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Abstract Evolutionary multitasking has recently emerged
as an effective means of facilitating implicit genetic trans-
fer across different optimization tasks, thereby potentially
accelerating convergence characteristics for multiple tasks
at once. A natural application of the paradigm is found to
arise in the area of bi-level programming wherein an upper
level optimization problem must take into consideration a
nested lower level problem. Thus, while tackling instances
of bi-level optimization, a significant challenge surfaces from
the fact that multiple upper level candidate solutions are to
be analyzed at the same time by inferring the corresponding
optimum response from the lower level. Thus, the process
of bi-level optimization often becomes exorbitantly time
consuming, especially in the case of real-world instances
involving expensive objective function evaluations. Accord-
ingly, the significance of this paper lies in showcasing that
the practicality of population-based bi-level optimization can
be considerably enhanced by simply incorporating the novel
concept of evolutionary multitasking into the search process.
As a result, it becomes possible to process multiple lower
level optimization tasks concurrently, thereby facilitating the
exploitation of underlying commonalities among them. To
demonstrate the implications of our proposal, we present
computational experiments on some synthetic benchmark
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functions, as well as a real-world case study in complex engi-
neering design from the composites manufacturing industry.
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1 Introduction

A recent study has shown that the concept of multitasking
in optimization provides the scope for potentially fruitful
implicit knowledge transfer across different optimization
tasks, thereby facilitating accelerated convergence character-
istics among them [19]. A natural beneficiary of this novel
paradigm is contended to be the field of evolutionary bi-level
optimization that has begun to gain much research attention
in recent years. The formulation of a single-objective bi-level
optimization problem (BLOP) is special in the sense that one
optimization task (often referred to as the lower level problem
or the follower’s problem) is nested within another (which is
labeled as the upper level problem or the leader’s problem).
The two levels of this single-act hierarchical optimization set-
ting together comprise a pair of objective functions, namely,
F : Ru ×R

l → R and f : Ru ×R
l → R [7,26,28,29]. The

relationship between the two functions can be stated accord-
ing to Eqs. (1) and (2) below. Note that the likely occurrence
of additional equality and/or inequality constraints has been
suppressed in the formulation for simplicity.

Minimizexu∈Xu ,xl∈X l F(xu, xl), (1)

subject to, xl ∈ argmin{ f (xu, xl)}. (2)

In the above, F is the objective function of the so-called
leader, and f represents the objective function of the fol-
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lower. By being single-act, it is implied that each decision
maker (i.e., the leader and the follower)mustmake a one-time
decision. The leader makes the (chronologically) first choice
by selecting a specific design vector (or decision vector) xu
from the upper level design space Xu ⊂ R

u . Thereafter, the
follower simply selects a preferred xl from the lower level
design space X l ⊂ R

n , such that its objective is optimized
given the leader’s preceding action. In other words, a ratio-
nal follower is expected to arrive at a preferred strategy by
solving a lower level optimization task (see Eq. 2) that is
parametrized by the leader’s prior decision xu .

A fundamental assumption of the BLOP is that the leader
possesses complete knowledge about the characteristics of
the design space available to the follower and is aware of the
fact that the follower can observe and appropriately respond
to the leader’s prior action. Accordingly, the main purpose
of a BLOP is to determine the optimum decision for the
leader in such a setting. Clearly, a mathematical treatment
of this scenario must embed the optimization problem of
the follower (as a lower level task) within that of the leader
(which forms the upper level problem), as has been indicated
by Eqs. (1) and (2). It is interesting to note that a variety
of scenarios in operations research, logistics, transportation
research, science, economics, security games, complex engi-
neering design, etc., can in fact be posed (or naturally occur)
in the form of BLOPs [1,2,17,18,20,21,30,31,34].

Not surprisingly, due to its apparent real-world relevance,
the field of BLOPs has attractedmuch research attention over
several decades [4,10,35]. More recently, the interest has
spread to researchers in the field of computational intelli-
gence for developing more widely applicable techniques for
tackling complex real-world BLOPs, i.e., via the use of evo-
lutionary algorithms (EAs) [27,29,31]. As is well known,
EAs provide several advantages over conventional mathe-
matical tools due to their considerable flexibility in dealing
with a wide variety of optimization problems [3]. However,
EAs are not exempt from their own share of algorithmic
difficulties. With regard to BLOPs, a significant challenge
surfaces from the fact that multiple upper level candidate
solutions are to be analyzed at the same time by inferring
the corresponding optimum response from the lower level.
To elaborate, distinct lower level optimization tasks emerge
with respect to each upper level candidate solution. Failure
to accurately resolve each lower level task may often cause a
misleading representation of the leader’s estimated objective
function value corresponding to a given upper level design
vector xu . As a result, the process of optimization generally
becomes exorbitantly time consuming, especiallywhen deal-
ing with real-world problems involving several expensive
objective function evaluations and conflicts between the two
levels.

With the above in mind, in this paper, we demonstrate that
the practicality of population-based bi-level optimization can

be significantly enhanced simply by incorporating the novel
concept of evolutionary multitasking into the search process.
As has been demonstrated in [19,22], evolutionarymultitask-
ing provides the scope for accelerating convergence to near
optimal solutions ofmultiple optimization tasks at once, sim-
ply by harnessing the latent complementarities among them
(when available). In particular, the true power of implicit
parallelism of population-based search is unleashed by com-
bining the design spaces corresponding to different tasks into
a unified pool of geneticmaterial, thereby facilitating implicit
information exchange among them in the form of encoded
genetic material. While encapsulating the major implication
of this phenomenon, it is most interesting to note that the
notion of multitasking emerges naturally in the realm of
evolutionary bi-level optimization wherein multiple lower
level optimization tasks (one corresponding to every upper
level population member) are to be solved at once. Accord-
ingly, the significance of the present paper lies in revealing
the efficacy of evolutionary multitasking as a novel means
to augment bi-level optimization. Traditional evolutionary
search processes are shown to be considerably enriched by
appropriately exploiting the unique benefits of multitasking
in optimization.

To provide an in-depth exposition of the notions presented
heretofore, the remainder of this paper has been structured as
follows. Section 2 introduces the basic concepts ofmultitask-
ing in optimization and presents an associated multitasking
EA.Thereafter, the incorporationofmultitasking intoBLOPs
is described in detail in Sect. 3. Computational tests on some
synthetic benchmark problems shall then be carried out in
Sect. 4, followed by a real-world case study from the com-
positesmanufacturing industry in Sect. 5. Finally, a summary
of the research, conclusions, and future directions shall be
presented in Sect. 6.

2 An overview of evolutionary multitasking

We have conceived of the evolutionary multitasking para-
digm as a means to leverage upon the true power of implicit
parallelism of population-based search. To this end, consider
a hypothetical scenario in which K different optimization
tasks are to be solved at the same time. Without loss of gen-
erality, all tasks are considered to be minimization problems.
The kth task, denoted Tk , has a design space Xk on which the
objective function is defined as fk : Xk → R. Then, the aim
of an evolutionary multitasking engine is to efficiently navi-
gate the design space of all tasks concurrently, aided by the
scope for implicit genetic exchange, so as to rapidly obtain
argmin{ f1(x), f2(x), . . . , fK (x)}. Since each fk is treated
as an additional factor influencing the evolution of a sin-
gle population of individuals, the composite problem is also
referred to as a K -factorial environment [19].
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While developing an EA for the purpose of multitasking,
it is necessary to first devise a technique for comparing can-
didate solutions in a multitasking environment. To this end,
we define a set of properties for every individual p j , where
j ∈ {1, 2, . . . , |P|}, in a population P . Note that every indi-
vidual is encoded into a unified search spaceY encompassing
X1, X2, . . . , XK , and can thereafter be decoded into a task-
specific solution representation with respect to each of the K
optimization tasks.

Definition 1 (Factorial rank) The factorial rank r j
k of p j for

task Tk is the index of p j in the list of population members
sorted in ascending order of fk .

Definition 2 (Skill factor) The skill factor τ j of p j is the one
task, amongst all other tasks in a K -factorial environment,
with which the individual is associated. If p j is evaluated for

all tasks then τ j = argmink
{
r j
k

}
, where k ∈ {1, 2, . . . , K }.

Definition 3 (Scalar fitness) The scalar fitness of p j in a

multitasking environment is given by ϕ j = 1/r j
τ j .

Once the fitness of every individual has been scalarized
according to Definition 3, performance comparison can be
carried out in a straightforward manner. For example, indi-
vidual p1 will be considered to dominate individual p2 during
evolutionary multitasking simply if ϕ1 > ϕ2.

It should be noted that the procedure described heretofore
for comparing individuals is not absolute. As the factor-
ial rank of an individual (and implicitly its scalar fitness)
depends on the performance of every other individual in the
population, the comparison is in fact population dependent.
Nevertheless, the procedure guarantees that if an individual
p* maps to the global optimum of any task, then, ϕ∗ ≥ ϕ j

for all j ∈ {1, 2, . . . , |P|}. Therefore, it can be said that
the proposed technique is indeed consistent with the ensuing
definition of optimality in evolutionary multitasking.

Definition 4 (Optimality in evolutionary multitasking) An
individual p*, with a list of objective values { f ∗

1 , f ∗
2 , . . . ,

f ∗
K }, is considered to be optimum during evolutionary mul-

titasking iff ∃k ∈ {1, 2, . . . , K } such that f ∗
k ≤ fk(xk), for

all feasible xk ∈ Xk .

2.1 The multifactorial evolutionary algorithm:
an evolutionary multitasking engine

In [19], the Multifactorial Evolutionary Algorithm (MFEA)
was developed as a computational analog of the bio-cultural
models of multifactorial inheritance [8,9,25]. The unique
feature of the MFEA is that in a multitasking environment it
effectively combines the transmission of biological as well
as cultural building blocks from parents to their offspring.
Thus, the algorithm is ascribed to the field of memetic com-
putation [7,23] which has recently emerged as a successful

computational paradigm inspired by Darwinian principles of
natural selection as well as Dawkins’ notion of a meme as
the basic unit of cultural transmission [11].

As summarized in Algorithm 1, the MFEA is initiated by
randomly generating a population of n individuals in a uni-
fied search space Y . Moreover, each individual in the initial
population is pre-assigned a specific skill factor (see Def-
inition 2) in a manner that guarantees every task to have
uniform number of representatives. We would like to state
that the skill factor of an individual is viewed as the compu-
tational representation of its pre-assigned cultural trait. The
significance of this step is to ensure that an individual is
only evaluated with respect to a single task (i.e., only its
skill factor) among all other tasks in the multitasking envi-
ronment. Doing so is considered practical since evaluating
every individual exhaustively for every task will generally
be computationally demanding, especiallywhen K (the num-
ber of tasks in the multitasking environment) becomes large.
The remainder of the algorithm proceeds similarly to stan-
dard evolutionary procedures, with the only major deviation
occurring in terms of offspring evaluation, as is described
next.

2.1.1 Offspring evaluation in the MFEA

Following the memetic phenomenon of vertical cultural
transmission [6], offspring in the MFEA experience strong
cultural influences from their parents, in addition to inheriting
their genetic material. In the bio-cultural models of multifac-
torial inheritance, vertical cultural transmission is viewed as
a mode of inheritance that operates in tandem with genet-
ics and leads to the phenotype of an offspring being directly
influenced by the phenotype of its parents.
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The algorithmic realization of the aforementioned notion
is achieved in the MFEA via a selective imitation strategy.
In particular, selective imitation is used to mimic the com-
monly observed phenomenon that offspring tend to imitate
the cultural traits (i.e., skill factors) of their parents. Accord-
ingly, in the MFEA, an offspring is only decoded (from the
unified genotype space Y to a task-specific phenotype space)
and evaluated with respect to a single task with which at least
one of its parents is associated.As has beenmentioned earlier,
selective evaluation plays a role in managing the computa-
tion expense of the MFEA. A summary of the steps involved
is provided in Algorithm 2.

2.1.2 Implicit genetic transfer in the unified search space

Information, in the MFEA, exists in the form of encoded
geneticmaterial in the unified search spaceY . Thus, the trans-
fer of relevant information from one task to another occurs in
the form of implicit genetic transfer when parents belonging
to different cultural backgrounds (i.e., having different skill
factors) undergo crossover. With this in mind, consider the
situation in Fig. 1 where two parents p1 and p2, with dif-
ferent skill factors, undergo crossover in a hypothetical 2-D
search space. To be precise, p1 has skill factor T1 and p2 has
skill factor T2. A pair of offspring, c1 and c2, is created by the
simulated binary crossover (SBX) operator [12]. A notewor-
thy feature of SBX is that it creates offspring that are located
close to the parents with high probability [14]. As a result,
c1 is found to inherit much of its genetic material from p1,
while c2 is found to inherit much of its genetic material from
p2. In such a scenario, if c1 imitates the skill factor of p2 (i.e.,
if c1 is evaluated for T2) and/or if c2 imitates the skill factor
of p1 (i.e., c2 is evaluated for T1), then implicit genetic trans-
fer occurs between the two tasks. In particular, if the genetic
material corresponding to T1 (carried by c1) happens to also
be useful for T2, or vice versa, then the transfer is fruitful (or
positive). Otherwise, there is a high chance for the transfer
to be negative [15,24]. However, the nice property of evolu-
tion is that when the latter occurs, the negatively transferred
genes get gradually eliminated from the population by the
process of natural selection.

Note that for implicit genetic transfer to take place effi-
ciently, it is crucial to have an effective unified search space
encompassing all the constitutive tasks. Accordingly, assum-

Fig. 1 Parent candidates p1 and p2 undergo standard SBX crossover
to produce offspring c1 and c2 that are located close to their parents with
high probability. Parent p1 possesses skill factor T1 while p2 possesses
skill factor T2. If c1 is evaluated for T2 and/or if c2 is evaluated for T1,
then implicit genetic transfer is said to occur between the two tasks

ing the design space dimensionality of task Tk to be Dk ,
we define a unified search space Y such that Dmultitask =
maxk{Dk} for k ∈ {1, 2, . . . , K }. Thus, the chromosome of
an individual in theMFEA is defined by a vector of Dmultitask

random-keys [5], with each random-key bounded within the
fixed range [0, 1]. While addressing task Tk , we simply refer
to Dk random-keys contained in the chromosome.

With the above in mind, we now describe the decod-
ing procedure of a chromosome y ∈ Y into a meaningful
task-specific solution representation. In the case of continu-
ous optimization, this can be achieved in a straightforward
manner by linearlymapping each random-key from the geno-
type space to the design space of the optimization task. For
instance, consider a task Tk in which the i th variable (xi ) is
bounded in the range [Li , Ui ]. If the i th random-key of the
chromosome y takes a value yi ∈ [0, 1], then the decoding
procedure is simply given by,

xi = Li + (Ui − Li ) · yi . (3)

3 Multitasking in bi-level optimization

In this section, we describe the means by which the multi-
tasking paradigm can be incorporated into the evolutionary
search process to enhance a bi-level optimization procedure.
In particular, we shall incorporate the MFEA into a basic
Nested Bi-Level Evolutionary Algorithm (N-BLEA). The
main feature of the N-BLEA, as is imposed by the nature
of the BLOP, is that a lower level optimization task must be
appropriately solvedwith respect to each populationmember
in the upper level EA. In particular, with respect to the j th
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upper level candidate solution xu, j , the corresponding lower
level objective function takes the form f (xu, j , xl). The setup
of the solution procedure is illustrated in Fig. 2. It is to be
noted that the optimization of the lower level task is also
undertaken by an equivalent EA, so as to overcome the chal-
lenges associated with multi-modality, non-differentiability
of the lower level objective function, etc. For a summary of
the N-BLEA, the reader is referred to Algorithm 3.

It must be kept in mind that a standard EA is used at
both levels of the N-BLEA, with no non-traditional algo-
rithmic artifacts as have been incorporated in some other
previously proposed methodologies for evolutionary bi-level
optimization (such as the use of biased lower level population
initialization in [31] or the use of a quadratic approximation
model in [28]). This prevents any adulteration of the observed
results by factors that are not of interest to the present study.
Thereby allowing us to clearly identify and focus on the per-
formance improvements achieved by simply introducing the
concept of multitasking into bi-level optimization.

As highlighted by Fig. 2, multiple lower level optimiza-
tion tasks are to be solved during every generation of the
upper level EA. Thus, it can clearly be seen that the scope
for evolutionary multitasking naturally emerges within the
context of BLOPs. However, to increase the probability of
fruitful information exchange during the process of multi-
tasking, some important steps are taken into consideration.
To elaborate, we begin with the assumption that the land-
scape of the lower level objective function f (xu, xl) changes
slowly with respect to small changes in xu ; this is contended
to be a reasonable assumption in many cases of practical
interest. Accordingly, it can be claimed that lower level opti-
mization tasks corresponding to neighboring upper level
population members are likely to possess useful underly-

Fig. 2 An illustration of a typical BLOP where multiple lower level
optimization tasks are to be solved at once corresponding to different
upper level candidate solutions

ing commonalities. Based on this contention, the genetically
modified individuals in every generation of the upper level
EA are first clustered into a set of groups denoted as S =
{s1, s2, . . . , sG}; an instantiation is depicted in Fig. 3. Note
that the number of clusters or groups G is determined by
the maximum allowable size of each cluster, which in turn
depends on the scalability of the evolutionary multitasking
engine used to solve the lower level optimization tasks. So for
instance, if themultitasking engine is known to perform up to
3 tasks effectively, then G may be chosen to be roughly N /3,
where N is the size of the upper level population. Thereafter,
lower level optimization tasks corresponding to individuals
within each cluster sg ∈ S are performed simultaneously
using the MFEA. By doing so, it becomes possible to exploit
the underlying commonalities among them, thereby poten-
tially accelerating convergence to high quality lower level
solutions. A summary of the steps involved in the Multitask-
ing Bi-Level EvolutionaryAlgorithm (M-BLEA) is provided
in Algorithm 4. Notice that the only distinction between the
N-BLEA and the M-BLEA is with regard to the presence of
lower level evolutionary multitasking. Thus, any significant
variation in the performance of the two algorithms can be
entirely attributed to this particular aspect of the respective
approaches.
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Fig. 3 An illustrative example of how upper level populationmembers
in the M-BLEA may be clustered into a set of four groups, i.e., G = 4

4 Benchmark computational studies

In this section, we present results for a series of compu-
tational experiments that demonstrate the efficacy of our
proposed method on synthetic benchmark problems. The
unconstrained single-objective bi-level test problems con-
sidered herein have recently been proposed in [26,29]. The
salient feature of the test problems, which are labeled as the
SMD benchmarks, is that they are scalable and showcase
various levels of difficulty that are commonly encountered
in practical bi-level optimization problems. In the present
study, only ten-dimensional variants of the benchmarks are
considered. For a complete description of their mathemati-
cal formulation, the reader is referred to [26,29]. The details
have not been reproduced in this paper for the sake of brevity.

4.1 Algorithmic specifications

The purpose of this experimental study is to highlight the
performance benefits achievable purely by the scope of
evolutionary multitasking when applied to BLOPs. Thus,
all peripheral aspects of the N-BLEA and the M-BLEA,
including the encoding scheme, crossover operator, muta-
tion operator, and parameter settings, are kept identical.
Accordingly, any performance improvements that may be
achieved during multitasking can be entirely attributed to
the exploitation of underlying commonalities between tasks
by the process of implicit genetic transfer. At both levels of
the bi-level optimizers we employ the random-key encod-
ing scheme, the SBX operator for crossover, and polynomial
mutation [13]. Crossover probability of pc = 1 with 50 %
chance of variable exchange between offspring, and muta-
tion probability of pm = 1/5, are used. Finally, we set the
crossover index and the mutation index as ηc = 20 and
ηm = 20, respectively.

With regard to population size, the N-BLEA employs 20
individuals at both levels. This implies that at every gener-
ation of the upper level EA, N = 20 genetically modified
individuals are created. Subsequently, corresponding to each
upper level individual, the lower level optimization task is
comprehensively solved by evolving another population of
n = 20 individuals. Thus, an exorbitantly large number of
lower level function evaluations will typically be required to
appropriately resolve a BLOP using the N-BLEA.

To overcome the challenge mentioned above, the MFEA
has been incorporated into the proposed M-BLEA. Inter-
estingly, the M-BLEA also employs 20 individuals at both
levels. Without loss of generality, before executing the lower
level optimization tasks, the upper level population is clus-
tered into ten groups (i.e., G = |S| = 10) via Euclidean
distance-based single-linkage clustering, with each group
comprising 2 individuals (i.e., |sg| = 2, for all g ∈ {1, 2, . . . ,
G}). Note that any alternate clustering mechanism and/or
larger cluster sizes may also be readily tested without any
changes to the overall algorithm. The present settings have
beenfixed throughout the paper as a simple proof-of-concept,
and also because the scalability of the current implementa-
tion of theMFEA is yet to be thoroughly verified for handling
larger number of tasks at a time. Our main aim here is sim-
ply to showcase the potential advantages brought to the table
by multitasking in bi-level optimization. Under the current
settings, it is implied that the MFEA concurrently tackles
two lower level optimization tasks that correspond to the
two upper level individuals existing within the same clus-
ter. Thus, the n = 20 evolving individuals in the MFEA are
evenly split between two lower level tasks which are likely
to have underlying commonalities/similarities between them
due to their proximity in the upper level search space (as
was illustrated in Fig. 3). It is expected that the MFEA will
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automatically harness the available synergies by the process
of implicit genetic transfer, thereby providing a significant
impetus to the evolutionary search.

4.1.1 Termination criteria

The algorithms follow a variance-based termination criteria
at both levels [27]. In particular, when the numeric value of
the evolving quantityαu (described below) becomes less than
a pre-defined value α

stop
u , sufficient convergence is assumed

to be achieved and the upper level EA terminates.

αu =
Du∑
i=1

σ 2(xu,i,T )

σ 2(xu,i,0)
. (4)

Here, xu,i,T represents the i th upper level design variable at
generation T . Note that the upper level termination criterion
is identical in the N-BLEA and the M-BLEA, with α

stop
u set

to 1e−3.
At the lower level, however, the termination criterion is

slightly different for the M-BLEA and the N-BLEA due to
the presence (or absence) ofmultiple lower level optimization
tasks in a single multitasking environment. In the traditional
N-BLEA, the evolving quantity αN−BLEA

l is described as fol-
lows,

αN−BLEA
l =

Dl∑
i=1

σ 2(xl,i,t )

σ 2(xl,i,0)
, (5)

where xl,i,t indicates the i th lower level design variable at
generation t of the lower level EA. In contrast, in the M-
BLEA, the evolving quantity αM−BLEA

l is described as.

αM-BLEA
l = max∀k

⎧⎨
⎩

Dl∑
i=1

σ 2(xl,i,k,t )

σ 2(xl,i,k,0)

⎫⎬
⎭ , (6)

where xl,i,k,t indicates the i th lower level design variable of
the kth task at generation t of the MFEA. Recall that under
the current settings k ∈ {1, 2}. The respective algorithms are
terminated when αN-BLEA

l , αM-BLEA
l become less than α

stop
l ,

which is fixed at 1e−5. Superior convergence is demanded
at the lower level since inaccurate lower level solutions are
likely to mislead the upper level EA whenever there is a
conflict between the two levels.

4.2 Numerical results and discussions

The efficacy of the evolutionary multitasking paradigm is
illustrated by the comparison study presented in Tables 1
and 2 for examples without and with upper level objective
function multi-modality, respectively. The results have been
deduced from 31 independent runs of each solver. The per-
formance of the optimizers has been quantified in terms of
the total number of lower level function evaluations required
for convergence (i.e., for the upper level termination criterion
to be satisfied).

Table 1 N-BLEA vs. M-BLEA in terms of lower level function evaluations (LL-FE) for SMD1 to SMD5

Label N-BLEA M-BLEA

Best
LL-FE

Median
LL-FE

Mean
LL-FE

Worst
LL-FE

UL-A Best
LL-FE

Median
LL-FE

Mean
LL-FE

Worst
LL-FE

UL-A

SMD1 1,591,720 2,248,240 2,274,605.16 2,912,200 0.00245 670,000 984,340 976,641.94 1,243,960 0.00213

SMD2 1,742,000 2,470,360 2,540,604.52 4,017,360 0.00103 624,440 927,940 953,762.58 1,558,580 0.00286

SMD3 1,780,120 2,756,640 2,725,602.58 3,297,260 0.00253 902,060 1,137,960 1,133,180.65 1,352,800 0.00355

SMD4 2,368,540 3,694,120 3,584,107.74 4,613,840 0.00129 809,340 1,282,560 1,280,561.29 1,758,000 0.00007

SMD5 2,358,080 3,633,300 3,678,349.03 5,194,180 0.00036 697,360 1,264,460 1,244,645.81 1,741,320 0.00017

Best, median, mean, and worst, outcomes achieved across 31 independent runs of the solvers are presented. Superior LL-FEs for each test problem
are depicted in bold. The upper level accuracy achieved is denoted as UL-A

Table 2 N-BLEA vs. M-BLEA in terms of lower level function evaluations (LL-FE) for SMD7 and SMD8

Label N-BLEA M-BLEA

Best LL-FE Median LL-FE Mean LL-FE Worst LL-FE UL-A Best LL-FE Median LL-FE Mean LL-FE Worst LL-FE UL-A

SMD7 1,680,560 2,977,080 3,069,575.48 5,038,120 0.00567 920,400 1,347,840 1,326,115.48 1,868,960 0.00396

SMD8 2,125,840 4855,880 4,752,300.00 6,909,280 0.01022 1,404,920 2,025,660 2,045,438.06 2,707,560 0.00053

Best, median, mean, and worst, outcomes achieved across 31 independent runs of the solvers are presented. Superior LL-FEs for each test problem
are depicted in bold. The upper level accuracy achieved is denoted as UL-A
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4.2.1 Examples with convex upper level objective functions

As can clearly be seen in Table 1, the performance of the M-
BLEA is significantly superior in comparison to N-BLEA
with respect to the number of lower level function evalua-
tions required for convergence. This is true for best, median,
mean, and worst-case outcomes (over 31 runs) for bench-
mark problems SMD1 to SMD5 that are characterized by
convex upper level objective functions. In fact, in all cases,
the worst-case performance of the M-BLEA is found to be
better than the best performance of the N-BLEA. Note that
the example SMD6 has been left out in the experiments as
it is characterized by infinitely many optimums at the lower
level for any given upper level design vector, of which only
one corresponds to the best upper level value [29]. From a
practical standpoint, such a scenario will often cause uncer-
tainty at the upper level as the optimum response from the
lower level optimization task is indecisive. The M-BLEA is
thus not currently equipped to handle related uncertain and/or
multimodal optimization cases in bi-level optimization.

Further, Table 1 presents the accuracy achieved by the
two algorithms for upper level objective function values, the
theoretical optimum being equal to zero in all cases. Focus-
ing on the averaged (mean) performance of either algorithm,
we find that the M-BLEA saves at least 57.06 % of lower
level function evaluations in comparison to N-BLEA. The
observed saving is in consonance with the fact that in the
current implementation of the M-BLEA, the MFEA at the
lower level handles two (similar or related) optimization tasks
(that are associated with the same cluster) simultaneously in
multitasking. Thus, the total number of lower level function
evaluations can be expected to be at least halved as compared
to N-BLEA, which is indeed found to be the case.

To further emphasize on the improvements brought to the
table by multitasking, we refer to Fig. 4 which depicts the
averaged convergence trends attained by the N-BLEA and
M-BLEA for test problems SMD3 and SMD4. These two
problems especially pose notable challenges to the process
of bi-level optimization due to the presence of complexmulti-
modality in the lower level objective function landscape
[29]. As can be seen in Fig. 4a, b, multitasking success-
fully provides a significant impetus to the evolutionary search
by appropriately harnessing the complementarity between
related lower level optimization tasks via implicit genetic
transfer, and thereby leading to considerably accelerated con-
vergence towards high quality solutions.

4.2.2 Examples with multimodal upper level objective
functions

The complexity of instances SMD7 and SMD8 emerges from
the fact that there exist multimodalities in the upper level
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Fig. 4 Comparison of the averaged convergence trends achieved by
the N-BLEA and the M-BLEA for a SMD3 and b SMD4

objective function landscape. Nevertheless, the outcome
achieved is very much similar to the previous case where
M-BLEA is found to considerably outperform N-BLEA by
savingmore than 50%of the lower level function evaluations
required for convergence. The results are reported in Table 2.

5 A real-world case study in composites
manufacturing

In [17], the comprehensive optimization of rigid tool Liq-
uid composite molding (LCM) processes was established as
a BLOP. Accordingly, in this case study, we consider the
simulation-based optimization of a kind of LCM process,
namely, compression resin transfer molding (CRTM), for the
manufacture of a synthetic fiber-reinforced polymer (FRP)
composite part. CRTM is a popular technique for high vol-
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ume production of FRP parts and is characterized by the use
of high stiffness molds. Under the assumption of rigidity,
the molds are expected to undergo negligible deflection in
response to the large internal forces that originate from the
cumulative effect of high fluid (polymer resin) pressure and
the compression of the fibrous reinforcement. As a result,
CRTM processes find widespread application in areas where
tight geometrical tolerances are to be met, such as in the
automobile industry. However, it turns out that sophisticated
peripheral equipment (such as a hydraulic press) is gener-
ally needed to equilibrate the large internal forces. Thus, an
important aim in the optimal design of the CRTM process is
tomaximize throughput (byminimizingmanufacturing time)
and quality of the finished product, while simultaneously
satisfying the constraints placed by the availability and/or
running costs of peripheral equipment.

5.1 A brief overview of the CRTM process

Before presenting the real-worldBLOP associatedwith com-
posites manufacturing, we present a brief overview of the
CRTM cycle. The setup of the cycle, as illustrated in Fig. 5,
comprises a metal mold machined according to the geometry
of the composite part to be manufactured. First, a preform of
the fibrous reinforcement is placed into the mold cavity (step
[a] in Fig. 5). The mold is then partially closed, mildly com-
pressing the fibrous reinforcement, thereby leaving sufficient
gap for the liquid resin to flow through without much hin-
drance (step [b] inFig. 5). Prior to injecting the resin, themold
is preheated to a preferred operation temperature. Thereafter,
a measured volume of liquid thermosetting resin (which is
also preheated) is injected into themold at high pressure (step
[c] in Fig. 5). Finally, the mold is completely closed in situ to
the final thickness of the part using a force-controlled mech-

Fig. 5 Steps of the CRTM
cycle: a preform placement, b
partial mold closure, c resin
injection, d in situ mold closure
to final part thickness, e resin
solidification and part extraction
[33]
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anism, thereby fully compressing the fibrous reinforcement
(step [d] in Fig. 5). Note that steps [a] to [d] constitute the
first phase of the CRTM cycle, which we shall refer to here-
after as the mold filling phase. In the second phase, the filled
mold is allowed to rest (under controlled thermal conditions)
until the resin solidifies, followed by part extraction (step [e]
in Fig. 5). Accordingly, step [e] constitutes the curing phase
of the manufacturing cycle.

5.2 The associated BLOP

While researchers have traditionally attempted to optimize
the two phases of the manufacturing cycle separately, in [17,
18], it was established that more comprehensive results may
be obtained by combining the two phases as a single BLOP.
In particular, the curing phase of theCRTMcyclewas viewed
as the upper level of the BLOP, while the mold filling phase
constituted the lower level. For a detailed discussion on the
arguments corroborating the bi-level formulation, the reader
is referred to [17]. Herein, we simply state the mathematical
formulation of the composites manufacturing optimization
problem as has been solved in this paper.

Minimize F = 0.7

(
TEMPdiff

20

)

+ 0.3

(
Curing time − 1000

3000

)
, (7)

subject to minimization of f = Mold filling time,

such that Ffluid + Ffibre ≤ Fcapacity. (8)

As mentioned earlier, the upper level of the BLOP comprises
primarily the curing phase, while the lower level problem is
formed by the mold filling phase. To be precise, in Eq. (7),
TEMPdiff equates to the maximum difference in tempera-
ture between the surface and the core of the part during the
entire curing cycle and represents a heuristic prediction of the
final quality of the composite part. The higher the temper-
ature difference, the greater the chance of residual thermal
stresses that diminish the quality of the finished part. As is
self-explanatory, the Curing Time (also appearing in Eq. 7)
represents the time needed for the resin to solidify (step [e]
in Fig. 5), while the Mold Filling Time (appearing in Eq.
8) represents the time needed for the mold to be filled with
resin (i.e., the time needed to perform step [a] to step [d] in
Fig. 5). Clearly, the Curing Time and the Mold Filling Time
are quantities that must preferably be minimized to maxi-
mize throughput. Finally, the lower level constraint (in Eq.
8) accommodates for the restrictions placed by the peripheral
equipment. In particular, Ffluid represents the internal force
originating from the high pressure resin injection, Ffibre is
the reaction force from the compressed fibrous reinforce-

ment, and Fcapacity is the prescribed capacity of the available
hydraulic press.

Next, we specify the design variables corresponding to
each phase. At the upper level, the temperature profile of
the mold during the entire manufacturing cycle (denoted as
TEMPprofilemold ) constitutes xu . For the lower level optimiza-

tion task, which is parametrized by TEMPprofilemold , the design
space X l comprises (a) themold cavity thickness during resin
injection (Hinj ), (b) resin injection pressure (Pinj ), and (c)
preheated resin temperature (TEMPresin).

To conclude the problem formulation, it is stated that the
computation of upper and lower level objectives is carried
out via sophisticated process simulation algorithms which
numerically evaluate a series of partial differential equations
governing the complex non-isothermal and reactive resin
behavior in the fibrous media. Details of the algorithms are
not presented here for the sake of brevity. The interested
reader is referred to [16,32]. It is important to note that these
simulations are typically computationally expensive, con-
suming several minutes for a single function evaluation of
acceptable fidelity for a complex composite part.

5.3 Experimental setup and numerical results

We undertake the simulation-based optimization of the man-
ufacturing processes for a circular FRP composite plate. The
diameter of the plate is 1 m, with a central injection hole of 2
cm (see Fig. 6). The final thickness of the part is 0.75 cm. A
glass-fiber chopped strandmat forms the reinforcingmaterial
with final fiber volume fraction of 35%, while an epoxy resin

Fig. 6 A schematic of the circular FRP composite plate with central
injection hole
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Table 3 Extent of the design
space for composites
manufacturing design variables

Description Lower bound Upper bound

Lower level design variables (xl )

Resin injection pressure (Pinj) 200 kPa 750 kPa

Cavity thickness during injection (Hinj) 0.8 cm 1 cm

Resin temperature (TEMPresin) 293 K (20 ◦C) 348 K (75 ◦C)
Upper level design variables (xu)

Mold temperature during filling (TEMPfillingmold ) 293 K (20 ◦C) 333 K (60 ◦C)
Mold heat rate (Qmold) 2 K/min 30 K/min

Final mold temperature (TEMPfinalmold) 373 K (100 ◦C) 433 K (160 ◦C)

Fig. 7 Comparison of averaged convergence trends achieved by the
N-BLEA and the M-BLEA for the composites manufacturing problem

system forms the polymer matrix. For complete details of the
material properties needed for the simulations, the reader is
once again referred to [16]. Finally, it is stated that a highly
restrictive Fcapacity = 2 tons (2E+04 N) is dictated by the
available peripheral equipment.

The extent of the design space for all design variables is
specified in Table 3 (the table includes variables correspond-
ing to the lower and upper levels). Note that TEMPprofilemold =
{TEMPfillingmold , Qmold,TEMPfinalmold}. To account for the compu-
tational expense of the simulations, the upper level EA is

executed for a maximum of 50 generations, while α
stop
l is set

to 1e−3. The remaining algorithmic specifications are kept
the same as in Sect. 4.

As is depicted in Fig. 7, the convergence trends (aver-
aged over three independent runs) of the M-BLEA are
considerably improved as compared to that of N-BLEA. The
impetus provided to the evolutionary search, as a by-product
of implicit genetic transfer in evolutionary multitasking, is
found to significantly cut down on the design time for this
complex engineering design problem. To elaborate, we find
that in achieving the upper level objective function target of
0.28, the M-BLEA saves approximately 65 % in wall-clock
time. This outcome highlights the utility of the proposed
methodology in the fast-paced practical settings of today
where one is faced with tight deadlines and stringent time
constraints.

Further, to confirm the robustness of the M-BLEA, we
present the final (optimized) upper level design variables
attained by both algorithms at termination, in each of the
three independent runs. The results are reported in Table 4.
As can be seen, both algorithms converge to more-or-less
the same design vector on each run, thereby verifying the
accuracy and repeatability of the proposed approach.

6 Conclusions

The significance of this paper lies in revealing the effec-
tiveness of the novel evolutionary multitasking paradigm as
a promising means to enhance the performance of bi-level

Table 4 Testing the robustness of the M-BLEA

Run number N-BLEA M-BLEA

TEMPfillingmold (K) Qmold (K/min) TEMPfinalmold (K) TEMPfillingmold (K) Qmold (K/min) TEMPfinalmold (K)

1 298.87 5.08 432.74 301.07 4.99 432.99

2 297.60 5.31 429.92 301.73 5.17 432.94

3 301.73 4.97 432.63 298.40 5.23 432.79

The table presents the optimum upper level design variables obtained from each of the three independent runs for the composites manufacturing
problem
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optimization. It is found that BLOPs provide a natural envi-
ronment wherein multiple (related) optimization tasks are
to be solved at the same time, thereby presenting the per-
fect platform for evolutionary multitasking to autonomously
harness the relationships between tasks through the process
of implicit genetic transfer. To this end, a recently proposed
evolutionary multitasking engine, labeled as a multifactor-
ial evolutionary algorithm (MFEA), has been merged into an
evolutionary bi-level optimizer. Several benchmark test func-
tions, and a real-world case study in complex engineering
design, demonstrate the efficiency of the multitasking par-
adigm in exploiting the underlying commonalities between
optimization tasks, thereby providing a significant impetus to
the evolutionary search. The numerical results indicate that
the proposed Multitasking bi-level evolutionary algorithm
(M-BLEA) successfully converges to high quality solutions
in significantly lesser number of lower level function eval-
uations (and implicitly in significantly lesser amount of
wall-clock time) as compared to the basic nested bi-level
evolutionary algorithm (N-BLEA) upon which it has been
built.

The present study has investigated the utility of the M-
BLEAin a real-world setting involving expensive simulation-
based function evaluations. With regard to future works, we
will focus on further improving the algorithm to tackle real-
time bi-level optimization problems, such as those occurring
in security games. One possible means of achieving further
speed up of the M-BLEA is the incorporation of quadratic
approximation models (or other surrogate modeling tech-
niques) at the lower level, instead of repeatedly having to
solve the lower level optimization task in an evolutionary
manner, as has very recently been proposed in [28].
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