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Abstract

Background: Multi-causality and heterogeneity of phenotypes and genotypes characterize complex diseases. In a
database with comprehensive collection of phenotypes and genotypes, we compared the performance of common
machine learning methods to generate mathematical models to predict diabetic kidney disease (DKD).

Methods: In a prospective cohort of type 2 diabetic patients, we selected 119 subjects with DKD and 554 without
DKD at enrolment and after a median follow-up period of 7.8 years for model training, testing and validation using
seven machine learning methods (partial least square regression, the classification and regression tree, the C5.0
decision tree, random forest, naïve Bayes classification, neural network and support vector machine). We used 17
clinical attributes and 70 single nucleotide polymorphisms (SNPs) of 54 candidate genes to build different models.
The top attributes selected by the best-performing models were then used to build models with performance
comparable to those using the entire dataset.

Results: Age, age of diagnosis, systolic blood pressure and genetic polymorphisms of uteroglobin and lipid
metabolism were selected by most methods. Models generated by support vector machine (svmRadial) and
random forest (cforest) had the best prediction accuracy whereas models derived from naïve Bayes classifier and
partial least squares regression had the least optimal performance. Using 10 clinical attributes (systolic and diastolic
blood pressure, age, age of diagnosis, triglyceride, white blood cell count, total cholesterol, waist to hip ratio, LDL
cholesterol, and alcohol intake) and 5 genetic attributes (UGB G38A, LIPC -514C > T, APOB Thr71Ile, APOC3 3206T >
G and APOC3 1100C > T), selected most often by SVM and cforest, we were able to build high-performance models.

Conclusions: Amongst different machine learning methods, svmRadial and cforest had the best performance.
Genetic polymorphisms related to inflammation and lipid metabolism warrant further investigation for their
associations with DKD.
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Background
The prevalence of diabetic kidney disease (DKD) is ris-
ing in parallel to the growing epidemic of type 2 diabetes
and obesity in both developing and industrialized soci-
eties [1]. The development of DKD is due to complex in-
teractions between multiple modifiable risk factors such
as hypertension, hyperglycaemia and dyslipidaemia and
genetic variants [2]. Recent genome wide association
studies (GWAS) have uncovered novel loci for complex
traits such as type 1 diabetic nephropathy with odds ra-
tio of 1.1-1.2 [3]. While there are ongoing efforts to dis-
cover genomic structural and regulatory variations to
explain the heritability of these complex traits [4], other
researchers argued that for common diseases due to
common variants, as few as 20 loci may explain 50% of
the population attributable risk. The challenge lies in un-
raveling the nature of these gene-gene interactions and
their impacts on phenotypes and clinical outcomes [5].
In this post-GWAS era, in addition to conventional

statistical methods such as chi-square test or logistic re-
gression, machine learning methods are other tools
which can be used to identify novel relationships be-
tween genetic variations and disease susceptibility [6-8].
These computational applications enable researchers to
uncover hidden patterns, reclassify data and present
their inter-relationships in an understandable way for
decision making. However, the applicability and utility of
these computational tools in common diseases such as
type 2 diabetes have not been fully explored and utilized.
We applied seven machine learning methods to a com-
prehensive database with detailed phenotypes and geno-
types of candidate genes for vasculopathy to identify
optimal combinations of clinical and/or genetic factors
predictive of DKD. These seven machine learning
methods included two decision trees (the classification
and regression tree and the C5.0 decision tree), random
forest, naïve Bayes classifier, neural network, partial least
squares regression and support vector machine.

Methods
Subjects
Between 1st July 1994 and 30th June of 1998, a consecu-
tive cohort of 1,386 Chinese patients with type 2 dia-
betes were enrolled into the Hong Kong Diabetes
Registry with documentation of risk factors, complica-
tions, drug use and clinical outcomes. None of the pa-
tients had history of unprovoked ketosis and did not
require insulin within the first year of diagnosis. The
study protocol was approved by the Clinical Research
Ethics Committee of the Chinese University of Hong
Kong. All patients gave written informed consent and
donated their clinical data and DNA for research and
publication purposes. Declaration of Helsinki was ad-
hered to in the study.
Clinical assessment and laboratory assay
All patients underwent a structured 4-hour clinical and
biochemical assessment, details of which have been de-
scribed [9]. In brief, anthropometric measurements and
blood pressure (BP) were obtained. Drug use and past
medical history pertaining to vascular diseases were
documented. Physical assessment for retinopathy, sensory
neuropathy and peripheral arterial disease was performed
using standard methodologies. Fasting blood samples for
plasma glucose, glycated hemoglobin, lipid profile and
renal function, as well as a random spot urine sample for
albumin to creatinine ratio (ACR) were collected. Esti-
mated glomerular filtration rate (eGFR) was calculated
using the Chinese-modified Modification of Diet in Renal
Disease equation [10]. Diabetic kidney disease was defined
as eGFR less than 60 ml/min/1.73 m2 [11]. All patients
were censored on 30th July 2005. Data were retrieved from
the Hospital Authority Central Computer System, using
the Hong Kong Identity Card number, which is compul-
sory for all residents in Hong Kong.

Genotyping
Genotyping was performed using line arrays from Roche
Molecular Systems comprising 107 single nucleotide poly-
morphisms (SNPs) in 65 candidate genes related to lipid
and homocysteine metabolism, inflammation, thrombosis,
endothelial function, stress and natriuretic responses. The
selection of these genes was based on published studies on
their biological plausibility and risk associations with car-
diovascular diseases, immune response and inflamma-
tion [12,13] (http://www.ncbi.nlm.nih.gov/gene?term=gene,
accessed 1 June 2007). In addition, we genotyped the ALR2
(aldose reductase) polymorphisms based on known associ-
ation between this genetic variant and DKD. The method
for genotyping of the ALR2 polymorphism has been de-
scribed [14]. Genotype call rate, Hardy-Weinberg equilib-
rium and minor allele frequency for each SNP was assessed
using PLINK (V.0.99, http://pngu.mgh.harvard.edu/~pur-
cell/plink/download.shtml) in the study population. After
excluding SNPs with call rate less than 95%, P value < 0.05
for Hardy-Weinberg equilibrium and/or minor allele fre-
quency < 0.01, 79 SNPs of 55 genes were included in the
present analysis. Full details of these SNPs are available in
Additional file 1.

Patient selection
From the cohort of 1,386 type 2 diabetic patients, we ex-
cluded 500 patients due to missing eGFR at baseline or
end of follow-up. Those who had normal renal function
at baseline but progressed to develop DKD (n = 80) and
those who had DKD at baseline but then regressed to
have normal renal function (n = 6) were excluded. To
reduce confounding effects due to patients with incon-
clusive renal status, we only included patients with
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consistent eGFR at baseline and end of follow-up, i.e.
less than 55 ml/min/1.73 m2 for DKD (n = 119) or more
than 65 ml/min/1.73 m2 for non-DKD (n = 554).

Selection of variables
We removed parameters indicative of renal function to
discover novel predictors. These included urinary ACR
and serum creatinine at baseline. We also excluded drug
data due to confounding effects of drug indications, i.e.
patients with more risk factors were more likely to need
treatment. For variables with close inter-correlations, we
only selected one of them for analysis. Finally, we excluded
variables with zero- or near zero-variance, leaving 87 (17
clinical and 70 SNPs of 54 candidate genes) attributes for
model development. These attributes were then grouped
into three categories for input into various machine learn-
ing programs: 1) clinical and genetic attributes; 2) genetic
attributes only; and 3) clinical attributes only.

Imputation of missing values and handling of imbalanced
data
We imputed the missing values by exploring similarities be-
tween cases. Firstly, we identified the 10 most similar cases
and calculated the Euclidean distance between the values of
cases and used the median value to impute the missing
value. To adjust for class imbalance, we applied the Syn-
thetic Minority Over-sampling Technique, which generated
new examples of the minority class (those with DKD) using
the nearest neighbors of these cases and under-sampled the
majority class examples (those without DKD) [15].

Statistical analysis
All statistical analyses were performed using the SPSS Statis-
tics 17.0 (SPSS Inc. Chicago) unless otherwise specified. The
clinical data were expressed as median (inter-quartile range,
IQR) or percentages. The Mann–Whitney Two-Sample test
and Chi-square test were used as appropriate. A P value less
than 0.05 (2-tailed) was considered significant.

Model training and parameter tuning
We applied and compared the following machine learning
methods: partial least square regression, the classification
and regression tree, the C5.0 decision tree, random forest,
naïve Bayes classification, neural network and support vec-
tor machine. All the machine learning methods were
performed under the R computing environment. The de-
tails of package versions and parameters used for each ma-
chine learning method were described in Additional file 2.
Seventy-five percent of the data were partitioned into

the training set and the remaining, into the testing set.
For each machine learning method, ten sets of parame-
ters were tested. For each set of parameters, 10-fold
cross validation was performed to obtain an average
value of the performance across hold-out predictions.
Receiver operator curve (ROC) analysis was used to se-
lect the optimal model using the largest value of area
under the curve (AUC). We then estimated the perform-
ance of the trained models by subjecting them to the
testing dataset to predict DKD. The machine learning
methods with the best performance were then used in a
second stage to select a subset of important variables to
develop models with performance comparable to that
using the entire dataset. In ranking the importance of
variable, we adopted the conditional importance in ran-
dom forest [16] and Variance Importance in Projection
in Partial Least Squares [17], to avoid bias generated due
to use of predictor variables with different scales and
variable collinearity in our dataset. For the other ma-
chine learning methods, the default variable importance
specified in the caret package (5.15-0.52) was adopted.

Results
In this prospective cohort of 673 patients with type 2 dia-
betes, 41.2% were male, the median age was 57 (IQR: 48 to
65) years and the median duration of diabetes was 9 (IQR 3
to 13) years. Compared to patients without DKD, patients
who had DKD were older and more obese. They also had
higher BP, urinary ACR and worse lipid profile and were
more likely to be treated with angiotensin converting en-
zyme inhibitors (ACEI) or angiotensin receptor blockers
(ARB), anti-hypertensive drugs, lipid lowering drugs and in-
sulin at baseline (Table 1). After a median follow-up period
of 7.8 (IQR: 5.2 to 9.2) years, median eGFR was 38.0 (IQR:
27.0 to 48.9) and 119.9 (IQR: 101.7 to 138.1) ml/min/ 1.73
m2 for patients with DKD and those without DKD, respect-
ively. The Additional file 3 compares the data at baseline
and end of follow up between patients included and ex-
cluded from the analysis due to incomplete phenotypes.
The excluded patients were older, had shorter duration of
diabetes, higher LDL cholesterol, total cholesterol (TC),
urinary ACR and lower eGFR than included patients.
If we included urinary ACR and serum creatinine in the

model building process, all machine learning methods pre-
dicted correctly (i.e. accuracy = 1). All models had compar-
able performance if drug treatments were included in the
dataset. Therefore, we excluded these attributes to identify
subjects with hidden patterns for early intervention. We
compared the performance of different machine learning
methods using different sub-groups of attributes: 1) clinical
and genetic; 2) genetic only; 3) clinical only (Figure 1).
Naïve Bayes classification (nb) and partial least squares re-
gression (pls) had the least optimal performance in the
training stage. In general, support vector machine
(svmRadial) and random forest (cforest), followed by Neural
network (nnet) had the best performance for all sub-groups
of attributes. svmRadial was least sensitive to parameter
tuning and maintained good performance during data
cross-validation.



Table 1 Baseline characteristics of 673 Chinese patients with type 2 diabetes stratified by the onset of diabetic kidney
disease (DKD) after a median follow up period of 8 years

Subjects without DKD at
baseline and 8 year

Subjects with DKD at
baseline and 8-year

P value

Number 554 119

Clinical features

Age (years) 56 64 <0.001b

(47 to 63) (58 to 69)

Male sex 39.7% (220) 47.9% (57) 0.100a

Age of onset (years) 45 53 <0.001b

(38–55) (45–60)

Duration of diabetes (years) 9 10 0.032b

(2 to 13) (6 to 13)

Smoking 0.003a

Ex smokers 31.8% (176) 20.2% (24)

Current smokers 9.7% (54) 20.2% (24)

BMI (kg/m2) 24.7 25.2 0.160b

(22.3 to 27.0) (22.7 to 27.2)

Waist circumference (cm) Men 88.0 89.0 0.325b

(83.0 to 92.8) (84.0 to 96.0)

Waist circumference (cm) Women 83.0 85.0 0.109b

(77.0 to 89.0) (77.8 to 93.0)

Waist to hip ratio 0.88 0.91 <0.001b

(0.84 to 0.92) (0.87 to 0.96)

Systolic BP (mmHg) 132 156 <0.001b

(120 to 145) (140 to 171)

Diastolic BP (mmHg) 77 83 <0.001b

(70 to 85) (76 to 93)

Laboratory data

HbA1c (%) 7.5 7.6 0.919b

(6.7 to 8.7) (6.6 to 8.8)

Fasting plasma glucose (mmol/L) 7.9 8.3 0.849b

(6.5 to 10.5) (6.2 to 10.1)

LDL cholesterol (mmol/L) 3.20 3.70 0.008b

(2.70 to 3.90) (2.80 to 4.38)

HDL cholesterol (mmol/L) 1.20 1.11 <0.001b

(1.00 to 1.50) (0.90 to 1.40)

Triglyceride (mmol/L) 1.25 1.87 <0.001b

(0.87 to 1.95) (1.14 to 2.55)

Total cholesterol (mmol/L) 5.3 5.7 0.001b

(4.6 to 6.0) (4.8 to 6.7)

White blood cell count (×109/L) 7.0 7.7 <0.001b

(5.8 to 8.3) (6.8 to 9.1)

ACR (mg/mmol) 1.5 245.6 <0.001b

(0.8 to 4.7) (81.5 to 423.4)

eGFR (ml/min/ 1.73 m2) 119.9 38.0 <0.001b

(101.7 to 138.1) (27.0 to 48.9)
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Table 1 Baseline characteristics of 673 Chinese patients with type 2 diabetes stratified by the onset of diabetic kidney
disease (DKD) after a median follow up period of 8 years (Continued)

Drug use at baseline

Lipid lowering drugs 5.4% (30) 23.5% (28) <0.001a

ACEI/ARB 6.1% (34) 28.6% (34) <0.001a

Other blood pressure lowering drugs 21.3% (118) 63.9% (76) <0.001a

Oral blood glucose lowering drugs 53.2% (295) 36.1% (43) 0.001a

Insulin 16.8% (93) 39.5% (47) <0.001a

a Derived from Chi-square text, % (N);b Mann–Whitney Two-Sample Test, Median (25th to 75th quartiles).
Abbreviation: BMI, body mass index; HbA1c, glycated hemoglobin; HDL, high density lipoprotein; LDL, low density lipoprotein.
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When applying the best fit models to the testing data,
svmRadial and cforest outperformed the other machine
learning methods (Figure 2). If we only used genetic at-
tributes, nnet slightly performed better than cforest.
Some machine learning methods were more selective in
their input variables, e.g. pls had better performance
when a larger number of attributes were available for
model building and prediction. While nnet could not
achieve comparable performance without genetic attri-
butes, nb could not do so without clinical attributes.
Except for C5.0 Tree, clinical factors were preferentially

selected for model building (Additional file 4, Figure A)
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Figure 1 Ten-fold cross-validation predictive performance by different ma
A) clinical and genetic attributes, B) genetic-only attributes, C) clinical-only
basis kernel function, rpart: recursive partitioning and regression trees, nnet: feed-
classifier, cforest: random forest utilizing conditional inference trees as base learne
and accounted for most of the variance of DKD. In particu-
lar, systolic BP and age were the two most important
variables in models using clinical factors alone or in
combination with genetic factors. For the genetic variants,
polymorphisms of genes encoding uteroglobin (UGB
G38A), hepatic lipase (LIPC -514C >T) and apolipoprotein
B (APOB Thr71Ile) were most preferentially selected for
model building (Additional file 4).
Since svmRadial and cforest had the best prediction

performance, we were interested in identifying a smaller
set of clinical and/or genetic attributes to build models
with performance similar to that using all 87 attributes.
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Figure 2 Prediction accuracy by different machine learning methods in the DKD training and testing datasets using A) clinical and
gene attributes, B) genetic-only attributes, C) clinical-only attributes. Circles in pink and blue represent prediction accuracy using training
and testing data respectively.
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To avoid bias from a single machine learning method, we
first extracted the top 20 ranking attributes in all three sub-
groups of “genetic”, “clinical” and “both” factors from the
svmRadial and cforest models. We then selected the vari-
ables that appeared in the lists of “genetic” and “both” as
well as that of “clinical” and “both” for each models. Finally,
we selected variables which appeared in both the svmRadial
and cforest models which yielded 15 attributes in total. To
give an example, in the cforest model, TC was ranked the
7th in the genetic + clinical model as well as the clinical
model. In the svmRadial model, TC was ranked the 6th in
the genetic + clinical model and the 9th in the clinical model
and thus TC was used to build the most optimal model.
Using this strategy, we identified 10 clinical attributes

(systolic BP, age, age of diagnosis, triglyceride [TG],
white blood cell count [WBC], TC, waist to hip ratio
[WHR], LDL cholesterol [LDL], diastolic BP and alcohol
intake) and 5 genetic attributes (UGB G38A, LIPC -
514C > T, APOB Thr71Ile, APOC3 3206T >G and
APOC3 1100C > T) to build the final models (Figure 3).
With this smaller number of attributes, there was a
slight drop in accurarcy for the cforest (Figure 3A), while
svmRadial maintained its prediction accuracy.

Discussion
In this 8-year prospective cohort of 1386 type 2 diabetic
patients, after excluding well known parameters predictive
of DKD including urinary ACR, serum creatinine and drug
use, we selected 673 patients with 17 clinical and 70 gen-
etic attributes and performed extensive analyses using
seven popular machine learning methods. Age, age of diag-
nosis, systolic BP and polymorphisms of genes implicated
in inflammation and lipid metabolism were most fre-
quently selected by all machine learning methods. Using
10-fold cross validation for parameter optimization and
resampling analysis for evaluation, support vector machine
and random forest outperformed the other machine learn-
ing methods. Using the best predictors from these two
models, we were able to select 10 clinical and 5 genetic at-
tributes to predict DKD.
One objective of the study was to compare the per-

formance of different machine learning methods. We
used two tree-based models (recursive partitioning/re-
gression trees and C5.0 decision tree) to explore the
structure of the dataset which only showed average per-
formance. Random forest performed better than the two
tree methods, but required long computation time
probably due to the generation of a large number of
bootstrapped trees for decision making. Naïve Bayes
classifier had the largest variations in performance even
during the training stage, indicating that this method
was highly sensitive to data input. Neural network had
excellent prediction accuracy comparable to those of
support vector machine and random forest, but this was
not maintained when only clinical attributes were in-
cluded. Support vector machine was the best performing



Figure 3 Prediction performance by support vector machine (svmRadial) and random forest (cforest) using 10 and 5 most frequently
selected clinical and genetic attributes respectively. A) prediction accuracy in the DKD training and testing datasets, B) ranking of importance
of attributes based on svmRadial, C) ranking of importance of attributes based on cforest.
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machine learning method using clinical, genetic or both at-
tributes. The contrast between the performance of neural
network and support vector machine using clinical attri-
butes suggested that clinical attributes might generate opti-
mal solutions detected only by a specific method.
With rapid advancement of molecular technology, large

datasets containing many genotypes and phenotypes are
now available. However, there are major challenges in syn-
thesizing these discoveries and translating them to clinical
practice. Thus, our second objective was to determine the
best combination of genetic and clinical attributes to pre-
dict DKD. Indeed, all machine learning methods preferen-
tially selected clinical, notably, age, age of diagnosis and
systolic BP, over genetic attributes for model building.
These findings suggested at least in subjects with pheno-
types predictive of DKD, the predictive value of genetic fac-
tors might be attenuated. These findings also reinforced
our current understanding that apart from age, early diag-
nosis and optimal control of BP are the most effective pre-
ventive measures to reduce risk of DKD.
The third objective of this analysis was to develop a novel
method to increase the utility of these predictors. Using
the top 10 clinical attributes and 5 genetic attributes se-
lected by the best models, we were able to build models
using support vector machine and random forest to gener-
ate high-performance models. In keeping with our previ-
ous reports regarding the importance of metabolic
syndrome [1] characterized by central obesity, dyslipidemia
and inflammation [18-20] in predicting DKD using con-
ventional correlation and regression analyses, the most
predictive clinical factors were lipids, WHR and WBC
count in our final models. The co-selection of LIPC -514C
>T, APOB Thr71Ile and UGB G38A polymorphisms were
also in accord with our previous reports using regression
analysis [21,22]. Our current study highlighted that
optimization method such as genetic algorithm could be
used to explore genotype-phenotype interactions using a
smaller set of attributes for DKD.
Of note, the steroid-inducible protein, UGB, have

known immunomodulatory and regulatory roles in the
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deposition of fibronectin and collagen in mouse glom-
eruli. Herein, DKD is characterized by glomerulopathy
with glomerular sclerosis, thickening of basement mem-
brane and mesangial expansion. In UGB knockout mice,
the animal developed severe renal disease due to abnor-
mal deposition of fibronectin and collagen in the glom-
eruli [23]. In a Japanese study, association of UGB G38A
polymorphism with progression of IgA nephropathy has
been reported [24]. Taken together, our results support
the increasing recognition regarding the pathogenetic
role of metabolic syndrome characterized by lipotoxicity
and inflammation in DKD [25,26].
The strengths of our study included the extensive phe-

notypes and genotypes and definition of DKD using
prospective design. However, our study has several limi-
tations. Firstly, we did not include eGFR and urinary
ACR in order to discover novel predictors. Secondly, we
excluded drug treatment which was selected by all ma-
chine learning methods, likely confounded by drug indi-
cations. Thirdly, this was a proof-of-concept study and
the results from this exploratory analysis required inde-
pendent replication in larger cohorts. Lastly, all partici-
pants were of Chinese ethnicity and thus the results
might not be applicable to non-Chinese population and
individuals without diabetes.

Conclusions
Using a prospective database, we compared the perform-
ance of seven common machine learning methods to
build models with the optimal combinations of clinical
and genetic predictors for DKD. Amongst them, support
vector machine and random forest had the best perform-
ance. Age, age of diagnosis and lipid parameters were
major clinical predictors while genetic polymorphisms
related to inflammation and lipid metabolism were the
most selected genetic predictors. Validation of these gen-
etic markers in subjects without clinical evidence of
renal disease may provide an opportunity to identify
high risk subjects for regular surveillance and individual-
ized treatment including control of inflammation [27]
and dyslipidemia [28] to prevent DKD.
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