Appl Intell (2015) 42:707-721
DOI 10.1007/s10489-014-0614-1

Updating mined class association rules for record insertion

Loan T. T. Nguyen - Ngoc-Thanh Nguyen

Published online: 13 December 2014

© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Mining class association rules is an interesting
problem in classification and prediction. Some recent stud-
ies have shown that using classifiers based on class associ-
ation rules resulted in higher accuracy than those obtained
by using other classification algorithms such as C4.5 and
ILA. Although many algorithms have been proposed for
mining class association rules, they were used for batch
processing. However, real-world datasets regularly change;
thus, updating a set of rules is challenging. This paper pro-
poses an incremental method for mining class association
rules when records are inserted into the dataset. Firstly, a
modified equivalence class rules tree (MECR-tree) is cre-
ated from the original dataset. When records are inserted,
nodes on the tree are updated by changing their information
including Obidset (a set of object identifiers containing the
node’s itemset), count, and pos. Secondly, the concept of
pre-large itemsets is applied to avoid re-scanning the origi-
nal dataset. Finally, a theorem is proposed to quickly prune
nodes that cannot generate rules in the tree update process.
Experimental results show that the proposed method is more
effective than mining entire original and inserted datasets.

Keywords CAR-Miner - Incremental dataset -
Class association rule - Pre-large itemset

L. T. T. Nguyen

Division of Knowledge and System Engineering for ICT and
Faculty of Information Technology, Ton Duc Thang University,
Ho Chi Minh, Vietnam

e-mail: nguyenthithuyloan @tdt.edu.vn; nthithuyloan @ gmail.com

L. T. T. Nguyen - N.-T. Nguyen (P<))

Department of Information Systems, Faculty of Computer Science
and Management, Wroclaw University of Technology,

Wroclaw, Poland

e-mail: Ngoc-Thanh.Nguyen@pwr.edu.pl

1 Introduction

Pattern mining has widely used applications in a lot of areas
such as association rule mining [4, 13, 18, 24], sequence
mining [19, 21], and others [3, 14]. Association rule min-
ing is to mine relationships among items in a transaction
database. An association rule has form X — Y inthat X, Y
are itemsets. A class association rule is an association rule
whose right hand side (Y) is a class label.

Class association rule mining was first proposed by
Liu et al. [12]. After that, a large number of meth-
ods related to this problem, such as Classification based
on Multiple Association Rules (CMAR) [10], Classifi-
cation based on Predictive Association Rules (CPAR)
[27], Multi-class, Multi-label Associative Classification
(MMAC) [20], ECR-CARM [23], and CAR-Miner [16]
have been proposed. Results of classification based on
association rule mining are often more accurate than
those obtained based on ILA and decision tree [9, 12,
22].

All above studies simply focused on solving the problem
of class association rule (CAR) mining based on batch
processing approaches. In reality, datasets typically change
due to operations such as addition, deletion, and update.
Algorithms for effectively mining CARs from incremental
datasets are thus required. The naive method is to re-run
the CAR mining algorithm on the updated dataset. The
original dataset is often very large, whereas the updated
portion is often small. Thus, this approach is not effective
because the entire dataset must be re-scanned. In addition,
previous mining results cannot be reused. There-
fore, an efficient algorithm for updating the mined
CARs when some rows are inserted into the orig-
inal dataset need to be developed to solve this
problem.

@ Springer

mailto:nguyenthithuyloan@tdt.edu.vn
mailto:nthithuyloan@gmail.com
mailto:Ngoc-Thanh.Nguyen@pwr.edu.pl

708

L. T. T. Nguyen, N.-T. Nguyen

This work focuses on solving the problem of CAR min-
ing from an incremental dataset (i.e., new records are added
to the original dataset).

Main contributions are as follows:

1. The CAR-Miner algorithm [16] is used to build the
MECR-tree for the original dataset.

The concept of pre-large itemsets (i.e. itemsets which
do not satisfy the minimum support threshold, but sat-
isfy the lower minimum support threshold) is applied to
avoid re-scanning the original dataset [5, 11].

2. When a new dataset is inserted, only information of
the nodes on the MECR-tree including Obidset, count,
and pos, need to be updated. During the update process,
nodes which are frequent or pre-large in the original
dataset but are not frequent in the updated dataset are
pruned by simply processing each node. However, this
task is time-consuming if many nodes on a given branch
of the tree need to be removed. Therefore, a theorem is
developed to eliminate such nodes.

The rest of the paper is organized as follows. Section 2
presents basic concepts of CAR mining. Section 3 presents
problems related to CAR mining and frequent itemset
mining from incremental datasets. Section 4 presents the
proposed algorithm while Section 5 provides an example
to illustrate its basic ideas. Section 6 shows experimental
results on some standard datasets. Conclusions and future
work are described in Section 7.

2 Basic concepts

Let D be a training dataset which includes n attributes
A1, A, ..., Ay and | D | objects. Let C = {c1, c2, ..., ck}
be a list of class labels in D. An itemset is a set of pairs,
denoted by {(A;1, ai1), (Ai2, a;2), ..., (Aim, aim)} , Where
Ajj is an attribute and ajj is a value of Aj;.

A class association rule r has the form {(Ajp, aj),
..., (Aim, aim)} — ¢, where {(Air, ai1), ..., (Aim, aim)} 15
an itemset and ¢ € C is a class label. The actual occur-
rence of rule r in D, denoted ActOcc(r), is the number
of records in D that match the left-hand side of r. The
support of a rule r, denoted Sup(r), is the number of
records in D that match r’s left-hand side and belong to r’s
class.

Object Identifier (OID): OID is an object identifier of a
record in D.

Example 1 Consider rule r = {(B,bl1)} — y from the
dataset shown in Table 1. ActOcc(r) = 3 and Sup(r) = 2
because there are three objects with B = bl, where 2
objects belong to y.

@ Springer

Table 1 Example of a training dataset

OID A B C class
1 al bl cl y

2 al bl c2 n

3 al b2 c2 n

4 al b3 c3 y

5 a2 b3 cl n

6 al b3 c3 y

7 a2 bl c3 y

8 a2 b2 c2 n
3 Related works

3.1 Mining class association rules

This section introduces existing algorithms for mining
CAREs in static datasets (Table 2), namely CBA [12], CMAR
[10], ECR-CARM [23], and CAR-Miner.

The first study of CAR mining was presented by [12].
The authors proposed CBA-RG, an Apriori-like algorithm,
for mining CARs. To build a classifier based on mined
CARs, an algorithm, named CBA-CB, was also proposed.
This algorithm is based on heuristic to select the strongest
rules to form a classifier. Li, Han, and Pei proposed a
method called CMAR in 2001 [10]. CMAR uses the FP-
tree to mine CARs and uses the CR-tree to store the set of
rules. The prediction of CMAR is based on multiple rules.
To predict a record with an unlabeled class, CMAR obtains
the set of rules R that satisfies that record and divides them
into [groups corresponding to / existing classes in R. A
weighted x2 is calculated for each group. The class with
the highest weighted x2 is selected and assigned to this
record. [20] proposed the MMAC method. MMAC uses
multiple labels for each rule and multiple classes for pre-
diction. Antonie and Zaiane proposed an approach which
uses both positive and negative rules to predict classes
of new samples [1]. Vo and Le [23] presented the ECR-
CARM algorithm for quickly mining CARs. CAR-Miner,
an improved version of ECR-CARM proposed by Nguyen
et al. in 2013 [16], has a significant improvement in exe-
cution time compared to ECR-CARM. Nguyen et al. [17]

Table 2 Summary of existing algorithms for mining CARs

Algorithm Year Approach

CBA 1998 Apriori-like

CMAR 2001 FP-tree structure-base
ECR-CARM 2008 Equivalence class rule tree
CAR-Miner 2013 Improved equivalence

class rule tree

Updating mined class association rules for record insertion

709

proposed a parallel algorithm for fast mining CARs. Sev-
eral methods for pruning and sorting rules have also been
proposed [10, 12, 15, 20, 23, 27].

These approaches are used for batch processing only;
i.e., they are executed on the integration of original and
inserted datasets. In reality, datasets often change via the
addition of new records, deletion of old records, or modifi-
cation of some records. Mining knowledge contained in the
updated dataset without re-using previously mined knowl-
edge is time-consuming, especially if the original dataset is
large. Mining rules from frequently changed datasets is thus
challenging problem.

3.2 Mining association rules from incremental datasets

One of the most frequent changes on a dataset is data inser-
tion. Integration datasets (from the original and inserted) for
mining CARs may have some difficulties of execution time
and storage space. Updating knowledge which has been
mined from the original dataset is an important issue to be
considered. This section reviews some methods relating to
frequent itemset mining from incremental datasets.

Cheung et al. [2] proposed the FUP (Fast UPdate) algo-
rithm. FUP is based on Apriori and DHP to find frequent
itemsets. The authors categorized an itemset in the original
and inserted datasets into two categories: frequent and infre-
quent. Thus, there are four cases to consider, as shown in
Table 3.

In cases 1 and 4, the original dataset does not need to
be considered to know whether an itemset is frequent or
infrequent in the updated dataset. For case 2, only the new
support count of an itemset in the inserted dataset needs to
be considered. In case 3, the original dataset must be re-
scanned to determine whether an itemset is frequent since
supports of infrequent itemsets are not stored.

Although FUP primarily uses the inserted data, the orig-
inal dataset is still re-scanned in case 3, which requires a
lot of effort and time for large original datasets. In addi-
tion, FUP uses both frequent and infrequent itemsets in the
inserted data, so it can be difficult to apply popular frequent
itemset mining algorithms. Thus, a large number of itemsets
must be mined for comparison with previously mined fre-
quent itemsets in the original dataset. In order to minimize

Table 3 Four cases of an itemset in the original and inserted datasets

(2]

the number of scans of the original dataset and the large
number of generated itemsets from the new data, Hong et al.
[5] proposed the concept of pre-large itemsets. A pre-large
itemset is an infrequent itemset, but its support is larger than
or equal to a lower support threshold. In the concept of pre-
large itemsets, two minimum support thresholds are used.
The first is upper minimum support Sy (is also the minimum
support threshold) and the second is the lower minimum
support Sp.. With these two minimum support thresholds,
an itemset is placed into one of three categories: frequent,
pre-large, and infrequent. Thus, there are 9 cases when
considering an itemset in 2 datasets (original and inserted),
as shown in Table 4.

To reduce the number of re-scans of the original dataset,
the authors proposed the following safe threshold formula
f (Q.e., if the number of added records does not exceed
the threshold, then the original dataset does not need to be
considered):

| Gy=SpxID]
f{ - S J W

where | D | is the number of records in the original dataset.

In 2009, Lin et al. proposed the Pre-FUFP algorithm for
mining frequent itemsets in a dataset by combining the FP-
tree and the pre-large concept [11]. They proposed an algo-
rithm that updates the FP-tree when a new dataset is inserted
using the safety threshold f. After the FP-tree is updated,
the FP-Growth algorithm is applied to mine frequent item-
sets in the whole FP-tree (created from the original dataset
and inserted data). The updated FP-tree contains the entire
resulting dataset, so this method does not reuse informa-
tion of previously mined frequent itemsets and thus has to
re-mine frequent itemsets from the FP-tree. Some effec-
tive methods for mining itemsets in incremental datasets
based on the pre-large concept have been proposed, such
as methods based on Trie [7] and the IT-tree [8], method

Table 4 Nine cases of an itemset in the original and inserted datasets
when using the pre-large concept

Case Original dataset — Updated

Inserted dataset dataset
1 frequent — frequent Frequent
2 frequent — infrequent frequent/infrequent
3 infrequent — frequent frequent/infrequent
4 infrequent — infrequent Infrequent

Case Original dataset — Updated
Inserted dataset dataset
1 frequent—frequent frequent
2 frequent—pre-large frequent/pre-large
3 frequent-infrequent frequent/pre-large/infrequent
4 pre-large—frequent frequent/pre-large
5 pre-large—pre-large pre-large
6 pre-large—infrequent pre-large/infrequent
7 infrequent—frequent scan the original dataset
to check the itemset
8 infrequent—pre-large infrequent/pre-large
9 infrequent—infrequent infrequent

@ Springer

710

L. T. T. Nguyen, N.-T. Nguyen

Table S Summary of algorithms for incremental mining

Algorithm Year Approach

FUP 1996 Apriori-based

Pre-large itemset 2001 Apriori-based and prelarge
concept

Pre-FUFP 2009 FP-tree-based and prelarge
concept

Pre-FUT 2011 Trie-based and prelarge
concept

Pre-FUIT 2012 IT-based and prelarge concept

Frequent closed 2013 Lattice and prelarge concept

itemset lattice

TMPFIL & DMPFIL 2014 Lattice and prelarge concept

for fast updating frequent itemset lattice [25], and method
for fast updating frequent closed itemset lattice [6, 26].
Summary of algorithms for incremental mining is shown in
Table 5.

4 A novel method for updating class association rules
in incremental dataset

Algorithms presented in Section 3.2 are applied for mining
frequent itemsets. It is difficult to modify them for the CAR
mining problem because they are simply applied to the 1%
phase of association rule mining (updating frequent itemsets
when new transactions are inserted into the dataset), with
the 2" phase still based on all frequent itemsets to generate
association rules.

Unlike association rule mining, CAR mining has only
one phase to calculate the information of nodes, in which
each node can generate only one rule whose support and
confidence satisfy thresholds. Updated information of each
node (related to Obidset, count, and pos) is much more
complex than information of an itemset (related to only the
support). This section presents a method that mines class
association rules based on the concept of pre-large itemsets.
The proposed method uses CAR-Miner to build the MECR-
tree in the original dataset with few modifications; the new
algorithm is called Modified-CAR-Miner (Fig. 1). The
MECR-tree is generated with the lower minimum support
threshold and then the safety threshold f is calculated using
(1). A function of tree traversal for generating rules satisfy-
ing the upper minimum support threshold is then built. The
number of rows of the inserted dataset is compared with the
safety threshold f. If the number of rows does not exceed
the safety threshold f, the tree is updated by changing the
information of nodes. Otherwise, Modified-CAR-Miner is
called to rebuild the entire tree based on the original dataset
and the inserted dataset. A theorem for pruning tree nodes

@ Springer

is also developed to reduce the execution time and storage
space of nodes.

4.1 Modified CAR-Miner algorithm for incremental mining

a) MECR-tree structure
Each node in the MECR-tree contains an itemset
(att, values) that includes the following information
[16]:

i. Obidset: a set of object identifiers containing the
itemset

ii. (#cl, #c2,, #ck): a set of integer numbers where

#c; is the number of objects that belong to class c;

iii. pos: an integer number that stores the position of

class c; such that #c; = .rrﬁv]((]{#c,-}, i.e., pos =
tell,
arg max{#c; }, the maximum position is underlined
ie[1,k]
in black.

More details about the MECR-tree can be
found in Nguyen et al. [16].

b) Modified CAR-Miner algorithm
Input: Original dataset D, two minimum support
thresholds S;y and Sz, and minimum confidence thresh-
old minConf
Output: Class association rules mined from D that
satisfy Sy and minConf

Figure 1 shows a modified version of CAR-Miner for
incremental mining. The main differences compared to
CAR-Miner are on lines 3, 19, and 22. When the proce-
dure GENERATE-CAR is called to genarate a rule (line
3), the input for this function must be Sy. Therefore, lines
22 and 24 consider whether the support and confidence of
the current node satisfy Sy and minConf, respectively. If the
conditions hold, a rule is generated (line 25). Line 19 con-
siders whether the support of a new node satisfies Si. If so,
this node is added into the tree.

4.2 Algorithm for updating the MECR-tree in incremental
datasets

Theorem 1 Given two nodes 1 and ly in the MECR-
tree, if 11 is a parent node of Iy and Sup(l, .itemset —
Ciy.pos) <minSup, then Sup (1> .itemset — ¢, ,,.) <minSup.

Proof Because [} is a parent node of [, it implies
that [j.itemset C [p.itemset = all Obidsets contain-
ing [j.itemset also contain Ip.itemset or [;.Obidset 2
1.0Obidset =Vi, |1 .count; >l .count; or max {[; . count; }fle
> max{lz.counti}ff:1:> Sup(ly .itemset — Cll.pm') >
Sup(lz .itemset — ¢, ,,,). Because Sup (/; .itemset —
Ciy pos) <minSup = Sup(ly .itemset — ¢, ,,.)<minSup.

O

Updating mined class association rules for record insertion

711

Fig.1 Modified CAR-Miner
algorithm for incremental

Modified-CAR-Miner(L,)

mining Begin
1. CARs=U;
2. forall /; € L,.children do
Begin
3. GENERATE-CAR(/;, Sy, minConf’)
4. P,=0;
5 for all /; € L,.children, with j > i do
6. if /;.att # [;.att then
Begin
T O.att = [i.att U /;.att;
8. O.values = [;.values U /;.values;
9. O.0bidset = [;.Obidset M [;.Obidset,
10. if |0.Obidset| = |I;.Obidset| then
Begin
11. O.count = /;.count;
12. 0.pos = [;.pos;
Endif
13. else if |0.Obidset| = |I;.Obidset| then
Begin
14. O.count = /.count;
15. 0.pos = [;.pos;
Endif
16. Else
Begin
17. O.count = {count(x € O.Obidset | class(x) = c;, Vie[1,k]};
18. O.pos = arg max{O.count ;}
ie[1,k]
19. if O.count[O.pos] > S| x |D| then
20. Pi = Pi W O
End
Endif
Endfor
21. Modified-CAR-Miner(P;);
End

GENERATE-CARC(/, Sy, minConf’)

Begin

22. if l.count[/.pos] > Sy * |D| then

23.
24.
25.
End

conf = [.count[/.pos] /|. Obidset|,
if conf > minConf" then

CARs = CARs U {Litemset — ¢, (.count[/.pos], conf)};

Based on Theorem 1, infrequent nodes from the MECR-
tree are pruned to reduce updating time.

Input: The MECR-tree built from original dataset D in
which L, is the root node, inserted dataset D’, two
minimum support thresholds Sy and Sy, and minConf

Output: Class association rules that satisfy Sy and min-
Conf from D + D’

Figure 2 shows the algorithm for updating the MECR-
tree when dataset D’ is inserted. Firstly, the algorithm
checks whether the MECR-tree was created by considering
the number of rows in the original dataset. If the number of
rows is 0 (line 1), it means that the tree was not created, so
Modified-CAR-Miner is called to create the MECR-tree

for dataset D’ (line 2) and the safety threshold f is com-
puted using (1) (line 3). If the number of rows in dataset
D’ is larger than the safety threshold f, then the algorithm
calls Modified-CAR-Miner to generate rules in the entire
dataset D+ D’ (lines 4 and 5), and then computes the safety
threshold f based on the integrated dataset D + D’ (line
6). If the number of rows in dataset D’ is not greater than
f, then the algorithm simply updates the MECR-tree as fol-
lows. First, all Obidsets of nodes on the tree (line 8) are
deleted to ensure that the algorithm works on the inserted
dataset only. Second, the UPDATE-TREE procedure with
root node L, is called to update the information of nodes
on the tree (line 9). Third, the procedure GENERATE-
RULES with L, is called to generate rules whose supports
and confidences satisfy Sy and minConf (line 10). The

@ Springer

712 L. T. T. Nguyen, N.-T. Nguyen

Fig. 2 Algorithm for updating
the MECR-tree for an
incremental dataset

Output: Class association rules that satisfy S, and minConf from D + D’
CAR-Incre()

Begin
1. if|D] = 0 then
Begin

2. Call the procedure Modified-CAR-Miner to mine CARs in D" using S;.
3. Compute /.{(S, ‘S:)X\”w

1-S.
Endif

4. elseif |D’| > fthen

Begin
5: Call the procedure Modified-CAR-Miner to mine CARs in D + D’ using S,.
6. Compute ,{_@_suw

) 1-S,

Endif
7. Else

Begin
8. Clear the Obidset of each node in the MECR-tree
9. Call the procedure UDATE-TREE to update the MECR-tree
10. Call the procedure GENERATE-RULE to generate CAR from the MECR-tree
1. J=1=1

End
12. D=D+D’
End

UPDATE-TREE(L,)

Begin

13. Update information of nodes in the first level of L, including Obidset, count, and pos and mark them
14. forall /; € L,.children do

15. if /; is not marked then
16. TRAVERSE-TREE-TO-CHECK(/));
17. else if /.count[/.pos] < S x (|D| + |D’|) then
18. DELETE-TREE(/); // by theorem I, delete /; and its child nodes
19. clse
20. for all / € L,.children, with j > i do
21. if /.att # [att and /; is marked then
Begin
22. Let O be a direct child node of /; and /;
if O has existed in the tree then

24. 0.0bidset = I, Obidset N I,.Obidset;
25. if |0.Obidset| > 0 then

Begin
26. Update O.count based on O.Obidset;
27. O.pos = argmax {O.count } ;

ie(1,k)

28. if O.count[O.pos] = S, x (|D| + |D’|) then
29. Mark O

Endif

Endif

30. UPDATE-TREE(L):
End

TRAVERSE-TREE-TO-CHECK(/)
Begin
31. if Lcount[lpos] < S x (|D| + |D’]) then
32. DELETE-TREE(/);

33. else
34. for all /; € l.children do
3s. TRAVERSE-TREE-TO-CHECK(/):
End
DELETE-TREE(/)
Begin

36. forall /; € l.children do
37. DELETE-TREE(/):
38. delete /;
End
GENERATE-RULES(L,, Sy, minConf')
Begin
39. forall/ € L,.children do
Begin

40. if .count[/.pos] = Sy, * |D| then
Begin

k
41. conf = /.count[/.pos] / Z[.Counl[i] ;
i=l
42, if conf > minConf then
43. CARs = CARs U {Litemset — ¢y (L.count[/pos], conf)}:
Endif
44, GENERATE-RULES(/, S, minConf):
Endfor
End

@ Springer

Updating mined class association rules for record insertion

713

Table 6 Inserted dataset

OID
9

A

al

class

bl c2

safety threshold f is reduced to f - |D’| (line 11). Finally,
the original dataset is supplemented by D’ (line 12).
Consider procedure UPDATE-TREE. First, this proce-
dure changes the information of nodes in the first level of
the MECR-tree whose itemsets are contained in the inserted
dataset and marks them (line 13). Line 15 checks whether
each child node /; of the root node L, is unmarked (i.e., it

Fig. 3 Results of
Modified-CAR-Miner with
Su=25%and S, =12.5%

(sa3iia)

is not changed from the original dataset). Its child nodes are
then checked using Theorem 1 (line 16). If the support of /;
does not satisfy St then /; and all its child nodes are deleted
by Theorem 1 (lines 17 and 18). Otherwise, /; is marked and
its support satisfies Sp. Then, information of Obidset, count,
and pos of all child nodes of /; is updated (lines 19-27). If
the support of O satisfies St , then it is marked (lines 28 and
29). After all the child nodes of /; have been checked, the
procedure UPDATE-TREE is recursively called to update
all child nodes of /; (line 30).

Consider procedure TRAVERSE-TREE-TO-CHECK.
This procedure checks whether the support of [satisfies

1 ((3.albl) (7,alblel)) |
: ({(152}’1{,1;;})] ({1}, 11,0}]
(1,at), e Bl
ki) KRR ;Uz;}f{z:?i:
{4.6}.{2.0}) :
! (5,alcl 1 [(7,a1b202), :
ihol] Bhloy)i
03} {o,é}jll '_E(_ic_szééi):_
(5,a1c3),)|: {4.,6},{2,0}
g_:f_]}’z_%’)(_’)ﬁ:'/* [(7,5]21)163), II:
(1,a2), g},{zlfz}) 7o});
8,}, {0’1} ’J\ ((7,a2b262), I:
53,a2b3),j 8,{0,1})|
és},{o,l} !
5,a2cl), (7,a2b3c1),)!

(2
2.

8},

g

{3

,bl),

(2

b2),

{O,z}J

le e e, e e ———————--

@ Springer

714

L. T. T. Nguyen, N.-T. Nguyen

Fig. 4 Results of updating level
1 of the MECR-tree

(1,02),

(1) (({@},{,,g})][({g(f’{;ff;)}[({g}’f;i)’;})][({g}’,’g,);}))[({g}j‘{’j}»][({ﬁi’{;f;)] (({g}lc{?{)»}
T

T

SL. If not, then [and all its child nodes are deleted using
Theorem 1. Otherwise, the child nodes of / are checked
in the same way as [and the procedure is called recur-
sively until there are no more nodes. Procedure DELETE-
TREE deletes this node with all its child nodes. Procedure
GENERATE-RULES checks each child node [of the root
node L, to generate a rule r, if the support of r satisfies min-
Sup (line 40), this procedure checks the confidence of r (line
42), if the confidence of r saisfies minConf then r is added
into the set of rules (CARs). After that, this procedure is
called recursively to generate all rules from the sub-tree /.

5 Example

Assume that the dataset in Table 1 is the original dataset and
the inserted dataset has one row, as shown in Table 6.

With Sy = 25 % and S = 12.5 %, the process
of creating and updating the MECR-tree is illustrated as
follows.

Figure 3 shows the results of Modified-CAR-Miner
obtained using St for the dataset in Table 1. Because 25 %
x8 = 2 and 12.5 % x8 = 1, nodes whose supports are
greater than or equal to 2 are frequent and those whose
supports are equal to 1 are pre-large. Consequently, nodes
enclosed by the dashed line contain pre-large itemsets.

The safety threshold f is computed as follows:

_ | 025-0.125x8 | _
f= {_1—0.25 J— L.

Fig. 5 Results obtained after
o (1,al)
considering node (((9},&,2}))

(P} {4.2))

T

[(1,amm c3), j

(f2}01.2)

T

Consider the inserted dataset. Because the number of
rows is 1, |D’|= 1 < f = 1, the algorithm updates the
information of nodes in the tree without re-scanning original
dataset D.

The process of updating the MECR-tree is as follows.
The first level of the MECR-tree is updated. The results are
shown in Fig. 4.

The new row (row 9) contains items (A4, al), (B, bl), and
(C, c2), so only three nodes in the MECR-tree are changed
(marked by T in Fig. 4).

(1,al),
{9}, {4.2
been changed, it needs to be checked with its following
nodes (only changed nodes) in the same level to update
information:

e Consider node [; = ((})) Because it has

@ b1),
), {3, 1})

created from these two nodes (after update)

is ((iz}flilé})l})) This node has count[pos]

=2> 8 x(8+1) = 1.125, so it is marked as a
changed node.

— With node [; = <(

— With node [; = < (), the node

@, c2),
), {1.3})

created from these two nodes (after update)

is ((g’}cfﬁ’z)z’})) This node has count[pos]

) , the node

4

v (25 0) (({@}, o })][({@}, el o) [({@}, 50)

T T

(v (i) (@timlosion (i (dorim)

T

@ Springer

T

Updating mined class association rules for record insertion

715

Fig. 6 Updated MECR-tree

[({S}T{QL})][({S;’;’?‘Z})][({g(i’{’;ff;)][({;2}’,’;02,)’2})}[({5}12}})j[({it{‘@’})][(g‘}’gﬂ;})]

T

ﬂ\‘ ' J x '
i dof ol oo) (dvom
T
(@rem)

=2 > 8 x(841) = 1.125, so it is marked as a
changed node.

Results obtained after considering node

(({(91}, a{14) »2})) are shown in Fig. 5.

. (1,al),)
After considering node ,
¢ (({9}, {4.2})
the algorithm is called recursively to update all
its child nodes.

(3,albl),

. Because
{9},{2,1})>
St x(8+1), it will check

(5,alc2),)

. The node cre-
0}, {1,2})
ated from these two nodes (after update)

is(Z’;;%?fﬂ;) This node is deleted

— Consider node((
count[pos] >

with node ((

because count[pos] = 1 <Sp, x(8+1). All its
child nodes are deleted because their supports
are smaller than S, x(8+1).

— Consider node ((%’}t’l 1{[8’2)1’})) Because
(3,alb2), .
count[pos] <Sp x(8+1), (({Qj}, {0’ l})) is

Table 7 Characteristics of experimental datasets

Dataset #of # of # of distinct # of itemsets
attributes classes values

Breast 11 2 737 699

German 21 1,077 1,000

Led7 8 10 24 3,200

Vehicle 19 1,434 846

Lymph 18 4 63 148

Chess 37 2 75 3,196

Poker-hand 11 10 95 1,000,000

deleted. All its child nodes are also deleted by

using Theorem 1.
(5,alcl),

). {1.0})

e Consider node(({g}’ a{21) 2})) This node is not
deleted. All its child nodes are deleted by checking
support and using Theorem 1.

Do the same process for nodes

{ ((2{(92}’;{13,’19) ((g(@z}’z,i{23,’z}))’ ((g%’fi&»)’
() ConPrap) Cam iop))

the MECR-tree after all updates is shown in Fig. 6.

The number of nodes in Fig. 6 is significantly less than
that in Fig. 3 (14 versus 33). The MECR-tree can thus be
efficiently updated.

Note that after the MECR-tree is updated, the safety
threshold f is decreased by 1 = f = 0, which means
that if a new dataset is inserted, then the algorithm re-
builds the MECR-tree for the original and inserted datasets.
D = D + D’ includes nine rows.

— Similarly, node (() is also deleted.

6 Experimental results

Experiments were conducted on a computer with an Intel
Core i3 2.53-GHz CPU and 2 GB of RAM running Win-
dows 7. Algorithms were coded in C# 2010.

Experimental datasets were obtained from the UCI
Machine Learning Repository (http://mlearn.ics.uci.edu).
Table 7 shows the characteristics of the experimental
datasets.

The experimental results from Figs. 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, to 20 show that CAR-Incre is
more efficient than CAR-Miner in most cases, especially in
large datasets or large minSup. Examples are Poker-hand (a
large number of records) or Chess (minSup is large).

@ Springer

http://mlearn.ics.uci.edu

716

L. T. T. Nguyen, N.-T. Nguyen

Fig. 7 Run times for
CAR-Miner and CAR-Incre for
Breast dataset (Sy = 1 %,SL =
0.9 %, 0.8 %, 0.7 %, 0.6 %,

0.5 %) for each inserted dataset
(two records for each insert)

Fig. 8 Total runtime for CAR-
Miner and CAR-Incre for Breast
dataset (Sy =1 %,S.. = 0.9 %,
0.8 %, 0.7 %, 0.6 %, 0.5 %)

Fig. 9 Run times for
CAR-Miner and CAR-Incre for
German dataset (Sy = 3 %,S5., =
2.8 %;2.6 %; 2.4 %; 2.2 %;

2.0 %) for each inserted dataset
(two rows for each insert)

@ Springer

—&— CAR-Miner

Time (s)
0.09 - Breast —#— CAR-Incre (SU=1, SL = 0.9)
0.08. —4— CAR-Incre (SU=1, SL = 0.8)
~<—CAR-Incre (SU=1, SL=10.7)
0.077 —s#— CAR-Incre (SU=1, SL = 0.6)
0.06 - CAR-Incre (SU=1, SL = 0.5)
0.05 -
0.04 |
0.03 -
0.02
0.01 |
0 *
687 689 691 693 695 697 699 Records
Time (s) Breast
0.4 -
0.35 -
0.3
0.25 -
0.2
0.15 -
0.1
0.05 -
0 ;
CAR-Miner CAR-Incre CAR-Incre CAR-Incre CAR-Incre CAR-Incre
(SU=3,SL=(SU=3,SL= (SU=3,SL= (SU=3,SL= (SU=3,SL=
2.8) 2.6) 2.4) 2.2) 2.0)
Time (s) —o— CAR-Miner
2 German —m—CAR-Incre (SU=3, SL = 2.8)
184 —a— CAR-Incre (SU=3, SL = 2.6)
164 CAR-Incre (SU=3, SL = 2.4)
14 CAR-Incre (SU=3, SL=2.2)
’ CAR-Incre (SU=3, SL = 2.0)
1.2 A
0.8 -
A 3 A\ '/A [\ A
0.6 - 7 / \
SWAAVAVAY ARV Y
0.2 4,—4‘ — < v o3 — ’V"
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
982 984 986 988 990 992 994 996 998 1000 Records

Updating mined class association rules for record insertion 717

Fig. 10 Total runtime for G
CAR-Miner and CAR-Incre for Time (s) erman
German dataset (Sy =

3 %,SL = 2.8 %; 2.6 %; 2.4 %; 77
2.2 %; 2.0 %) 6
5 -
4 -
3 -
2 -
1 -
0 T T T T T T
CAR-Miner CAR-Incre CAR-Incre CAR-Incre CAR-Incre CAR-Incre
(SU=3,SL= (SU=3,SL= (SU=3,SL= (SU=3,SL= (SU=3,SL=
2.8) 2.6) 2.4) 2.2) 2.0)
Fig. 11 Run times for Time (s) —o— CAR-Miner
CAR-Miner and CAR-Incre for - Lymph —8—CAR-Incre (SU=3, SL = 2.8)
g‘%mtg?zdgtz%(i‘%:;f’;L = —a— CAR-Incre (SU=3, SL = 2.6)
. 5 & 5 L 5 Lo N 6 - - -
2.0 %) for each inserted dataset CAR-Incre (SU=3, SL = 2.4)
(one record for each insert) 5 #—CAR-Incre (SU=3, SL=2.2)
—e— CAR-Incre (SU=3, SL = 2.0)
4 4

1 -
0
146 147 148 Records
Fig. 12 Total runtime for L h
CAR-Miner and CAR-Incre for Time (s) ymp
Lymph dataset (Sy =3 %, SL =
2.8 %; 2.6 %; 2.4 %; 2.2 %; 12 7
2.0 %) 10 -
8 4
6 4
4 4
2 4
0 T T T T T T
CAR-Miner CAR-Incre CAR-Incre CAR-Incre CAR-Incre CAR-Incre
(SU=3,SL= (SU=3,SL= (SU=3,SL= (SU=3,SL= (SU=3,SL=
2.8) 2.6) 2.4) 2.2) 2.0)
Fig. 13 Run time for Time (s) —o—CAR-Miner

CAR-Miner and CAR-Incre for 0.07 - Led?7 —m— CAR-Incre (SU=1, SL = 0.9)

Led7 dataset (Sy = 1 %,S1, =
CAR-Incre (SU=1, SL=0.8
0.9 %; 0.8 %; 0.7 %; 0.6 %; 0.06 - A (Su_l o 7)
0.5 %) for each inserted dataset Incre (SU=1, SL.=0.7)
(two records for each insert) 0.05 - CAR-Incre (SU=1, SL=0.6)
CAR-Incre (SU=1, SL = 0.5)
0.04 -|
0.03 -|
0.02 -
0.01 -
0 - T

3136 3144 3152 3160 3168 3176 3184 3192 Records

@ Springer

718

L. T. T. Nguyen, N.-T. Nguyen

Fig. 14 Total runtime for CAR-
Miner and CAR-Incre for Led7
dataset (Sy =1 %, S = 0.9 %;
0.8 %; 0.7 %; 0.6 %; 0.5 %)

Fig. 15 Run times for
CAR-Miner and CAR-Incre for
Vehicle dataset (Sy = 1 %,S51, =
0.9 %; 0.8 %; 0.7 %; 0.6 %;

0.5 %) for each inserted dataset
(two records for each insert)

Fig. 16 Total runtime for
CAR-Miner and CAR-Incre for
Vehicle dataset (Sy = 1 %,5.. =
0.9 %; 0.8 %; 0.7 %; 0.6 %;

0.5 %)

Fig. 17 Run times for
CAR-Miner and CAR-Incre for
Chess dataset (Sy = 60 %,S1, =
59 %; 58 %; 57 %; 56 %; 55 %)
for each inserted dataset (8
records for each insert)

@ Springer

Time (s) Led?
0.45 -

0.4

0.35 -

0.3

0.25

0.2

0.15 +

0.1

0.05

0 T T T T T

CAR-Miner CAR-Incre CAR-Incre CAR-Incre CAR-Incre CAR-Incre
(SU=1,SL=(SU=1,SL= (SU=1,SL= (SU=1,SL= (SU=1,SL=

0.9) 0.8) 0.7) 0.6) 0.5)
Time (s) . ~—&— CAR-Miner
03 Vehicle —=— CAR-Incre (SU=1, SL = 0.9)

—a— CAR-Incre (SU=1, SL = 0.8)
CAR-Incre (SU=1, SL=10.7)
CAR-Incre (SU=1, SL = 0.6)
CAR-Incre (SU=1, SL = 0.5)

0.25 -

0.2 -

0.15
0.1 -
0.05
0 |
831 833 835 837 839 841 843 845 846 Records
Time (s) Vehicle
14 -
1.2
1 -
0.8 -
0.6
0.4 -
0.2
0 T T . . .
CAR-Miner CAR-Incre CAR-Incre CAR-Incre CAR-Incre CAR-Incre
(Su=1,SL= (SU=1,SL= (SU=1,SL= (SU=1,SL= (SU=1,SL=
0.9) 0.8) 0.7) 0.6) 0.5)
Time (s) —&— CAR-Miner
95 - Chess —#—CAR-Incre (SU=60, SL = 59)
—#— CAR-Incre (SU=60, SL = 58)
2 - ‘\0—0———0\,‘/4\’\:_(_(:“*"““6 (SU=60, SL = 57)
CAR-Incre (SU=60, SL = 56)
s —e— CAR-Incre (SU=60, SL = 55)
1 -
0.5 -
0

3140 3148 3156 3164 3172 3180 3188 3196 Records

Updating mined class association rules for record insertion 719

Fig. 18 Total runtime for
CAR-Miner and CAR-Incre for Time (s) Chess
Chess dataset (Sy = 60 %,SL. =
59 %: 58 %: 57 %: 56 %; 55 %) 16
14
12
10 -
8 .
6 .
4 .
3 - > =»> D =

CAR-Miner CAR-Incre CAR-Incre CAR-Incre CAR-Incre CAR-Incre
(SU=60,SL=(SU=60,SL=(SU=60,SL= (SU=60,SL= (SU=60, SL =

59) 58) 57) 56) 55)

Fig. 19 Run time for Time (s) —+— CAR-Miner
CAR-Miner and CAR-Incre for 40 - Poker-hand —#— CAR-Incre (SU=3, SL = 2.8)
Poker-hand dataset (Sy = CARdIncre (SU=3, SL= 2.6)
3 %,SL = 2.8 %; 2.6 %; 2.4 %; 35 i
2.2 %; 2.0 %) for each inserted CAR-lncre (SU=3, 5L = 2.4)
dataset (2,000 records for each 304 CAR-Incre (SU=3, SL=2.2)
insert) 25] CAR-Incre (SU=3, SL = 2.0)

20

15 -

10 -

5 4

0- , o —

982000 984000 936000 988000 990000 992000 994000 996000 998000 1000000 Records

Fig. 20 Total runtime for
CAR-Miner and CAR-Incre for Time (s) Poker-hand
Poker-hand dataset (Sy = 350 -
3 %,S1, = 2.8 %; 2.6 %; 2.4 %;
2.2 %; 2.0 %) 300 -

250

200 -

150

100 -

T -

0

CAR-Miner CAR-Incre CAR-Incre CAR-Incre CAR-Incre CAR-Incre
(SU=3,SL= (SU=3,SL= (SU=3,SL= (SU=3,SL= (SU=3,SL=
2.8) 2.6) 2.4) 2.2) 2.0)

@ Springer

720

L. T. T. Nguyen, N.-T. Nguyen

6.1 The impact of number of records

CAR-Incre is very efficient when the number of records
in the original dataset is large. For example, consider
the Poker-hand dataset. Updating 2,000 data rows on the
MECR-tree built from 980,000 rows of the original dataset
takes about 0.09 seconds, and mining rules using the
batch process on 982,000 rows takes about 34 seconds
(Fig. 19). Figure 20 shows a comparison of total run time
of two algorithms (CAR-Miner and CAR-Incre) in some
St (Sy =3).

However, when we compare the run times of two
algorithms in a small dataset such as Lymph, we can
see that CAR-Miner is faster than CAR-Incre with all
thresholds.

6.2 The impact of S,

The most important issue in CAR-Incre is how to choose
a suitable Sp. If Sy is large then f must be small. In this
case, the algorithm needs to rescan the original dataset many
times, which is time-consuming. If St is small, many fre-
quent and pre-large itemsets are generated and the tree must
be updated. This is also very time-consuming. To the best of
our knowledge, there is not any method for choosing a suit-
able Sp, value. Therefore, we conducted experiments with
different Sy values to determine the influence of Sy, values
on the run time.

Consider Breast dataset with Sy = 1. The total time of
7 runs of CAR-Miner is 0.369s. We change S;, = {0.9, 0.8,
0.7, 0.6, 0.5} and the run times are {0.344, 0.390, 0.219,
0.202, 0.234}respectively, the best threshold is 0.6.

Consider German dataset with Sy = 3. The total
time of 10 runs of CAR-Miner is 6.5s. We change
S = {28, 2.6, 2.4, 2.2, 2.0}and the run times are
{6.147, 4.774, 4.274, 4.898, 4.368}respectively, the best
threshold is 2.4.

Similarly, the best threshold of Led7 is 0.5
(Sy = 1), that of Vehicle is 0.7 (Sy = 1), that of
Chess is 59 (Sy = 60), that of Poker-hand is 2.0
Sy =3).

6.3 The impact of minSup

The safety threshold f is proportional to minSup (Sy). If
minSup is large, safety threshold f is also large. There-
fore, the number of inserted records is small, we do not
need to rescan the original dataset; we update only infor-
mation of nodes on the tree with new data. For example,
consider Chess dataset with Sy = 60 %, and S; =
59 %. The original dataset is inserted eight times with eight
rows each time but the safety threshold f is still satisfied
(f = (0.6 —0.59) x 3132)/(1 — 0.6) = 78 records).

@ Springer

7 Conclusions and future work

This paper proposed a method for mining CARs from
incremental datasets. The proposed method has several
advantages:

— The MECR-tree structure is used to generate rules
quickly.

— The concept of pre-large itemsets is applied to CAR
mining to reduce the number of re-scans on the original
dataset.

— A theorem for quickly pruning infrequent nodes in the
tree is developed to improve the process of updating the
tree.

One of weaknesses of the proposed method is that it must re-
build the MECR-tree for the original and inserted datasets
when the number of rows in the inserted dataset is larger
than the safety threshold f. This approach is not appropri-
ate for large original datasets. Thus, the algorithm is being
improved to avoid re-scanning the original dataset. In addi-
tion, a lattice structure helps to identify redundant rules
quickly. It is possible to update the lattice when a dataset is
inserted will thus be studied in the future.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution License which permits any use, distribu-
tion, and reproduction in any medium, provided the original author(s)
and the source are credited.

References

1. Antonie ML, Zaiane OR (2004) An associative classifier based on
positive and negative rules. In: Proceedings of the 9th ACM SIG-
MOD workshop on research issues in data mining and knowledge
discovery, Paris, pp 64—69

2. Cheung DW, Han J, Ng VT, Wong CY (1996) Maintenance of dis-
covered association rules in large databases: An incremental updat-
ing approach. In: Proceedings of the twelfth IEEE international
conference on data engineering, New Orleans, pp 106-114

3. Duong TH, Nguyen NT, Jo GS (2010) Constructing and mining
a semantic-based academic social network. J Intell Fuzzy Syst
21(3):197-207

4. Grahne G, Zhu J (2005) Fast algorithms for frequent itemset min-
ing using fptrees. IEEE Trans Knowl Data Eng 17(10):1347-1362

5. Hong TP, Wang CY, Tao YH (2001) A new incremental data min-
ing algorithm using pre-large itemsets. Int Data Anal 5(2):111-
129

6. La PT, Le B, Vo B (2014) Incrementally building frequent closed
itemset lattice. Expert Syst Appl 41(6):2703-2712

7. Le TP, Hong TP, Vo B, Le B (2011) Incremental mining fre-
quent itemsets based on the trie structure and the prelarge itemsets.
In: Proceedings of the 2011 IEEE international conference on
granular computing, Kaohsiung, pp 369-373

8. Le TP, Hong TP, Vo B, Le B (2012) An efficient incremental min-
ing approach based on IT-tree. In: Proceedings of the 2012 IEEE

Updating mined class association rules for record insertion

721

10.

11.

12.

13.

15.

16.

17.

20.

21.

22.

23.

24.

25.

international conference on computing & communication tech-
nologies, research, innovation, and vision for the future, Ho Chi
Minh, pp 57-61

. Lee MS, Oh S (2014) Alternating decision tree algorithm for

assessing protein interaction reliability. Vietnam J Comput Sci
1(3):169-178

Li W, Han J, Pei J (2001) CMAR:Accurate and efficient classifi-
cation based on multiple class-association rules. In: Proceedings
of the Ist IEEE international conference on data mining, San Jose,
pp 369-376

Lin CW, Hong TP (2009) The Pre-FUFP algorithm for incremen-
tal mining. Expert Syst Appl 36(5):9498-9505

Liu B, Hsu W, Ma Y (1998) Integrating classification and asso-
ciation rule mining. In: Proceedings of the 4th international
conference on knowledge discovery and data mining, New York,
pp 80-86

Lucchese B, Orlando S, Perego R (2006) Fast and memory effi-
cient mining of frequent closed itemsets. IEEE Trans Knowl Data
Eng 18(1):21-36

. Nguyen NT (2000) Using consensus methods for solving conflicts

of data in distributed systems. In: Proceedings of SOFSEM 2000,
Lecture Notes in Computer Science 1963, pp 411-419

Nguyen TTL, Vo B, Hong TP, Thanh H. C (2012) Classification
based on association rules: a lattice-based approach. Expert Syst
Appl 39(13):11357-11366

Nguyen TTL, Vo B, Hong TP, Thanh H. C (2013) CAR-Miner: an
efficient algorithm for mining class-association rules. Expert Syst
Appl 40(6):2305-2311

Nguyen D, Vo B, Le B (2014) Efficient strategies for parallel min-
ing class association rules. Expert Syst Appl 41(10):4716-4729

. Pei J, Han J, Mao R (2000) CLOSET: An efficient algorithm

for mining frequent closed itemsets. In Proceedings of the 5th
ACM-SIGMOD workshop on research issues in data mining and
knowledge discovery, pp. 11-20

. Pham TT, Luo J, Hong TP, Vo B (2014) An efficient method

for mining non-redundant sequential rules using attributed prefix-
trees. Eng Appl Artif Intell 32:88-99

Thabtah F, Cowling P, Peng Y (2004) MMAC: a new multi-class,
multi-label associative classification approach. In: Proceedings of
the 4th IEEE international conference on data mining, Brighton,
pp 217-224

Van TT, Vo B, Le B (2014) IMSR _PreTree: an improved algorithm
for mining sequential rules based on the prefix-tree. Vietnam J
Comput Sci 1(2):97-105

Veloso A, Meira Jr. W, Goncalves M, Almeida HM, Zaki
MJ (2011) Calibrated lazy associative classification. Inf Sci
181(13):2656-2670

Vo B, Le B (2008) A novel classification algorithm based on
association rule mining. In: Proceedings of the 2008 pacific rim
knowledge acquisition workshop (Held with PRICAI’08), LNAI
5465, Ha Noi, pp 61-75

Vo B, Hong TP, Le B (2013) A lattice-based approach for mining
most generalization association rules. Knowl-Based Syst 45:20-
30

Vo B, Le T, Hong TP, Le B (2014) An effective approach for main-
tenance of pre-large-based frequent-itemset lattice in incremental
mining. Appl Intell 41(3):759-775

26.

217.

Yen SJ, Lee YS, Wang CK (2014) An efficient algorithm for incre-
mentally mining frequent closed itemsets. Appl Intell 40(4):649—
668

Yin X, Han J (2003) CPAR: Classification based on predictive
association rules. In: Proceedings of SIAM international confer-
ence on data mining (SDM’03), San Francisco, pp 331-335

Loan T. T. Nguyen is cur-
rently a PhD Student at
Institute of Informatics,
Wroclaw University of Tech-
nology, Poland. She received
BSc degree in 2002 from
University of Science, Viet-
nam National University of
Ho Chi Minh, Vietnam and
MSc in 2007 degree from
the University of Informa-
tion Technology, National
University of Ho Chi Minh,
Vietnam. Her research inter-
ests include association rules,
classification, and incremental
mining.

Ngoc Thanh Nguyen is cur-
rently a full professor of Wro-
claw University of Technol-
ogy, Poland, and is the chair of
Information Systems Depart-
ment in the Faculty of Com-
puter Science and Manage-
ment. His scientific interests
consist of knowledge integra-
tion methods, intelligent tech-
nologies for conflict resolu-
tion, inconsistent knowledge
processing, multiagent sys-
tems, collective intelligence
and E-learning methods. He
has edited 20 special issues in

international journals and 10 conference proceedings. He is the author
or editor of 14 books and more than 200 other publications. He is the
Editor-in-Chief of two international journals: “LNCS Transactions on
computational Collective Intelligence” and “International Journal of
Intelligent Information and Database”. He is the Associate Editor of 4
prestigious international journals and a member of Editorial Boards of
several other prestigious international journals. He is a Senior Mem-
ber of IEEE. Prof. Nguyen has been nominated by ACM of title
“Distinguished Scientist”.

@ Springer

	Updating mined class association rules for record insertion
	Abstract
	Introduction
	Basic concepts
	Related works
	Mining class association rules
	Mining association rules from incremental datasets

	A novel method for updating class association rules in incremental dataset
	Modified CAR-Miner algorithm for incremental mining
	Algorithm for updating the MECR-tree in incremental datasets

	Example
	Experimental results
	The impact of number of records
	The impact of SL
	The impact of minSup

	Conclusions and future work
	Open Access
	References

