJ and also in the international re-
search arena. The panelists also addressed the need to
ensure that future ecological studies in Japan cover di-
verse research areas (i.e., basic and applied research and
collaborative- and individual-based projects) with un-
ique research questions, hypotheses, and topics. One
panelist emphasized the need for ESJ and Japanese
ecologists to be more engaged in international networks
(e.g., Shibata and Bourgeron 2011) by sharing data and
analytical tools to create new concepts and findings.

Contributions by the audience at the symposium
included the needs to improve the educational system,
establish core stations for integrated ecosystem–bio-
diversity–climate change research, help young scien-
tists become involved in global research trends such
as Future Earth, and appeal to multidisciplinary and
cross-site research findings for the general public and
society. The ESJ members provided suggestions,
comments, and opinions on how national policies and
the needs of the public have been affecting their re-
search. Many challenges lie ahead for ecological re-
search and outreach, especially in Asia, with its highly
diverse ecosystems that include natural and human-
modified landscapes. Useful tools are now available
that improve the resolution and accuracy of data
collected and analyzed by ecologists. The activities of
the individual are of supreme importance both for the
pure science of ecology and for the application of
ecological principles. In addition, the importance of
the roles of ESJ was recognized, as was the impor-
tance of the relationships between ESJ and the re-
search studies of its members. We hope the
symposium will be a landmark of interactive devel-
opment among ESJ members, ESJ, and all people
concerned.
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