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Abstract. We present a model of pattern formation in reaction-diffusion systems that is based on coupling
between a propagating wave front and temporal oscillations. To study effects of internal fluctuations on the
spatial structure development we use a chemical master equation for our reaction-diffusion model. First, a
model with local, uncoupled oscillators is studied. Based on it we show that synchronization of oscillations
in neighboring cells is necessary for the formation of regular patterns. We introduce synchronization through
diffusion, but then, to get a stable pattern, it is necessary to add an additional species that represents the
local state of the system. Numerical simulations of the master equation show that this extended model is
resistant to fluctuations.

1 Introduction

Nonlinear reaction-diffusion systems in conditions out of
equilibrium are known to produce stable spatial struc-
tures. The principal example of this behavior are Turing
patterns, which are formed in activator-inhibitor systems
if mobilities of species are different [1–3]. This mechanism
can explain formation of many shapes observed in nature,
most notably animal coat patterns [4–6].

In this paper we present a different type of generic
reaction-diffusion scheme that can produce stable, peri-
odic structures. It is inspired by the ideas of Cooke and
Zeeman, who proposed a clock and wavefront model as a
mechanism of axial segmentation during embryonic devel-
opment [7]. Spatial patterns in the Belousov-Zhabotinsky
reaction were produced in an experiment based on the
clock and wavefront mechanism [8].

The concept is that the whole system undergoes tem-
poral, in-phase oscillations. At one point, a wave front
starts propagating from a boundary. This wave front ar-
rests oscillations, i.e. upon front arrival, they are stopped
and local state of the system develops to one of the two
stable stationary states, depending on the phase of the
oscillator. This gives rise to a spatial pattern with period
equal to the distance covered by the wave front during
one period of temporal oscillations. To prevent the final
structure, consisting of alternating regions in different sta-
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ble states, from developing to homogeneous state, some of
the species of the scheme have to be immobile.

Many authors have studied the problem of synchro-
nization of oscillations [9–13]. The need of synchronization
of oscillations in our model is dicussed. Section 2 con-
tains the design of a model with a wave front coupled to
chemical oscillators and without synchronization of oscil-
lations in spatial cells. Consequences of lack of synchro-
nization are examined by numerically solving the master
equation. An extended model including diffusive coupling
between molecular clocks is presented in Section 3 and
its robustness with respect to internal fluctuations is dis-
cussed. Conclusions are given in Section 4.

2 Model without coupling of oscillators

We want to develop an as simple as possible reaction-
diffusion scheme that would correspond to the clock and
wavefront mechanism of pattern formation. The proposed
scheme is composed of two elements, one dedicated to the
wave front of antagonistic concentrations and the other to
temporal oscillations. Various types of wave fronts exist,
which can expand between stable or unstable stationary
states [14]. We choose a trigger wave, which propagates
between regions in which the system is in two different
stable stationary states. It involves two species denoted
by A and P. The species A reacts according to the Schlögl
scheme [15], which is the simplest bistable model involving
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a single species of variable concentration:

2A + R
kf′
1

�
kf
−1

3A, (1)

A
kf
2

�
kf′
−2

R, (2)

where kf ′
1 , kf

−1, kf
2 and kf ′

−2 are rate constants. The con-
centration of R species is considered to be constant. For
simplicity, different species that act as a reservoir will be
denoted by R in the following. To obtain concentration of
P antagonistic to that of A, we assume that A catalyses
degradation of P that is counterbalanced by production of
P from R:

P + A
kf
3−→ R + A, (3)

R
kf′
4−−→ P. (4)

Reaction-diffusion equations, which govern evolution of
concentrations A and P of the two species related to the
wave front, are given by:

∂tA = −kf
−1A

3 + kf
1 A2 − kf

2 A + kf
−2 + DA∂xxA, (5)

∂tP = −kf
3 AP + kf

4 + DP ∂xxP, (6)

where kf
1 = kf ′

1 R, kf
−2 = kf ′

−2R and kf
4 = kf ′

4 R. For the
chosen parameter values, dynamics admits two stable sta-
tionary states (A−, P+) and (A+, P−), with A− < A+

and P− < P+. In the following, the − and + indices are
attributed to the steady states of lower and higher con-
centrations of a couple of given species, respectively.

We assume that initially, small region close to the axis
origin is in the steady state (A+, P−) and the remaining
part is in the steady state (A−, P+). For the chosen pa-
rameter values, a wave front propagating in the positive
direction develops as shown in Figure 1. An analytical ex-
pression for front propagation speed in the Schlögl model
is

vf =

√
kf
−1DA

2
(A− + A+ − 2Au), (7)

where Au is the middle root of equation (5), i.e. the value
of A in the unstable stationary state.

Next we introduce the second element of the model,
the molecular clock. Nonlinear reactions between at least
two species of variable concentrations can result in a limit
cycle attractor in the phase space, i.e. in temporal os-
cillations of concentrations. We start with the scheme of
the Brusselator model [16], which includes two types of
molecules X and Y and was designed to illustrate periodic
oscillations. We modify this scheme to obtain an arrest of
oscillations upon wave front arrival.

The wave front is supposed to switch the (X, Y ) dy-
namics from oscillatory regime to bistable regime [17].
To introduce coupling between the wave front and the
clock, we postulate that A and P species catalyse some
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Fig. 1. Wave front of species A and P. Shape of the wave
front obtained from numerical integration of reaction-diffusion
equations given in equations (5) and (6). Concentration of A is
plotted with solid line and concentration of P, with dotted line.
Axis origin is on the left, the front is propagating to the right.
Parameter values used: kf

1 = 72, kf
−1 = 125.28, kf

2 = 12.48,

kf
−2 = 0.656, kf

3 = 112, kf
4 = 3.2 and DA = DP = 10, which

give the front speed vf = 1.627.

of the reactions between X and Y. The goal is that un-
der (A, P ) = (A−, P+) conditions, i.e. before arrival of
the front, the system has a limit cycle attractor in the
(X, Y ) plane of phase space and after front passage, for
(A, P ) = (A+, P−), it has two stable stationary states. In
the bistable regime, separatrix of the saddle point between
the stable states has to cut through the limit cycle of the
oscillatory regime, so that, after front passage, concentra-
tions will be switched to one of the steady values depend-
ing on the phase of oscillations at the moment of front ar-
rival. To this aim we require that, for (A, P ) = (A−, P+),
one of the stationary states is unstable and surrounded
by a limit cycle and for (A, P ) = (A+, P−), i.e. after front
passage, it becomes stable. In addition, its basin of attrac-
tion has to be shifted towards higher concentrations of X
and Y. The proposed scheme for chemical oscillations is:

X k1−→ R, (8)

2X + Y + P k2−→ 3X + P, (9)

Y k3−→ R, (10)

R + A
k
′
−3−−→ Y + A. (11)

To avoid destruction of the crenel-like spatial structure de-
veloping between system origin and arrest front, it is nec-
essary that X and Y molecules are immobile. The reaction
rate equations for evolution of the clock are given by:

∂tX = k2X
2Y P − k1X, (12)

∂tY = −k2X
2Y P − k3Y + k−3A, (13)

where k−3 = k
′
−3R. Note that the reactions associated

with the clock given in equations (8)–(11) do not mod-
ify the dynamics of species A and P given in equa-
tions (5) and (6). Figure 2 gives two sections of the phase
space (A, P, X, Y ) associated with stationary (A, P ) val-
ues, (A−, P+) and (A+, P−). In each section, the intersec-
tions dX/dt = dY/dt = 0 of the nullclines in the (X, Y )
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Fig. 2. The X, Y phase space. Projections of nullclines and
attractors of the dynamical system obeying equations (5), (6),
(12) and (13) onto the (X, Y ) space. In the section of the phase
space associated with (A+, P−), the dotted lines correspond
to the nullclines and the dashed-dotted line is the separatrix
between the basins of attraction of the two stable steady states
(X ′

±, Y ′
∓). In the section associated with (A−, P+), the dashed

lines are the nullclines and the solid line is the limit cycle. In
both sections, there is also a stable branch at X = 0. Parameter
values used: k1 = 1, k2 = 19/P+, k3 = 0.2, k−3 = 0.255/A−,
where A− and P+ are calculated with the parameter values
given in Figure 1 caption.

plane give the steady states of the system. In the (A−, P+)
section, the system possesses a stable limit cycle and in
the (A+, P−) section, it is bistable. For the parameters
used, the system of equations (5), (6), (12) and (13) pos-
sesses a stable node (A−, P+, X−, Y+), an unstable node-
focus (A−, P+, X+, Y−) surrounded by a stable limit cycle,
a stable node (A+, P−, X ′

−, Y ′
+), and a stable node-focus

(A+, P−, X ′
+, Y ′

−). If the front is steep and the dynamics
given in equations (5) and (6) is faster than the oscillat-
ing dynamics given in equations (12) and (13), the state
of the system in the (X, Y ) plane will not change sig-
nificantly during the passage from (A−, P+) to (A+, P−).
Under these conditions, the separatrix in the section de-
fined by (A+, P−) can be used to cut the limit cycle
in the section (A, P ) = (A−, P+) into two different do-
mains. Position along the limit cycle relative to the sep-
aratrix determines further relaxation toward either the
stable node, (A+, P−, X ′

−, Y ′
+), or the stable node-focus,

(A+, P−, X ′
+, Y ′

−). Hence, evolution of a spatial cell is de-
termined by the phase of oscillation at the moment when
this cell is reached by the wave front.

We perform numerical integration of equations (5), (6),
(12) and (13) for a one-dimensional system of 300 spatial
cells of length 0.5 and volume V = 4× 105 each. Initially,
six leftmost cells are in the state (A+, P−) and the remain-
ing ones in the state (A−, P+). In all cells, concentrations
of X and Y are initially equal to X = 0.25 and Y = 0.143,
which corresponds to a point on the limit cycle in the
(X, Y ) plane. Zero-flux boundary conditions are used.

The results are presented in Figure 3. The wave front
propagates with the speed v ≈ 1.59, in agreement with
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Fig. 3. Deterministic evolution of the system without cou-
pling of oscillations. Space-time (horizontal-vertical) plot of the
concentration of species Y (depicted by colour gradation) as
calculated from the reaction-diffusion equations (5), (6), (12)
and (13).

analytical prediction given by equation (7). Spatial cells
ahead of the wave front oscillate in synchrony with a
period T ≈ 9.5 for the values of the parameters used.
A periodic structure of alternating X and Y concentra-
tions emerges behind the front. Behavior similar to the
clock and wavefront model is reproduced. The first and
last segments are deformed due to initial and boundary
conditions.

We now examine robustness of the spatial structure
to internal fluctuations by studying them at a mesoscopic
level. The stochastic description is based on a master equa-
tion, which governs time evolution of probability of species
populations:

dtP ({S}, t) =
∑

i

{∑
r

[
ωr(Si−zr)P (Si−zr)−ωr(Si)P

]
+

∑
α=A,P

[
ωα(Nα(i) + 1)

×
(
P (Nα(i) + 1, Nα(i + 1) − 1)

+ P (Nα(i − 1) − 1, Nα(i) + 1)
)

− 2ωα(Nα(i))P
]}

, (14)

where the vector Si = (NA(i), NP (i), NX(i), NY (i)) gives
populations of all species in the ith spatial cell, and {S}
is the collection of vectors Si in all cells. ωr(Si) is the
transition probability of rth reaction, zr is the vector of
population changes caused by rth reaction, and ωα(Nα(i))
is the transition probability associated with jump by dif-
fusion of α-type molecule from cell i to adjacent cells.
Populations Nα(i) and vectors Si that are the same as on
the left hand side were omitted in the argument list of
the P function on the right hand side of the master equa-
tion. The full list of transition probabilities and vectors
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Fig. 4. Stochastic evolution of the system without coupling of
oscillations. Same caption as in Figure 3, but for results of the
master equation simulation.

zr is given in the Appendix. We used the kinetic Monte
Carlo algorithm proposed by Gillespie to solve this equa-
tion [18]. Results of the stochastic approach are presented
in Figure 4. The front propagates with a constant veloc-
ity, which is not affected by fluctuations. Only first few
segments develop normally. Those that are formed later
have blurred edges and become indefinable further from
the origin. It is a result of desynchronization of oscillations
in neighboring spatial cells. Using the two sections of the
phase space given in Figure 2, we conclude that, due to
fluctuations, the states of spatial cells at front level form
a cloud in the (X, Y ) plane around the separatrix, lead-
ing to random relaxation toward one or the other steady
state. Depending on their position, the spatial cells ahead
of the front oscillate with different phases and state of
the system at the moment when the front passes differs
from the deterministic prediction. In this model, which
does not include coupling between oscillators, fluctuation-
induced desynchronization of oscillations is responsible for
segments malformation. This desynchronization is caused
by phase diffusion, which does not vanish in unstirred
macroscopic systems and is not restricted to an effect of
the small number of particles [10,19].

It is worth to note that during segmentation of verte-
brate embryos, oscillations in neighboring living cells are
believed to be synchronized through the Notch cell-cell
signaling pathway [20–22]. A phenotype similar to results
shown in Figure 4 was observed in zebrafish embryos with
mutations blocking this pathway [23]. When the Notch
cell-cell pathway malfunctions, the first somites form nor-
mally, but the next ones are irregular.

3 Coupling of oscillators

To ensure synchronization of oscillations in the region
ahead of the front, we introduce diffusion of X and Y
species, which offers the simplest mechanism of spatial
coupling. Synchronization of oscillations is an important
issue in dynamics of nonlinear systems [24].

0 25 50
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0.5

0.75

Y

Fig. 5. Evolution of concentration of Y in two example cells
for the model given in equations (5), (6), (12) and (13), but
with diffusion of X and Y. Results of numerical solution of the
deterministic equations are shown for a cell at x = 73 (dashed
line), which is in a state to the left of the separatrix at moment
of front arrival, and a cell at x = 80 (solid line), to the right of
the separatrix. The dotted line shows results of kinetic Monte
Carlo simulations of the master equation for the cell at x = 73.
Same parameter values as in Figure 2, and DX = DY = 1.

However, as already mentioned, introduction of X and
Y diffusion in the model given in equations (5), (6), (12)
and (13) destabilizes the periodic pattern behind the wave
front. Instead of a spatial structure, the system reaches
the homogeneous steady state (A+, P−, X ′

+, Y ′
−). This be-

haviour is presented in Figure 5, which shows time evo-
lution of Y concentration in two example cells. In spatial
cells that are in states located to the right of the separa-
trix in Figure 2 at the moment of front arrival, expected
relaxation toward the steady state (A+, P−, X ′

+, Y ′
−) is ob-

served. States to the left of the separatrix start to evolve
toward the low X , high Y steady state as in the system
without coupling, but diffusion causes the final relaxation
toward (A+, P−, X ′

+, Y ′
−), because (X ′

+, Y ′
−) is the domi-

nant attractor in the (X, Y ) plane. As a result, a transient
maximum of Y is observed in Figure 5.

The maximum is higher in stochastic simulations than
in deterministic results. This is due to a difference in sepa-
ration between the A and P fronts in the two approaches.
Distance between the inflection points of the antagonistic
profiles is 25% bigger in master equation simulations than
in deterministic results. Due to larger front separation, the
system remains in a transient state of low concentrations
of P and A during a longer period of time in kinetic Monte
Carlo simulations of the master equation. Under these con-
ditions, the rate of reaction (9) is decreased, while the rate
of reaction (11) is not significantly increased with respect
to the rates in the (A−, P+) state. Then, the limit cycle
is shifted and higher values of Y can be reached during
this period of time. Only upon arrival of the A front, the
basins of attraction recover the same configuration as in
Figure 2.

To obtain a stationary spatial structure and synchro-
nization of X and Y oscillations, in addition to the dif-
fusion of X and Y, we introduce an immobile species I,
which has bistable dynamics. The final structure should
consist of alternating regions in different stable states of I.

http://www.epj.org
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Fig. 6. Bifurcation diagram of species I involved in the mech-
anism given in equations (15)–(17). Stationary state of I vs.
concentration of Y. Solid lines show stable stationary states
and the dotted line an unstable stationary state. The dashed
and dashed-dotted lines are the minimal and maximal Y val-
ues along the limit cycle, respectively. The long-dashed-dotted
line is the steady value of Y in the final state (A+, P−, X ′

+, Y ′
−).

The long-dashed and long-dashed-double-dotted lines are the
highest transient maxima of Y right after front passage ob-
tained from the deterministic and stochastic calculations, re-
spectively. Parameters values are the same as in Figure 5 with
additional ones: kI

1 = 7.03125, kI
−1 = 8.4375, kI

2 = 1.3125.
Initially, I = 0.0546.

Such a structure can be stable, only if I molecules do not
diffuse. Dynamics of I is inspired from the Schlögl model
and admits two stable states. It is coupled to the dynamics
of Y according to:

2I + R
kI′
1

�
kI
−1

3I, (15)

I
kI
2−→ R, (16)

Y k3−→ I, (17)

where the last reaction replaces equation (10). Adding
these reactions does not change the dynamics of species A,
P, X nor Y. Before front passage, the system is in the lower
I state. The temporal maximum of Y concentration just
after front passage works as a switch between the states
of I. To get an intuitive picture of I dynamics, we first
consider the concentration of Y as a parameter and plot
a bifurcation diagram of I in Figure 6. The system given
in equations (15)–(17) is bistable for small concentrations
of Y and becomes monostable above some threshold. The
parameter values kI

±1 and kI
2 must be chosen such that

the transient maximum of Y is far into the monostable
domain, to ensure relaxation of I toward the single high
concentration steady state during the short-lived spike of
Y . For the values of Y explored on the limit cycle given
in Figure 3, the concentration of I has to remain low. On
majority of the cycle, I has two stable states, but it is
monostable on the remaining part. The dynamics of I is
slow enough to prevent transition to high I values during
periodic oscillations. This transition only occurs during
the spike of Y . The full reaction-diffusion system with
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Fig. 7. Deterministic evolution of the system with coupling
of oscillations. Space-time plot of concentration of species I
(colour gradation) obtained from the numerical integration of
the reaction-diffusion equations (18)–(22) for the model with
coupled oscillators.

coupled oscillators is:

∂tA = −kf
−1A

3 + kf
1 A2 − kf

2 A + kf
−2 + DA∂xxA, (18)

∂tP = −kf
3 AP + kf

4 + DP ∂xxP, (19)

∂tX = k2X
2Y P − k1X + DX∂xxX, (20)

∂tY = −k2X
2Y P − k3Y + k−3A + DY ∂xxY, (21)

∂tI = −kI
−1I

3 + kI
1I2 − kI

2I + k3Y, (22)

where: kI
1 = kI′

1 R. For the chosen parameter values, this
system admits four stable steady states: two node-focuses
(A+, P−, X ′

+, Y ′
−, I ′−) and (A+, P−, X ′

+, Y ′
−, I ′+), and two

nodes, (A−, P+, X−, Y+, I0) and (A+, P−, X ′
−, Y ′

+, I ′0) In
addition, the system possesses two unstable node-focuses
(A−, P+, X+, Y−, I ′′±) surrounded by stable limit cycles.

Results of numerical integration of the reaction-
diffusion equations and of kinetic Monte Carlo simulations
of the master equation are shown in Figures 7 and 8, re-
spectively. Contrary to the case without coupling of oscil-
lators, the results of the macroscopic and stochastic ap-
proaches are now in qualitative agreement. Fluctuations
do not cause desynchronization of oscillations in differ-
ent cells. The spatial period λ of the developing structure
is equal to the distance the front travels during a sin-
gle period of oscillations. This prediction λ = Tvf ≈ 15
agrees with the value λ = 14.7 obtained from the numeri-
cal solution of equations (18)–(22), presented in Figure 8.
Period of the structure is the same in the deterministic
and stochastic simulations. Segments are regular and have
well-defined boundaries, but in the kinetic Monte Carlo
simulations the regions with high I are wider. This is due
to the fact that fluctuations increase the height of the tran-
sient maximum of Y , as previously discussed and shown
in Figure 5.
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Fig. 8. Stochastic evolution of the system with coupling of
oscillations. Same caption as in Figure 7, but for the results of
kinetic Monte Carlo simulations of the master equation.

4 Conclusions

We have presented a reaction-diffusion scheme that pro-
duces spatial patterns in a way similar to the clock and
wavefront model of Cooke and Zeeman. The chemical
mechanism consists of three interconnected subsets. The
first subset of reactions is associated with bistability for
two antagonistic species A and P and propagation of a
chemical wave front. The second subset involves two other
chemical species X and Y, whose concentrations oscil-
late and which provide the clock of the model. Reactions
between the oscillating species X and Y are coupled to
A and P concentrations in such a manner that oscilla-
tions are stopped after front passage. Then, the system
is driven into a bistable regime with alternating high and
low concentrations of X and Y which results in the pe-
riodic spatial structure. Oscillations in neighboring cells
are coupled through diffusion of X and Y in order to
counter fluctuation-induced desynchronization. The last
subset of reactions introduces a bistable system for immo-
bile species I that produces the final, stable pattern. Our
model entirely relies on reaction and diffusion processes
that are defined at the molecular scale, for which the de-
scription of internal fluctuations could be made without
any additional hypotheses. As a result, the model involv-
ing a wave front and a clock without synchronization of
oscillations was sensitive to noise. To counter this deffi-
ciency and ensure spatial synchronization of oscillations,
we have included diffusion of the oscillating species, which
resulted in destabilization of the periodic spatial struc-
ture. An immobile supplementary chemical species had to
be introduced to stabilize the pattern.

The proposed reaction-diffusion scheme has been in-
spired by the process of somitogenesis in vertebrates.
However, it can be regarded quite generally as a model
of formation of spatio-temporal structures in far-from-
equilibrium chemical systems, alternative to the well-
known Turing pattern mechanism.

Table A.1. List of the vectors, zr = (ΔNA(i), ΔNP (i),
ΔNX(i), ΔNY (i), ΔNI(i)), of population changes and tran-
sition probabilities ωr(Si) associated with the rth reaction,
where Si = (NA(i), NP (i), NX(i), NY (i), NI(i)) is an instanta-
neous state of a cell.

r zr ωr(Si)

1 (1, 0, 0, 0, 0)
k

f
1

V
NA(NA − 1)

2 (−1, 0, 0, 0, 0)
k

f
−1

V 2 NA(NA − 1)(NA − 2)

3 (−1, 0, 0, 0, 0) kf
2 NA

4 (1, 0, 0, 0, 0) kf
−2V

5 (0,−1, 0, 0, 0)
k

f
3

V
NANP

6 (0, 1, 0, 0, 0) kf
4 V

7 (0, 0,−1, 0, 0) k1NX

8 (0, 0, 1,−1, 0) k2
V 3 NX(NX − 1)NY NP

9 (0, 0, 0,−1, 1) k3NY

10 (0, 0, 0, 1, 0) k−3NA

11 (0, 0, 0, 0, 1)
kI
1

V
NI(NI − 1)

12 (0, 0, 0, 0,−1)
kI
−1

V 2 NI(NI − 1)(NI − 2)

13 (0, 0, 0, 0,−1) kI
2NI

The work was realized within the International Ph.D. Projects
Program co-financed by the Foundation for Polish Science and
the European Regional Development Fund within the Innova-
tive Economy Operational Program “Grants for Innovation”.
The PICS program between CNRS (France) and PAN (Poland)
is acknowledged. P.D. acknowledges the French government for
fellowship.

Appendix A: Transition probabilities
in the master equation

In the Appendix, we give the expressions of the transition
probabilities appearing in the master equation given in
equation (14) for the model with coupling of oscillators.
The instantaneous state of a system in ith cell is given by:

Si = (NA(i), NP (i), NX(i), NY (i), NI(i)) , (A.1)

where Nα(i) is the number of particles of species α =
A, P, X, Y, I in the ith spatial cell. Table A.1 gives the
transition probabilities ωr(Si) associated with the rth re-
action and the corresponding vectors, zr, of population
changes due to the rth reaction. The transition probabil-
ity ωα(Si) associated with diffusion of species α is given
by:

ωα(Si) =
Dα

Δx2
Nα, α = A, P, X, Y, (A.2)

where Δx is the length of a spatial cell.
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Biophys. Chem. 110, 231 (2004)
9. S.H. Strogatz, Physica D 143, 1 (2000)

10. M. Malek Mansour, J. Dethier, F. Baras, J. Chem. Phys.
114, 9265 (2001)

11. L. Herrgen, S. Ares, L.G. Morelli, C. Schröter, F. Jülicher,
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