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1 Introduction

The use of Polyakov loop models as a simplified effective description of the pure glue sector

of QCD at finite temperature has a long history. This is based on the expectation that,

around the deconfinement phase transition, the dynamics of Yang-Mills theory is governed

by the degrees of freedom which also constitute the order parameter for the global symmetry

breaking driving the transition. Once an appropriate model is at hand, it is easier to analyse

than the original theory, both with analytic methods or with numerical simulations. The

goal is to obtain an effective description of Yang-Mills theory and ultimately full QCD,

which would allow to determine the phase diagram and physical properties of QCD at

finite baryon density, where lattice QCD exhibits its sign problem. For a recent example

and references see [1]. In more recent approaches the aim is to actually derive the effective

Polyakov loop theory directly from Yang-Mills or QCD by perturbation theory [2], strong

coupling expansions [3] (see also [4], where the same method has been applied to large Nc),

Monte Carlo methods [5–8] or the functional renormalisation group [9].

The various techniques employed to construct the effective theory each have their ad-

vantages and disadvantages. Effective theories derived by weak or strong coupling methods

are only valid in the deconfined or confined phase, respectively, and thus are complementary.

Their advantage are analytic expressions between the effective and fundamental couplings,

which make for economic and flexible use of the effective theory to arrive at predictions.

The disadvantage is the systematic error introduced by truncating the expansions at finite
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order. Non-perturbative approaches, on the other hand, have the advantage to potentially

work at all couplings and to give a valid description on both sides of the phase transition.

However, in this case the couplings are only known numerically and have to be recomputed

for every change in the parameters of the original theory. Moreover, any particular form

of an effective action with a finite number of terms necessarily implies truncations in the

space of effective couplings, and an estimate of the implied systematic error is often more

difficult than in series expansions.

This paper is devoted to a study of the systematics of a three-dimensional effective

lattice action for Yang-Mills theory derived from the four-dimensional Wilson action by

the strong coupling expansion [3]. The one-coupling effective theory derived in that work

gives the correct prediction for the order of the SU(2), SU(3) deconfinement transitions as

well as the corresponding critical temperature Tc to about 10% accuracy in the continuum

limit. Here we extend the comparison between the effective and full theory to correlation

functions of Polyakov loops, i.e. the free energy of a static quark anti-quark pair, as well

as thermodynamic functions.

This work is organized as follows. In the next section we summarise the derivation

of the effective theory. It correctly reproduces all qualitative features and symmetries of

the full theory as the continuum is approached. We consider two classes of observables:

in section 3 correlation functions and the associated length or mass scales. We find that

they cannot be predicted accurately from a truncated effective theory, due to the inherent

sensitivity to long-range interactions. On the other hand, phase transitions and bulk ther-

modynamic quantities in section 4 are accurately reproduced by the leading local part of

the effective theory.

2 The effective lattice Polyakov loop theory

The effective lattice Polyakov loop theory is defined starting from Wilson’s lattice Yang-

Mills action on a N3
s × Nτ lattice by splitting the link integrations into a spatial and

temporal part,

Z =

∫

[dUµ]e
−SY M [U ] ≡

∫

[dW ] e−Seff[W ] ,

Seff [W ] = −
∞
∑

i=1

λ̄i(β,Nτ )Si[W ] . (2.1)

The individual terms in the effective action, Si[W ], depend on temporal Wilson lines,

W (x) =
∏Nτ

τ=1 U0(x, τ), or their traces, the Polyakov loops Li = tr[W (xi)], which are the

remaining integration variables in the path integral. Note that, without truncations, the

effective action is unique and exact. Since all spatial links, which are originally coupled by

nearest neighbour interactions, were integrated over, the effective action is of long-range

type, irrespective of the way it is determined. It contains interactions of Polyakov lines

at all distances, even a non-local form is allowed. Here we consider the case where the

Boltzmann factor is expanded in a strong coupling expansion so that all link integrations
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can be performed analytically. The leading terms in the infinite volume limit read

Seff [W ] = −
∑

<i,j>

ln(1 + 2λ1(β,Nτ )ReLiL
†
j)−

∑

[k,l]

ln(1 + 2λ2(β,Nτ )ReLkL
†
l )

−
∑

<<k,l>>

ln(1 + 2λ3(β,Nτ )ReLkL
†
l ) + . . . , (2.2)

where < ij > denotes all pairs of nearest neighbours in the first term, [kl] all pairs of

next-to-nearest neighbours with distance R/a =
√
2, and << kl >> all pairs with distance

R/a = 2. Without truncations, the action consists of infinitely many, generically not

bilinear, terms withWilson lines to all powers, all distances and in all representations, where

the latter are a remnant of our preferred computational method, the character expansion.

The higher representations can be converted back into products of the fundamental one,

i.e. we may choose to work solely with fundamental loops to arbitrary powers. Note that

in eq. (2.2) we have resummed higher powers of nearest neighbour interactions and next-

to-nearest neighbours into a logarithm. This summation of an infinite number of terms

redefines the couplings and improves the convergence behaviour, as discussed in detail in

section 4.

Using the strong coupling expansion, the terms in the effective action are naturally

ordered by the lowest power of β at which the corresponding effective coupling enters.

Usually we express the effective couplings in terms of the fundamental character expansion

coefficient u = u(β) = β/18+O(β2), which shows better convergence. The relation between

u and β can be computed to arbitrary precision, hence we can use them synonymously. A

complete list of the couplings used in this work is summarized in the appendix, eq. (A.1) and

eq. (A.2). As these expressions show, higher order couplings are parametrically suppressed

with growing Nτ , which corresponds to finer lattices at fixed temperature T = 1/(aNτ ).

Regardless of the truncation, the effective theory exhibits centre symmetry by con-

struction and its spontaneous breaking at finite temperature. In [3] it was found that

the theory truncated to the leading nearest neighbour interaction correctly predicts the

different orders of the deconfinement phase transition for SU(2) and SU(3). Moreover, its

predicted critical couplings for the phase transition agree with those from Monte Carlo

simulations of the full theory to better than 10% accuracy for a wide range of temporal

lattice sizes, Nτ ≤ 16, cf. table 1. With an appropriate scale setting by means of a known

4d beta-function [13], this permits the calculation of the deconfinement temperature Tc in

the continuum limit with similar accuracy [14]. In the following sections we investigate

the predictive power of the effective theory for correlation functions and bulk thermody-

namic quantities.

3 Polyakov loop correlators and static quark free energy

3.1 Two-point correlators

The spectrum of a theory is encoded in its correlation functions. A natural testing ground

for the effective action are thus Polyakov loop correlators. Their exponential decay repre-

– 3 –



J
H
E
P
0
3
(
2
0
1
4
)
0
3
9

Nτ λ1 (λ1, λ2) 4d YM

2 5.1839(2) 5.0174(4) 5.10(5)

3 5.8488(1) 5.7333(3) 5.55(1)

4 6.09871(7) 6.0523(1) 5.6925(2)

6 6.32625(4) 6.32399(3) 5.8941(5)

8 6.43045(3) 6.43033(2) 6.001(25)

10 6.49010(2) 6.49008(2) 6.160(7)

12 6.52875(2) 6.52874(1) 6.268(12)

14 6.55584(2) 6.55583(1) 6.4488(59)

16 6.57588(1) 6.57587(1) 6.5509(39)

Table 1. Critical couplings βc for SU(3) for the one- and two-coupling effective theories compared

to simulations of the 4d theory [10–12].
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Figure 1. Comparison of the Polyakov loop correlator between the one-coupling effective theory

and full Yang-Mills theory at β = 5.0 (left) and β = 5.4 (right). Both simulations were done on a

6× 123 lattice.

sents the (unrenormalised) free energy of a static quark anti-quark pair [15],

〈L(R)L†(0)〉 = e−F (R,T )/T . (3.1)

A direct comparison of on-axis correlators between the one-coupling effective theory and

full Yang-Mills is shown in figure 1 for two different values of the lattice coupling β. Note

that in the full Yang-Mills simulation an algorithm for exponential error reduction [16]

was employed, whereas the data for the effective theory have been obtained only with

the comparably small improvement of a multi-hit algorithm. Quantitative agreement is

observed for short lattice distances R/a = 0−2 for β = 5.0, while the effective theory data

still follow the general shape of the full correlator, but start to quantitatively deviate for

R/a ≥ 2 at the larger coupling β = 5.4.

Note that the correlators are systematically smaller, i.e. the corresponding free energies

are larger in the effective theory. This is shown in continuum units in figure 2, with

deviations increasing with distance. The off-axis correlators are also included in this figure.

These are a measure for the breaking of rotational invariance by the lattice discretisation,

which appears to be amplified in the effective theory compared to the full Yang-Mills theory.
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Figure 2. Free energy of a static quark-antiquark pair for full Yang-Mills and the effective theory

with one and two coupling constants at β = 5.0 (left) and β = 5.4 (right) on 123 × 6. This

comparison includes also off-axis correlators.
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Figure 3. Left: free energy for different values of λ1 in the effective theory on a 323 lattice. The

rotational invariance is restored at larger values of the coupling. Right: numerical simulations are

compared to analytic results of the small λ1 expansion, eq. (3.2).

This effect gets alleviated when also the next-to-nearest neighbour coupling is included in

the effective theory. However, the improvement is small because of the smallness of the

effective coupling, with values of λ2(β = 5.0) = 1.9 × 10−5 and λ2(β = 5.4) = 5.6 × 10−5,

when using its strong coupling expansion eq. (A.2). On the other hand, when the effective

coupling λ1 (or equivalently β) is raised, rotational invariance gets restored also in the one-

coupling theory, as figure 3 (left) illustrates, i.e. the effective action eventually reproduces

the continuum symmetries. In this regime of larger λ1 just below its critical value, which

corresponds to larger β and hence finer lattices, it is also possible to distinguish between a

linear part at large distances and a Coulomb part at short distances.

3.2 Weak coupling expansion in the effective theory

Because of the smallness of the effective couplings, it is natural to consider perturbation

theory for the effective action. Indeed, the correlator of Polyakov loops can be expressed

as a power series in the coupling truncated at Mλ1
,

〈L(R)L†(0)〉 ≈
Mλ1
∑

n=1

Nn(R/a)λ
ln(R/a)
1 . (3.2)
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R/a N1 l1 N2 l2 N3 l3 N4 l4

0 1 0 0 0 0 0 24 4

1 1 1 4 3 8 4 76 5

1.41421 2 2 18 4 12 5 316 6

1.73205 6 3 60 5 54 6 1128 7

2 1 2 12 4 8 5 240 6

2.23607 3 3 49 5 22 6 909 7

2.44949 12 4 178 6 98 7 3648 8

2.82843 6 4 148 6 44 7 2918 8

3 1 3 24 5 8 6 588 7

3.16228 4 4 108 6 30 7 2398 8

3.31662 20 5 444 7 158 8 10160 9

3.4641 90 6 1872 8 720 9 43236 10

3.60555 10 5 361 7 74 8 8253 9

3.74166 60 6 1524 8 472 9 36242 10

4 1 4 40 6 8 7 1260 8

Table 2. A table of the expansion coefficients of the correlation function eq. (3.2). Only the

shortest distances are listed in this table.

If the distance R/a is greater than zero, l1 is the “taxi-driver” distance on the lattice, i.e. the

minimal number of links connecting the two correlated points. The coefficient functions Nn

count the number of possible paths of length ln that connect the correlated points. They

have been estimated with a numerical algorithm and are summarized in table 2. Figure 3

(left) illustrates how for small values of λ1, i. e. at strong coupling, this analytic result fully

reproduces the numerical simulations of the effective model. With growing values of λ1

and larger distances, higher orders in the expansion become important. At the largest λ1

value shown in figure 3, which corresponds at Nτ = 4 to β ≈ 6, the fourth order expansion

is still a good approximation for the short distance correlation.

3.3 Effective T -dependent string tension

The linear part of the free energy corresponds to a temperature dependent effective string

tension, which arises from the Boltzmann average over the linear pieces of the excitations

of the static potential. This string tension decreases with λ1 (or β), which is tantamount

to increasing temperature at fixed Nτ , in accord with full Yang-Mills theory [17, 18]. To

make the comparison quantitative, we fit our correlator in continuum units with the same

ansatz used in [17] (details of the functional form are inspired by string models valid at

large distances),

F (R, T )

T
= v0 +

1

2
ln(1 + (2RT )2) +

[

π

12
− 1

6
arctan(2RT )

]

1

RT

+

[

σ(T )

T 2
− π

3
+

2

3
arctan

(

1

2RT

)]

RT . (3.3)
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Figure 4. Left: free energy from the effective one-coupling theory at T = 90%(Tc)eff on 323 × 4

compared to Yang-Mills theory. The error bars include a systematic error as the difference between

the O(u10) and O(u9) truncation of eq. (A.1). Right: effective temperature dependent string

tension. The Yang-Mills data is taken from [18].

At short distances R < T−1 the temperature effects disappear and the free energy is

dominated by its ground state, the static potential of the vacuum,

F (R, T )
R→0−→ V (R) = c1 +

c2
R

+ σR . (3.4)

Data from the effective theory close to the phase transition, T = 0.90Tc are shown in

figure 4 (left). They are well described by the finite temperature fit in the long distance

region while being also compatible with the corresponding vacuum fit function appropriate

for short distances. Thus, the qualitative features of the free energy of Yang-Mills theory are

reproduced. However, the numerical values for the temperature dependent string tension

for Nτ = 6 are significantly overestimated. A collection of fit results in comparison with

the full answer is shown in figure 4 (right). We see that on Nτ = 4 the results are closer

to the true answer and that the effective theory prediction seems to grow with Nτ .

This incorrect scaling behaviour of the effective string tension is an artefact of the one-

coupling theory. For all parirings (β,Nτ ) with constant effective coupling λ1(β,Nτ ) the

correlators as a function of distance in lattice units are the same. At large R this implies

that for two different Nτ with the same value of λ1 the string tensions are related by

(

σ(T1)

T 2
1

+
π

3

)

1

(Nτ )1
=

(

σ(T2)

T 2
2

+
π

3

)

1

(Nτ )2
, (3.5)

where the temperatures are determined by the corresponding Nτ and β. (The scale is set

such that T ((λ1)c) = Tc for all Nτ ). This forces the string tension to scale approximately

with Nτ in the region close to Tc. The solution is an effective theory with more than one

coupling constant. Then there is a critical (hyper-)surface and at each Nτ the phase tran-

sition can occur at a different values of the coupling constants. Our strong coupling result

for the next-to-nearest neighbour interaction alone is however too small for a significant

change of the string tension close to the phase transition.

One can understand qualitatively, why the value of the string tension cannot be cor-

rectly predicted by an effective theory with only a few couplings. We have already seen that
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the correlators are increasingly underestimated as the correlation distance in lattice units

grows. A fixed distance in physical units contains more and more lattice spacings as the

lattice gets finer. Correspondingly, the effective theory with a fixed number of couplings

covers an ever smaller contribution to the correlator at fixed distance correctly. While the

higher order couplings do become parametrically smaller ∼ unNτ+m, eq. (A.1), a rapidly

increasing number of them contributes to a correlator at distance R/a. Moreover, their

apparent suppression with Nτ cancels in the contribution to the free energy. This can be

demonstrated rather precisely by considering the strong coupling expansion of the vacuum

string tension, i.e. the limit Nτ → ∞ at fixed β. The expansion starting from the 4d

Yang-Mills theory is well known [19] (for a finite temperature version, see [20]),

a2σ|YM = − lnu− 4u4 − 12u5 + 10u6 +O(u7) (3.6)

On the other hand, expanding the 3d effective theory in powers of the effective coupling

constant λ1 we obtain from the on-axis correlator

a2σ|eff.th. = − 1

Nτ
ln(λ1)−

2λ1

Nτ
+ . . . = − lnu− 4u4 − 12u5 + 14u6 +O(u8) . (3.7)

Only the first two terms agree with the expansion of the full theory. Note how the Nτ -

dependence of λ1 is cancelled by an explicit Nτ -dependence, while the second term is, as

λ1 itself, exponentially suppressed for increasing Nτ . If we also include λ3, the coupling

for on-axis neighbours at distance R/a = 2, we obtain instead

a2σ|eff.th. = − 1

Nτ
ln(λ1)−

2λ2
1

Nτ
− λ3λ

−2
1

Nτ
+

1

2
(R/a−1)
∑

n=2

cnλ
n
3λ

−2n
1 . . .

= − lnu− 4u4 − 12u5 + 10u6 +O(u8) . (3.8)

The detailed form of the last term in the first line depends on whether R/a is even or odd,

but the number of terms in the sum scales with R/a. Because of the Nτ -dependence of

the couplings, the second term is less significant than the third one for larger Nτ . The

leading contribution of the third term is 4u6, such that the string tension is now correctly

reproduced through order u6. Correspondingly, the coefficients of higher orders receive

more and more contributions from long-range couplings.

We conclude that the long-range interactions may not be neglected in the computation

of correlation functions within the effective theory. Contrary to the effective couplings

themselves, their contribution to correlators are not suppressed by Nτ and without them

the coefficients of the strong coupling expansion of correlators are incomplete. While

we have used the strong coupling expansion to show this, we stress that the conclusion

is independent of the way the effective theory is determined or used, and in complete

agreement with the non-perturbative observations made in [7].

4 Thermodynamic potentials and phase transitions

4.1 The equation of state

In this section we test the description of bulk thermodynamic quantities by the effective

theory, which are all derived from the partition function directly. The fundamental ingre-
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dient to the equation of state is the free energy density in units of the temperature. In

homogeneous systems it is related to the pressure p as

f

T 4
=

−p

T 4
= − lnZ

V T 3
. (4.1)

For the correct renormalisation the divergent zero temperature part has to be subtracted.

In order to judge the quality of the effective theory, it is again instructive to consider

the strong coupling expansion for different versions of the action,

4d YM: f(u,Nτ ) = − 6

Nτ
u4Nτ + . . . , (4.2)

eff. theory, linear action: f(λ1(u,Nτ )) = − 3

Nτ
λ2
1 + . . . = − 3

Nτ
u2Nτ + . . . ,

eff.theory, log. action: f(λ1(u,Nτ )) = − 6

Nτ
λ4
1 + . . . = − 6

Nτ
u4Nτ + . . . .

Here the full action is the ordinary strong coupling expansion without the detour of the

effective theory [21, 22], the log. action corresponds to the first term of eq. (2.2) and the

linear action to its leading term in λ1 only. The explicit comparison reveals that the

resummation of higher power terms into the logarithm is necessary to correctly reproduce

the leading term of the full theory.

In a lattice simulation all expectation values are normalised on the partition function,

which thus cannot be calculated directly. The free energy density is computed indirectly

through its derivative with respect to the coupling constant β, which then has to be inte-

grated over [23–25],

f

T 4

∣

∣

∣

∣

β

β0

= −
∫ β

β0

dβ′∆S(β′) , (4.3)

with the interaction measure

∆S(β) =
1

T 4

(

T

V

d lnZ

dβ

∣

∣

∣

∣

T

− T

V

d lnZ

dβ

∣

∣

∣

∣

T=0

)

=
6N4

τ

Nc
(〈ReP 〉|T − 〈ReP 〉|T=0) . (4.4)

Thus, all information of the equation of state is encoded in ∆S. Computationally, this is a

simple subtraction of two plaquette (P ) expectation values averaged over all orientations

and volume. Finite temperature T and T = 0 are represented in terms of a Nτ ×N3
s and

a N4
s lattice with Ns = 4Nτ .

The strong coupling expansion for ∆S can be obtained from the series for the pres-

sure [3],

∆S = N4
τ

d(a4p)

dβ
= N4

τK(u,Nτ )
du

dβ
, (4.5)

where for Nτ = 2, 4 we have

K(u,Nτ = 4) = 24u15 + 1458u17 − 5643u18 + 9945u19 − 201285

4
u20

+
360638553

1024
u21 − 8627830587

10240
u22 +

6648458901

5120
u23 ,

K(u,Nτ = 2) = 24u7 + 270u9 − 1485u10 + 3315u11 − 4563

4
u12 +

126411873

5120
u13

− 221629365

2048
u14 +

648558969807

5242880
u15 . (4.6)
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This can be compared with the data of the effective Polyakov loop action and the full

theory. In the effective theory we compute

∆S(β) =
1

T 4

∑

n

(

T

V

d lnZ

dλn

dλn

du

∣

∣

∣

∣

{λn=λn[Nτ ,u]}

− T

V

d lnZ

dλn

dλn

du

∣

∣

∣

∣

{λn=λn[Ns,u]}

)

du

dβ
(4.7)

= 3N4
τ

(

1

Nτ
〈R1({λi})〉

dλ1

du

∣

∣

∣

∣

λ1=λ1[Nτ ,u]

− 1

Ns
〈R1({λi})〉

dλ1

du

∣

∣

∣

∣

λ1=λ1[Ns,u]

)

du

dβ

+3N4
τ

∑

n=2

(

1

Nτ
〈Rn({λi})〉

dλn

du

∣

∣

∣

∣

λi=λi[Nτ ,u]

− 1

Ns
〈Rn({λi})〉

dλn

du

∣

∣

∣

∣

λi=λi[Ns,u]

)

du

dβ
.

where all expectation values are calculated on a N3
s lattice and 〈Rn〉 = 1/(3N3

s )d lnZ/dλn.

In the one-coupling theory the last equation reduces to the first line with

R(λ1) =
1

3N3
s

∑

<i,j>

2Re(LiL
†
j)

1 + 2λ1Re(LiL
†
j)

. (4.8)

Again an expansion in the limit of small λ1 provides a good check of the results. The

expectation value of R has a simple form in this limit, where it is dominated by the

nearest-neighbour contribution between adjacent points (i, j) on the lattice,

〈R1(λ1)〉 ≈ 2
(

4λ3
1 + 44λ5

1 +O(λ6
1)
)

. (4.9)

In this approximation finite volume corrections have been neglected.

We can now appreciate the difference to the situation for the string tension. Com-

paring eqs. (4.7), (4.5), we see that they both have the same trivial N4
τ -dependence as a

prefactor. Any other dependence on Nτ in eq. (4.7) is contained in the λn. Once again

mixed polynomials in the λn are needed to reproduce higher coefficients of the 4d strong

coupling expansion, but the power counting in u can be based on that of the λn directly,

without cancellations of Nτ -dependences as in the case of the string tension. The reason

is that in the derivation of the effective theory the “observable” computed as a strong

coupling series is the effective action itself, and thus the partition function. These analytic

considerations are borne out by numerical simulations.

Unfortunately, the numerical determination of this quantity is quite difficult due to

large cancellations in the subtraction, which implies a small signal-to-noise ratio. Par-

ticularly in the region of strong coupling (small β), ∆S drops exponentially causing a

corresponding growth of the signal to noise ratio. For an overview and references, see [26].

It is then hard to bridge the gap between analytic strong coupling predictions [3] and sim-

ulations. In this regime the effective theory turns out to be very useful. Numerical results

for ∆S as a function of the gauge coupling are shown in figure 5 for 83 × 2 and 163 × 4

lattices. The data demonstrate the advantage of the effective theory. Due to the larger

statistics obtained in simple three dimensional simulations a much higher precision can be

achieved than in the full theory. This allows to extend the considered β-range towards

smaller values, in particular for higher Nτ where this is impossible in the full theory. This

– 10 –
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Figure 5. ∆S obtained in simulations of the full Yang-Mills theory and the effective theory. The

left panel shows a lattice size of 83 × 2 and 83 respectively; the right panel a lattice size of 163 × 4

and 163. A systematic error is included as the difference of the O(u9) and O(u10) truncation in

eq. (A.1). Also shown is the result of the small λ1 expansion and the strong coupling expansion [22].

corresponds to the region of lower temperatures. We observe excellent quantitative agree-

ment over a wide β-range. Deviations between full and effective theory predictions only

set in at the deconfinement phase transition, with βc < βeff
c , cf. table 1.

In figure 5 we also compare with the fully analytic results of the strong coupling

expansion and the expansion in small λ1 within the effective theory. In a large β-range the

small λ1 expansion gives an excellent description. This indicates that for bulk quantities the

short range interactions are dominant in the region well below the phase transition. Note

that the λ1-expansion is a much better approximation than the strong coupling series for

the pressure in [22]. These two results converge, of course, in the strong coupling limit. At

larger β the use of the effective theory entails non-perturbative resummations compared to

the straightforward strong coupling expansion, leading to an improved convergence towards

the full theory.

4.2 Validity of the effective action for thermodynamics and phase transitions

While the critical couplings for the deconfinement transtion, table 1, have already been

determined in [3], we would like to discuss here why the effective theory works so well for

this observable. In statistical mechanics, a standard observable to locate a phase boundary

is the generalised susceptibility of an observable O(x),

χO =

∫

d3x (〈O(x)O(0)〉 − 〈O(x)〉〈O(0)〉) . (4.10)

At a phase transition fluctuations are maximal, hence the peaks of susceptibilities define

(pseudo-) critical couplings, whose finite size scaling moreover contains information about

the order and universality class of the transition. The important observation is that, despite

the integration over all distances, eq. (4.10) is a local observable for any theory with a mass

gap. The correlators decay exponentially with distance,

〈O(x)O(0)〉 ∼
∑

n

c2ne
−En|x| , (4.11)

– 11 –
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with some energy eigenvalues En and matrix elements cn, such that the integral is domi-

nated by the contact and short distance contributions. Moreover, at phase transitions the

correlation length of a system either diverges (second order) or is maximal (first order and

crossover), which implies that any scales smaller than the correlation length play either no

or only a suppressed role. On the other hand, the behaviour of the correlation length is

dictated by the symmetries and dimensionality of the theory. A similar reasoning applies

for bulk thermodynamic quantities, which are derived from the partition function. The

non-trivial quantity to compute in this case is the action, which again is local in the sense

that couplings over larger distances are exponentially suppressed. Thus, a local effective

action with the correct symmetries is capable to provide a good description of bulk ther-

modynamic quantities as well as phase transitions, even though it might be inaccurate for

specific correlation functions or the spectrum of the theory.

5 Conclusions

We have systematically studied the predictive power of a three-dimensional effective

Polyakov loop theory for Yang-Mills on the lattice, which has been derived previously

by means of a strong coupling expansion. The effective theory has an infinite tower of

interactions, with coupling between loops at all distances, of which only the first few are

known analytically. Here we have tested the simplest version of the effective theory with

just one (resummed) nearest neighbour coupling. Generally the accuracy of effective theory

predictions depends on the observable where we distinguish to classes: observables char-

acterised by explicit length scales, such as correlation functions, and bulk thermodynamic

quantities based on the partition function or its local derivatives.

The description of correlation functions is found to be quantitatively accurate over

short lattice distances only, R/a ≈ 0 − 2. This is to be expected, since the number of

neglected couplings increases rapidly with distance and the long-range interactions in the

effective theory become increasingly important. The problem becomes more pronounced as

the lattice spacing gets finer. Correlation functions at larger distances turn out to be sys-

tematically underestimated in this particular effective theory, resulting in an overestimate

of the corresponding mass scales. In particular, the temperature dependent effective string

tension extracted from the free energy of a static quark anti-quark pair is significantly too

large close to the deconfinement transition.

On the other hand, bulk thermodynamic quantities like the equation of state and sus-

ceptibilities are quantitatively well described when approaching the deconfinement tran-

sition. This is because they are based on the partition function and thus the effective

action itself, which becomes ultra-local in the continuum limit. Thus the effective theory is

particularly useful for an economic determination of the phase structure of the underlying

full theory. Because of the numerical ease with which accurate results can be obtained, the

effective theory is superior for a description of the equation of state in the low temperature

regime. Finally, these conclusions should carry over to the effective action describing dy-

namical QCD, derived by means of a hopping expansion [14], and its application to finite

density phase transitions [27].
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A The couplings of the effective action

The nearest neighbour interaction is parametrized by the coefficient λ1. In this work we

have employed the following series,

λ1(u,Nτ = 2) = u2 exp

[

2

(

4u4 + 12u5 − 18u6 − 36u7

+
219

2
u8 +

1791

10
u9 +

830517

5120
u10 + . . .

)]

,

λ1(u,Nτ = 4) = u4 exp

[

4

(

4u4 + 12u5 − 14u6 − 36u7

+
295u8

2
+

1851u9

10
+

1035317u10

5120
+ . . .

)]

,

λ1(u,Nτ ≥ 6) = uNτ exp

[

Nτ

(

4u4 + 12u5 − 14u6 − 36u7

+
295

2
u8 +

1851

10
u9 +

1055797

5120
u10 + . . .

)]

. (A.1)

The coupling for next-to-nearest neighbours at distance R/a =
√
2 is

λ2(u,Nτ = 2) = u4
(

2u2 + 6u4 + 31u6 + . . .
)

,

λ2(u,Nτ = 4) = u8
(

12u2 + 26u4 + 364u6 + . . .
)

,

λ2(u,Nτ = 6) = u12
(

30u2 + 66u4 + . . .
)

, (A.2)

where the leading coefficient is given by Nτ (Nτ − 1) for all Nτ .

The next-to-nearest neighbour interactions at distance R/a = 2 is denoted by λ3 and

has the leading contribution

λ3(u,Nτ ) = 4Nτu
2Nτ+6 . (A.3)
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