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Abstract

We study the existence of positive periodic solutions of the second-order difference
equation

�2u(t − 1) + a(t)u(t) = f (t, u(t)) + c(t), t ∈ Z

via Schauder’s fixed point theorem, where a, c : ℤ ® ℝ+ are T -periodic functions,
f Î C(ℤ × (0, ∞), ℝ) is T -periodic with respect to t and singular at u = 0.
Mathematics Subject Classifications: 34B15.

Keywords: positive periodic solutions, difference equations, Schauder’s fixed point
theorem, weak singularities.

1 Introduction and the main results
Let ℤ denote the integer set, for a, b Î ℤ with a < b, [a, b]ℤ : = {a, a + 1,..., b} and ℝ+ : =

[0; ∞). In this article, we are concerned with the existence of positive periodic solutions

of the second-order difference equation

�2u(t − 1) + a(t)u(t) = f (t, u(t)) + c(t), t ∈ Z, (1:1)

where a, c : ℤ ® ℝ+ are T-periodic functions, f Î C(ℤ × (0, ∞), ℝ) is T-periodic with

respect to t and singular at u = 0.

Positive periodic solutions of second-order difference equations have been studied by

many authors, see [1-6]. However, in these therein, the nonlinearities are nonsingular,

what would happen if the nonlinearity term is singular? It is of interest to note here

that singular boundary value problems in the continuous case have been studied in

great detail in the literature [7-20]. In 1987, Lazer and Solimini [7] firstly investigated

the existence of the positive periodic solutions of the problem

u′′ =
1
uλ

+ c(t), (1:2)

where c Î C(ℝ, ℝ) is T-periodic. They proved that for l ≥ 1 (called strong force con-

dition in a terminology first introduced by Gordon [8,9]), a necessary and sufficient

condition for the existence of a positive periodic solution of (1.2) is that the mean

value of c is negative,
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c̄ :=
1
T

T∫
0
c(t)dt < 0.

Moreover, if 0 < l <1 (weak force condition) they found examples of functions c with

negative mean values and such that periodic solutions do not exist. Subsequently,

many authors studied the existence of positive solutions of the problem

u′′ + a(t)u = f (t, u) + c(t), (1:3)

where a Î L1(ℝ/T ℤ; ℝ+), c Î L1(R/Tℤ; ℝ), f Î Car(ℝ/Tℤ × (0, ∞), ℝ) and is singular

at u = 0, see [7-20]. The first existence result with weak force condition appears in

Rachunková et al. [16]. Since then, the Equation (1.3) with f has weak singularities has

been studied by several authors, see Torres [17,18], Franco and Webb [19], Chu and Li

[20].

Recently, Torres [18] showed how a weak singularity can play an important role if

Schauder’s fixed point theorem is chosen in the proof of the existence of positive peri-

odic solution for (1.3). For convenience, for a given function ξ Î L∞[0, T], we denote

the essential supremum and infimum of ξ by ξ* and ξ*, respectively. We write ξ ≻ 0 if

ξ ≥ 0 for a.e. t Î [0, T] and it is positive in a set of positive measure. Under the

assumption

(H1) The linear equation u“+ a(t)u = 0 is nonresonant and the corresponding

Green’s function

G(t, s) ≥ 0, (t, s) ∈ [0, T] × [0, T].

Torres showed the following three results

Theorem A. [[18], Theorem 1] Let (H1) hold and define

γ (t) =
T∫
0
G(t, s)c(s)ds.

Assume that

(H2) there exist bÎ L1(0, T) with b ≻ 0 and l >0 such that

0 ≤ f (t, u) ≤ b(t)
uλ

, for all u > 0, a.e. t ∈ [0, T].

If g * >0, then there exists a positive T-periodic solution of (1.3).

Theorem B. [[18], Theorem 2] Let (H1) hold. Assume that

(H3) there exist two functions b, b̂ ∈ L1(0, T)with b, b̂ � 0 and a constant l Î (0, 1)

such that

0 ≤ b̂(t)
uλ

≤ f (t, u) ≤ b(t)
uλ

, u ∈ (0, ∞), a.e. t ∈ [0, T].

If g* = 0. Then (1.3) has a positive T-periodic solution.

Theorem C. [[18], Theorem 4] Let (H1) and (H3) hold. Let

β̂∗ = min
t∈[0,T]

⎛
⎝ T∫

0

G(t, s)b̂(s)ds

⎞
⎠ , β∗ = max

t∈[0,T]

⎛
⎝ T∫

0

G(t, s)b(s)ds

⎞
⎠ .
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If g* ≤ 0 and

γ∗ ≥
(

β̂∗
(β∗)λ

λ2

) 1
1 − λ2 (

1 − 1
λ2

)
.

Then (1.3) has a positive T-periodic solution.

However, the discrete analogue of (1.3) has received almost no attention. In this arti-

cle, we will discuss in detail the singular discrete problem (1.1) with our goal being to

fill the above stated gap in the literature. For other results on the existence of positive

solution for the other singular discrete boundary value problem, see [21-24] and their

references. From now on, for a given function ξ Î l∞(0, ∞), we denote the essential

supremum and infimum of ξ by ξ* and ξ*, respectively. We write ξ ≻ 0 if ξ ≥ 0 for t [0,

T ]ℤ and it is positive in a set of positive measure.

Assume that

(A1) The linear equation Δ2u(t - 1)+ a(t)u(t) = 0 is nonresonant and the correspond-

ing Green’s function

G(t, s) ≥ 0, (t, s) ∈ [0, T]Z × [0, T]Z.

(A2) There exist b, e : [1, T]ℤ ® ℝ+ with b, e ≻ 0, a, b Î (0, ∞), m ≤ 1 ≤ M, such

that

0 ≤ f (t, u) ≤ b(t)
uα

, u ∈ (M, ∞), t ∈ [1, T]Z,

and

0 ≤ f (t, u) ≤ e(t)
uβ

, u ∈ (0, m), t ∈ [1, T]Z.

(A3) There exist b1, b2, e : [1, T ]ℤ ® ℝ+ with b1, b2, e ≻ 0, a, b, μ, v Î (0, 1), such

that

0 ≤ b1(t)
uα

≤ f (t, u) ≤ b2(t)
uβ

, u ∈ [1,∞), t ∈ [1, T]Z,

and

0 ≤ b1(t)
uμ

≤ f (t, u) ≤ e(t)
uv

, u ∈ [0, 1), t ∈ [1, T]Z.

To prove the main results, we will use the following notations.

γ (t) :=
T∑
s=1

G(t, s)c(s), E(t) :=
T∑
s=1

G(t, s)e(s);

B(t) :=
T∑
s=1

G(t, s)b(s), Bi(t) :=
T∑
s=1

G(t, s)bi(s), i = 1, 2;

ρ∗ := E∗ + B∗
2, σ := max{μ, α}, δ := max{v, β}.

Our main results are the following
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Theorem 1.1. Let (A1) and (A2) hold. If g* >0. Then (1.1) has a positive T-periodic

solution.

Theorem 1.2. Let (A1) and (A3) hold. If g* = 0. Then (1.1) has a positive T-periodic

solution.

Theorem 1.3. Let (A1) and (A3) hold. Assume that

ρ∗ > max{(δσB1∗)
δ , (δσB1∗)

1
σ }. (1:4)

If g* ≤ 0 and

γ∗ ≥
[

B1∗

(ρ∗)σ
δσ

] 1
1 − δσ

(
1 − 1

δσ

)
. (1:5)

Then (1.1) has a positive T-periodic solution.

Remark 1.1. Let us consider the function

f0(t, u) =

⎧⎪⎨
⎪⎩

1
uε

, u ∈ [1, ∞),
1
uη

, u ∈ (0, 1),
(1:6)

where ε, h > 0. Obviously, f0 satisfies (A2) with M = m = 1, b(t) = e(t) ≡ 1. However,

it is fail to satisfy (H2) since it can not be bounded by a single function h(t)
uγ

for any g

Î (0, ∞) and any h ≻ 0. □
Remark 1.2. If ε, h Î (0, 1), then the function f0 defined by (1.6) satisfies (A3) with ν

= μ = h, a = b = ε, and b1(t) ≡ b2(t) ≡ e(t) ≡ 1. However, it is fail to satisfy (H3). □

2 Proof of Theorem 1.1
Let

X := {u : Z → R|u(t) = u(t + T)}

under the norm‖u‖ = max
t∈[1,T]Z

|u(t)| . Then (X, || · ||) is a Banach space.

A T-periodic solution of (1.1) is just a fixed point of the completely continuous map

A : X ® X defined as

(Au) (t) :=
T∑
s=1

G(t, s)[f (s, u(s)) + c(s)] =
T∑
s=1

G(t, s)f (s, u(s)) + γ (t).

By Schauder’s fixed point theorem, the proof is finished if we prove that A maps the

closed convex set defined as

K = {u ∈ X : r ≤ u(t) ≤ R, for all t ∈ [0,T]Z}

into itself, where R >r > 0 are positive constants to be fixed properly.

For given uÎ K, let us denote

I1 := {t ∈ [0, T]Z|r ≤ u(t) < m},
I2 := {t ∈ [0, T]Z|R ≥ u(t) > M},
I3 := [0, T]Z\(I1 ∪ I2).

Ma and Lu Advances in Difference Equations 2012, 2012:90
http://www.advancesindifferenceequations.com/content/2012/1/90

Page 4 of 11



Given u Î K, by the nonnegative sign of G and f, we have

(Au) (t) =
T∑
s=1

G(t, s)f (s, u(s)) + γ (t)

=
∑
s∈I1

G(t, s)f (s, u(s)) +
∑
s∈I2

G(t, s)f (s, u(s))

+
∑
s∈I3

G(t, s)f (s, u(s)) + γ (t)

≥ γ (t) ≥ γ∗ =: r.

Let

� := sup

{
max

t∈[0,T]Z

T∑
s=1

G(t, s)f (s, u(s))|m ≤ u(s) ≤ M

}
.

Then, it follows from the continuity of f that Λ < ∞, and consequently, for every u Î
K,

(Au) (t) =
T∑
s=1

G(t, s)f (s, u(s)) + γ (t)

=
∑
s∈I1

G(t, s)f (s, u(s)) +
∑
s∈I2

G(t, s)f (s, u(s))

+
∑
s∈I3

G(t, s)f (s, u(s)) + γ (t)

≤
∑
s∈I1

G(t, s)
e(s)
uβ

+
∑
s∈I2

G(t, s)
b(s)
uα

+ � + γ ∗

≤
T∑
s=1

G(t, s)
e(s)
uβ

+
∑
s∈I2

G(t, s)b(s) + � + γ ∗

≤
T∑
s=1

G(t, s)
e(s)
rβ

+
T∑
s=1

G(t, s)b(s) + � + γ ∗

≤ E∗

rβ
+ (B∗ + � + γ ∗)

<
E∗

rβ
+ (B∗ + � + γ ∗) =: R.

Therefore, A(K) ⊂ K if r = g* and R = E∗
rβ + (B∗ + � + γ ∗) , and the proof is finished. □

3 Proof of Theorem 1.2
We follow the same strategy and notations as in the proof of Theorem 1.1. Define a

closed convex set

K = {u ∈ X : r ≤ u(t) ≤ R, for all t ∈ [0,T]Z,R > 1}.

By a direct application of Schauder’s fixed point theorem, the proof is finished if we

prove that A maps the closed convex set K into itself, where R and r are positive con-

stants to be fixed properly and they should satisfy R >r > 0 and R > 1.
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For given u Î K, let us denote

J1 := {t ∈ [0, T]Z|r ≤ u(t) < 1},
J2 := {t ∈ [0, T]Z|R ≥ u(t) ≥ 1}.

Then for given u Î K, by the nonnegative sign of G and f, it follows that

(Au) (t) =
T∑
s=1

G(t, s)f (s, u(s)) + γ (t)

=
T∑

s∈J1
G(t, s)f (s, u(s)) +

∑
s∈J2

G(t, s)f (s, u(s)) + γ (t)

≤
∑
s∈J1

G(t, s)
e(s)
uv

+
∑
s∈J2

G(t, s)
b2(s)
uβ

+ γ ∗

≤
T∑
s=1

G(t, s)
e(s)
rv

+
∑
s∈J2

G(t, s)b2(s) + γ ∗

≤
T∑
s=1

G(t, s)
e(s)
rv

+
T∑
s=1

G(t, s)b2(s) + γ ∗

≤ E∗

rv
+ (B∗

2 + γ ∗),

On the other hand, for every uÎ K,

(Au) (t) =
T∑
s=1

G(t, s)f (s, u(s)) + γ (t)

=
∑
s∈J1

G(t, s)f (s, u(s)) +
∑
s∈J2

G(t, s)f (s, u(s)) + γ (t)

≥
∑
s∈J1

G(t, s)
b1(s)
uμ

+
∑
s∈J2

G(t, s)
b1(s)
uα

+ γ∗

≥
∑
s∈J1

G(t, s)
b1(s)
Rμ

+
∑
s∈J2

G(t, s)
b1(s)
Rα

≥
∑
s∈J1

G(t, s)
b1(s)
Rσ

+
∑
s∈J2

G(t, s)
b1(s)
Rσ

≥
T∑
s=1

G(t, s)
b1(s)
Rσ

≥ B1∗

Rσ
.

Thus Au Î K if r, R are chosen so that

B1∗
Rσ

≥ r,
E∗

rv
+ (B∗

2 + γ ∗) ≤ R.

Note that B1* , E* >0 and taking R = 1
r , it is sufficient to find R >1 such that

B1∗R1−σ ≥ 1, E∗Rv + (B∗
2 + γ ∗) ≤ R,

and these inequalities hold for R big enough because s <1 and ν <1. □

Ma and Lu Advances in Difference Equations 2012, 2012:90
http://www.advancesindifferenceequations.com/content/2012/1/90

Page 6 of 11



Remark 3.1. It is worth remarking that Theorem 1.2 is also valid for the special case

that c(t) ≡ 0, which implies that g* = 0. □

4 Proof of Theorem 1.3
Define a closed convex set

K = {u ∈ X : r ≤ u(t) ≤ R, for all t ∈ [0,T]Z, 0 < r < 1 < R}.

By a direct application of Schauder’s fixed point theorem, the proof is finished if we

prove that A maps the closed convex set K into itself, where R and r are positive con-

stants to be fixed properly and they should satisfy R > 1 >r > 0.

Recall that δ = max{ν, b} and r < 1, for given u Î K,

(Au) (t) =
T∑
s=1

G(t, s)f (s, u(s)) + γ (t)

=
∑
s∈J1

G(t, s)f (s, u(s)) +
∑
s∈J2

G(t, s)f (s, u(s)) + γ (t)

≤
∑
s∈J1

G(t, s)
e(s)
uν

+
∑
s∈J2

G(t, s)
b2(s)
uβ

+ γ ∗

≤
∑
s∈J1

G(t, s)
e(s)
rν

+
∑
s∈J2

G(t, s)
b2(s)
rβ

≤
T∑
s=1

G(t, s)
e(s)
rδ

+
T∑
s=1

G(t, s)
b2(s)
rδ

≤ ρ∗

rδ
,

where Ji (i = 1, 2) is defined as in Section 3 and ρ∗ = E∗ + B∗
2 .

On the other hand, since s = max {μ, a} and R >1, for every uÎ K,

(Au) (t) =
T∑
s=1

G(t, s)f (s, u(s)) + γ (t)

=
∑
s∈J1

G(t, s)f (s, u(s)) +
∑
s∈J2

G(t, s)f (s, u(s)) + γ (t)

≥
∑
s∈J1

G(t, s)
b1(s)
uμ

+
∑
s∈J2

G(t, s)
b1(s)
uα

+ γ∗

≥
∑
s∈J1

G(t, s)
b1(s)
Rσ

+
∑
s∈J2

G(t, s)
b1(s)
Rσ

+ γ∗

≥ B1∗
Rσ

+ γ∗.

In this case, to prove that A(K) ⊂ K it is sufficient to find r <R with 0 <r < 1 <R such that

B1∗
Rσ

+ γ∗ ≥ r,
ρ∗

rδ
≤ R. (4:1)

If we fix R = ρ∗
rδ , then the first inequality holds if r verifies

B1∗
(ρ∗)σ

rσδ + γ∗ ≥ r,
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or equivalently,

γ∗ ≥ f (r) := r − B1∗
(ρ∗)σ

rσδ .

The function f(r) possesses a minimum in r0 :=
[

B1∗
(ρ∗)σ δσ

] 1
1−δσ . Taking r = r0, (1.4)

implies that r <1. Then the first inequality in (4.1) holds if g* ≥ f (r0), which is just con-

dition (1.5). The second inequality in (4.1) holds directly by the choice of R, and it

would remain to prove that R = ρ∗

rδ0
> 1 . To the end, it follows from (1.4) that

R =
ρ∗

rδ0
>

(δσB1∗)δ · (ρ∗)

δσ

1 − δσ

(δσB1∗)

δ

1 − δσ

>
(δσB1∗)δ · (δσB1∗)

δ2σ

1 − δσ

(δσB1∗)

B1δ

1 − δσ

= 1.

This completes the proof. □
Remark 4.1. Note that the condition (1.4), which is stated as

ρ∗ > max {(δσB1∗)δ , (δσB1∗)
1
σ }

is crucial to guarantee that R >1 > r0, and in the proof of Theorem 1.3 we require R

>1 > r0 because the exponents in inequalities of (A3) is different. However, in the spe-

cial case that

λ := α = β = μ = ν,

if we define ω (t): = max{b2(t), e(t)}, t Î [0, T]ℤ, then the condition (1.4) is needn’t

because R > r0 can be easily verified by

b1(t) ≤ ω(t), t ∈ [0, T]Z.

□
Example 4.1. Let us consider the second order periodic boundary value problem

�2u(t − 1) + 4sin2 π

16
u = f (t, u) − c0, t ∈ [1, 4]Z,

u(0) = u(4), u(1) = u(5),
(4:2)

where

f (t, u) =
5 − t

u
1
5

, u ∈ (0, ∞), t ∈ [1, 4]Z

and c0 ∈
⎛
⎝0, 3 · [8√

10]
−4/3

((4 + 3
√
2)
√
2 − √

2 + 2
√
2)

1/3

⎞
⎠ is a constant.
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It is easy to check that (4.2) is equivalent to the operator equation

u(t) =
4∑
s=1

G(t, s)f (s, u(s)) +
4∑
s=1

G(t, s)(−c0)ds =: (Au) (t), t ∈ [0, 4]Z,

here

G(t, s) =

⎧⎪⎪⎨
⎪⎪⎩

1
sin π

8

[
sin

π(t − s)
8

+ sin
π(4 − t + s)

8

]
, 0 ≤ s ≤ t ≤ 4,

1
sin π

8

[
sin

π(s − t)
8

+ sin
π(4 − s + t)

8

]
, 0 ≤ t ≤ s ≤ 4.

Clearly, G(t, s) > 0 for all (t, s) Î 0[4]ℤ × 0[4]ℤ.

Let

b1(t) ≡ 1, b2(t) ≡ 4, e(t) ≡ 6,

α = v =
1
2
, β =

1
6
, μ =

1
7
,

Then

σ = δ =
1
2
,

and

0 <
1

u
1
2

≤ 4 − t

u
1
5

≤ 4

u
1
6

, u ∈ [1,∞), t ∈ [0,T]Z,

0 <
1

u
1
7

≤ 4 − t

u
1
5

≤ 6

u
1
2

, u ∈ [0, 1), t ∈ [0,T]Z.

Thus, the condition (A3) is satisfied. By simple computations, we get

B1(t) =
4∑
s=1

G(t, s) · 1
2
=
(4 + 3

√
2)
√
2 − √

2
2

+
√
2;

B2(t) =
4∑
s=1

G(t, s) · 4 = (16 + 12
√
2)
√
2 −

√
2 + 8

√
2;

E(t) =
4∑
s=1

G(t, s) · 6 = (24 + 18
√
2)
√
2 −

√
2 + 12

√
2;

B1∗ = B∗
1 =

(4 + 3
√
2)
√
2 − √

2
2

+
√
2;

B2∗ = B∗
2 = (16 + 12

√
2)
√
2 −

√
2 + 8

√
2;

E∗ = E∗ = (24 + 18
√
2)
√
2 −

√
2 + 12

√
2;

(δσB1∗)δ =

[
(4 + 3

√
2)
√
2 − √

2 + 2
√
2

8

]1
2
;

(δσB1∗)
1
σ =

[
(4 + 3

√
2)
√
2 − √

2 + 2
√
2

8

]2
;

ρ∗ = E∗ + B∗
2 = (40 + 30

√
2)
√
2 −

√
2 + 20

√
2;

max{(δσB1∗)δ, (δσB1∗)
1
σ } = (12 + 8

√
2)
√
2 − √

2 + 7
√
2 + 14

32
;
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and ρ∗ > max{(δσB1∗)δ , (δσB1∗)
1
σ } . So the condition (1.4) is satisfied. Moreover,

γ (t) =
4∑
s=1

G(t, s)(−c0) = −(4 + 3
√
2)
√
2 − √

2 · c0 − 2
√
2c0,

and so

γ ∗ = γ∗ = −(4 + 3
√
2)
√
2 − √

2 · c0 − 2
√
2c0 < 0.

Finally, since c0 ∈

⎛
⎜⎝0, 3.[8

√
10]

−4/3

(
(4 + 3

√
2)
√
2 − √

2 + 2
√
2
)1/3

⎞
⎟⎠ , it follows that

γ∗ ≥ −3

⎡
⎢⎢⎣
(
(4 + 3

√
2)
√
2 − √

2 + 2
√
2
) 1
2

8
√
10

⎤
⎥⎥⎦
4
3

=
[

B1∗
(ρ∗)σ

δσ

] 1
1−δσ

(
1 − 1

δσ

)
.

Consequently, Theorem 1.3 yields that (4.2) has a positive solution. □
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