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Abstract
We consider quasilinearity of the functional (h ◦ v) · (� ◦ g

v ), where � is a monotone
h-concave (h-convex) function, v and g are functionals with certain
super(sub)additivity properties. Those general results are applied to some special
functionals generated with several inequalities such as the Jensen, Jensen-Mercer,
Beckenbach, Chebyshev and Milne inequalities.
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1 Introduction and preliminaries
In [–] Dragomir researched functionals which arise fromquasilinear functionals related
to the classical inequalities. For example, he considered the functionals v log( gv ) (in []),

vq–
q
p gq, vq–

q
p

gq (both in []), v
p–q
p gq (in []), and finally, v · (� ◦ g

v ) (in []), where v is additive,
g is super(sub)additive,� is a concave (convex) function and p and q are real numbers with
some properties. In each paper he applied the given results about a composite functional
to some of the classical inequalities such as: the Jensen, Hölder orMinkowski inequalities.
In this paper we generalize his results. We investigate similar functionals related to an

h-convex function � under assumptions, which are weaker than the assumptions in the
above-mentioned papers. In this introductory section, we give definitions and basic prop-
erties of several classes of functions.
Let C be a convex cone in the linear space X over F (F = R or C), namely:
(a) x, y ∈ C imply x + y ∈ C;
(b) x ∈ C, α >  imply αx ∈ C.
Let L be a real number, L �= . A functional f : C → R is called L-superadditive

(L-subadditive) on C if

f (x + y) ≥ (≤)L
(
f (x) + f (y)

)

for any x, y ∈ C.
If L = , then a functional f is simply called superadditive (subadditive).
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Let K be a real non-negative function. We say that a functional f is K-positive homoge-
neous if

f (tx) = K (t)f (x)

for any t ≥  and x ∈ C.
In particular, if K (t) = tk , then we simply say that f is positive homogeneous on C of

order k. If k = , we call it positive homogeneous.
It is easy to see that K () =  and K is multiplicative. Moreover, we have either K ≡  or

K () = .
A function h : J ⊆ R→ R is said to be a supermultiplicative function if

h(xy) ≥ h(x)h(y) ()

for all x, y ∈ J .
If inequality () is reversed, then h is said to be a submultiplicative function. If equality

holds in (), then h is said to be a multiplicative function.

Example  The function x 
→ xs is
. superadditive and L-subadditive with L = s– ≥  for s ∈ (,∞),
. subadditive and L-superadditive with L = s– ≤  for s ∈ (, ],
. L-subadditive with L = s– ≤ 

 for s < .

A function f : [,b] → R is called starshaped if f (αx)≤ αf (x) for any α ∈ [, ], x ∈ [,b].
In the sequel I and J are intervals in R, (, )⊆ J and functions h and f are non-negative

functions defined on J and I , respectively.

Definition  [] Let h : J → R be a non-negative function, h �≡ . We say that f : I → R is
an h-convex function, if f is non-negative and for all x, y ∈ I , α ∈ (, ) we have

f
(
αx + ( – α)y

) ≤ h(α)f (x) + h( – α)f (y).

If the inequality is conversed, then f is called an h-concave function.

Some properties of the h-convex functions are given in papers [] and []. It is evident
that this concept of h-convexity generalizes the concepts of classical non-negative convex-
ity (for h(t) = t); s-convexity in the second sense (for h(t) = ts, s ∈ (, )) [, ]; P-functions
(for h(t) = ) []; and Godunova-Levin functions (for h(t) = t–) [].

Example  It is known (see []) that the function f (x) = xλ is s-convex in the second
sense if

(λ ∈ (–∞, ]∪ [,∞) and s ≤ ) or (λ ∈ (, ) and s ≤ λ).
The function f (x) = xλ is s-concave in the second sense if

(λ ∈ (, ), s≥ ) or (λ > , s ≥ λ).

Proposition  Let  < s ≤  and f : I → R be s-convex,  ∈ I , f () ≤ . Then f (αx) ≤
αsf (x), ≤ α ≤ , and f is s–-superadditive.

http://www.journalofinequalitiesandapplications.com/content/2014/1/30
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Proof From s-convexity we have

f
(
αx + ( – α)

) ≤ αsf (x) + ( – α)sf ()≤ αsf (x).

The recently proved property and the property of the function x 
→ xs give

f (a) + f (b) = f
(
(a + b)

a
a + b

)
+ f

(
(a + b)

b
a + b

)

≤
[(

a
a + b

)s

+
(

b
a + b

)s]
f (a + b) ≤ –sf (a + b).

If s = , we get that f is starshaped and hence superadditive. �

Here we extract some properties proved in [], which we use in this paper. Firstly, we
give a result which allows us to use weights α, β , the sum of which is not exactly  (as we
have to use when we are working with convex functions) (see [, Theorem ]).

Theorem  Let I be an interval such that  ∈ I .
(a) Let f be h-convex on I and f () = . If the function h is supermultiplicative, then the

inequality

f (αx + βy) ≤ h(α)f (x) + h(β)f (y) ()

holds for all x, y ∈ I and all α,β >  such that α + β ≤ .
(b) Let f be h-concave on I . If the function h is submultiplicative, then the inequality

f (αx + βy) ≥ h(α)f (x) + h(β)f (y) ()

holds for all x, y ∈ I and all α,β >  with α + β ≤ .

In fact, in the original paper [] in part (b) we have assumption that f () =  but a careful
introspect of the proof gives us that non-negativity of the function f is a sufficient assump-
tion.
The next proposition gives us a tool for generating new h-convex functions.

Proposition  Let I be an interval such that  ∈ I , and let f be a non-negative function
on I .
(a) Let f be convex on I and f () = . If f is non-increasing and s ∈ [,∞), then f (xs) is

s-convex.
If f is non-increasing, s ∈ (, ], then f (xs) is h-convex with h(t) = s–ts.

(b) Let f be concave on I . If f is non-decreasing and s ∈ [,∞), then f (xs) is s-concave.
If f is non-decreasing, s ∈ (, ], then f (xs) is h-concave with h(t) = s–ts.

Proof Let us prove the first part of case (b). The function x 
→ xs is superadditive for s ∈
[,∞), so we have (αx + ( – α)y)s ≥ αsxs + ( – α)sys. Since f is non-decreasing, we obtain

f
((

αx + ( – α)y
)s) ≥ f

(
αsxs + ( – α)sys

)
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/30
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Using superadditivity again, we have αs + ( –α)s ≤ , and by the previous theorem we get

f
((

αx + ( – α)y
)s) ≥ αsf

(
xs

)
+ ( – α)sf

(
ys

)
.

Let us prove the last part of case (b). The function x 
→ xs is s–-superadditive for s ∈ (, ],
so we have (α + ( –α))s ≥ s–(αs + ( –α)s), i.e.,  ≥ s–αs + s–( –α)s. So, these are two
weights whose sum is less than or equal to , and applying Theorem  to the concave
function f with arguments xs and ys, we get

f
(
s–αsxs + s–( – α)sys

) ≥ s–αsf
(
xs

)
+ s–( – α)sf

(
ys

)
= h(α)f

(
xs

)
+ h( – α)f

(
ys

)
.

Using s–-superadditivity again, we obtain

(
αx + ( – α)y

)s ≥ s–
[
(αx)s +

(
( – α)y

)s].
Since f is non-decreasing, and using previous results, we have

f
((

αx + ( – α)y
)s) ≥ f

(
s–αsxs + s–( – α)sys

)
≥ h(α)f

(
xs

)
+ h( – α)f

(
ys

)
,

which means that f (xs) is an h-concave function.
The other cases can be proved similarly. �

Example  (i) The functions f (x) = arctanx, f (x) = tanhx, f (x) = x
+x are concave non-

decreasing functions. By the previous proposition, the functions f (x) = arctan(xs), f (x) =
tanh(xs), f (x) = xs

+xs , where s > , are non-decreasing and s-concave, but not concave. Also,
if s ∈ (, ], these functions are h-concave with h(t) = s–ts.
(ii) Another way to generate new s-convex (s-concave) functions is using of the following

statements: If f is non-negative convex, then f s(x), s ∈ (, ] is s-convex. If f is non-negative
concave, s ∈ [,∞), then f s(x) is s-concave.
(iii) Consider the function

f (x) =

{
xs, x ∈ [, ];
x, x ∈ (,b],

where s > . This function is non-decreasing, convex on (, ], and starshaped on [,b],
b ≥ . Here we will show that this function is s-concave on [,b], b ≥ .
Let x, y ∈ [, ]. Then αx + ( – α)y ∈ [, ] and

f
(
αx + ( – α)y

)
=

(
αx + ( – α)y

)s
≥ αsxs + ( – α)sys = αsf (x) + ( – α)sf (y).

Let x, y ∈ [,b]. Then αx + ( – α)y ∈ [,b] and

f
(
αx + ( – α)y

)
= αx + ( – α)y

≥ αsx + ( – α)sy = αsf (x) + ( – α)sf (y).

http://www.journalofinequalitiesandapplications.com/content/2014/1/30
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Let x ∈ [, ], y ∈ [,b] and αx + ( – α)y ∈ [,b]. Then

f
(
αx + ( – α)y

)
= αx + ( – α)y

≥ αsxs + ( – α)sy = αsf (x) + ( – α)sf (y).

Let x ∈ [, ], y ∈ [,b] and αx + ( – α)y ∈ [, ]. Then we have

f
(
αx + ( – α)y

)
=

(
αx + ( – α)y

)s ≥ αsxs + ( – α)sys

≥ αsxs + ( – α)sy = αsf (x) + ( – α)sf (y)

since y≥ , s ≥ . After considering all possibilities, we conclude that f is s-concave.

The paper is arranged as follows. In the following section we prove some results about
the functional (h ◦ v) · (� ◦ g

v ), where � is a monotone h-convex (h-concave) function.
In the third section some applications of those results to the Jensen, Jensen-Mercer and
Beckenbach functionals are given. Specific assumption in the third section is that the func-
tion v is additive. The fourth section is devoted to some new superadditive mappings such
as the Chebyshev and Milne functionals. A characteristic assumption in that section is
that v is superadditive.

2 Functionals associated withmonotone h-concave and h-convex functions
Lemma  Let x, y ∈ C and f : C → R be a non-negative, L-superadditive and K-positive
homogeneous functional on C. If M ≥m >  are such that x –my and My – x ∈ C, then


L
K (M)f (y) ≥ f (x)≥ LK(m)f (y).

Proof Using L-superadditivity and K-positive homogeneity of f , we have

f (x) = f (x –my +my)≥ L
(
f (x –my) + f (my)

)
≥ Lf (my) = LK(m)f (y),

giving the second inequality. Similarly, we get the first inequality. Namely, using homo-
geneity and L-superadditivity, we get


L
K (M)f (y) =


L
f (My) =


L
f (My – x + x)≥ f (My – x) + f (x) ≥ f (x). �

The above-proved lemma is a generalization of a result from [] in which f is superad-
ditive and positive homogeneous of order s.

Theorem  Let h be a non-negative function which is k-positive homogeneous. Let C be a
convex cone in the linear space X, and let v : C → (,∞) be an L-superadditive functional
on C.

(i) If h is submultiplicative, g : C → [,∞) is an L-superadditive (L-subadditive)
functional on C and � : [,∞) → [,∞) is h-concave and non-decreasing

http://www.journalofinequalitiesandapplications.com/content/2014/1/30
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(non-increasing), then the functional η� : C → R defined by

η�(x) := h
(
v(x)

)
�

(
g(x)
v(x)

)

is k(L)-superadditive on C.
(ii) If h is supermultiplicative, g is L-subadditive, � is h-convex and non-decreasing with

�() = , then η� is k(L)-subadditive.

Proof (i) Let us suppose that h is submultiplicative, g is L-superadditive, � is h-concave
and non-decreasing. Let α = L v(x)

v(x+y) , β = L v(y)
v(x+y) . Since v is L-superadditive, we have α+β ≤

 and

�

(
g(x + y)
v(x + y)

)
≥ �

(
Lg(x) + Lg(y)

v(x + y)

)

= �

(
Lv(x)
v(x + y)

g(x)
v(x)

+
Lv(y)
v(x + y)

g(y)
v(y)

)

≥ h
(

Lv(x)
v(x + y)

)
�

(
g(x)
v(x)

)
+ h

(
Lv(y)
v(x + y)

)
�

(
g(y)
v(y)

)

= k(L)
[
h
(

v(x)
v(x + y)

)
�

(
g(x)
v(x)

)
+ h

(
v(y)

v(x + y)

)
�

(
g(y)
v(y)

)]

≥ k(L)
[

h(v(x))
h(v(x + y))

�

(
g(x)
v(x)

)
+

h(v(y))
h(v(x + y))

�

(
g(y)
v(y)

)]
.

The first inequality holds because � is non-decreasing and L-superadditivity of g . The
second inequality follows from Theorem  and h-concavity of �. Next we use k-positive
homogeneity of h and finally the submultiplicativity of h. Multiplying with h(v(x + y)), we
have

h
(
v(x + y)

)
�

(
g(x + y)
v(x + y)

)
≥ k(L)

[
h
(
v(x)

)
�

(
g(x)
v(x)

)
+ h

(
v(y)

)
�

(
g(y)
v(y)

)]
.

Hence η� is k(L)-superadditive. The proofs of the other cases follow in a similar man-
ner. �

A superadditive and non-negative functional has the following boundedness property.

Corollary  Let h be a non-negative submultiplicative function which is k-positive ho-
mogeneous. Let C be a convex cone in the linear space X, and let v : C → (,∞) be L-
superadditive and k-positive homogeneous on C. Let x, y ∈ C and assume that there exist
M ≥m >  such that x –my and My – x ∈ C. Let K(t) = k(k(t)).
If g : C → [,∞) is an L-superadditive (L-subadditive) and k-positive homogeneous

functional onC and� : [,∞)→ [,∞) is h-concave andnon-decreasing (non-increasing),
then


k(L)

K (M)η�(y) ≥ η�(x)≥ k(L)K (m)η�(y).

http://www.journalofinequalitiesandapplications.com/content/2014/1/30
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Proof Note that h(v(αx)) = h(k(α)v(x)) = k(k(α))h(v(x)) = K (α)h(v(x)). We observe that
if v and g are k-positive homogeneous functionals, then η�(x) = h(v(x))�( g(x)v(x) ) is a
K-positive homogeneous functional and, by Theorem , it follows that η� is a k(L)-
superadditive functional on C. By applying Lemma  we get the result. �

Corollary  Let h be a non-negative submultiplicative function which is positive homo-
geneous of order s. Let C be a convex cone in the linear space X and v : C → [,∞) be
L-superadditive and positive homogeneous of order s on C. Let x, y ∈ C and assume that
there exist M ≥m >  such that x –my and My – x ∈ C.
If g : C → [,∞) is an L-superadditive and positive homogeneous functional of order s

on C and � : [,∞)→ [,∞) is h-concave and non-decreasing, then

Ms

Ls
η�(y) ≥ η�(x)≥msLsη�(y),

where s = ss.

Proof Put in the previous corollary k(t) = ts , k(t) = ts , and K (t) = tss = ts. �

Remark  If L = , then the assumption about homogeneity of h can be omitted and the
statement of Theorem  still holds, namely we get superadditivity (subadditivity) of η�.
If we consider the additive function v, then using the same proof (L =  and the first

inequality is just equality), we get the following statements:
(i) If g is superadditive (subadditive), � is h-concave and non-decreasing

(non-increasing), where h is submultiplicative, then the functional η� is
superadditive.

(ii) If g is superadditive (subadditive), � is h-convex and non-increasing
(non-decreasing), where h is supermultiplicative, then the functional η� is
subadditive.

Comparing these statements with the results of Theorem  from paper [], we see that
if � is a non-negative function, then we have results for a wider class of functions �, i.e.,
for h-concave or h-convex functions.
The case s = , h(t) = t gives results for concave�, as it is in [], but for v and g superad-

ditive and s-positive homogeneous. The case when v is only superadditive is important
for applications - see the application to the Chebyshev and Milne functionals.
Moreover, Corollary  under assumptions that v is additive and L = , k(t) = k(t) = t,

becomes the same as Corollary (a) from [].
More about Corollary : If h(t) = ts, s = , L =  and we use as an example �(x) =

�s
(x), s ≥ , � is concave non-decreasing, then we get the result of Corollary  from [].

However, we can also use the functions from Example  to get new results.

3 Case 1: function v is additive
Applications to Jensen-type inequalities
Let f be a real mapping on a convex subset C of a linear space. Let us fix n ∈N and xi ∈ C

(i = , . . . ,n), and let S+(n) := {p = (p, . . . ,pn) : pi ≥ , i = , . . . ,n and Pn =
∑n

i= pi > }. S+(n)
is a convex cone.

http://www.journalofinequalitiesandapplications.com/content/2014/1/30
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As usual, the Jensen functional J : S+(n) → R is given by

J(p) :=
n∑
i=

pif (xi) – Pnf

(

Pn

n∑
i=

pixi

)
.

In fact, J is a difference between the right-hand and the left-hand sides of the Jensen
inequality for the convex function and it is a topic of investigation in many papers, see, for
example, [–] and the references therein. It is known that J is positive homogeneous; if
f is convex, then J is non-negative and superadditive, while if f is concave, then J is non-
positive and subadditive. The boundedness property for the Jensen functional is proved
in [], i.e., if M ≥ m >  such that Mp ≥ q ≥ mp (i.e., Mpi ≥ qi ≥ mpi for each i = , . . . ,n),
then we get the property

MJ(p)≥ J(q)≥mJ(p).

As an application of the results from the previous section, we have the following theo-
rem.

Theorem  Let h be a non-negative submultiplicative function and f be convex. Let �

be h-concave and non-decreasing on [,∞). Then the composite functional η� : S+(n) → R
defined by

η�(p) = h(Pn)�

( n∑
i=

pi
Pn

f (xi) – f

( n∑
i=

pi
Pn

xi

))
()

is superadditive.
Let, furthermore, h be k-positive homogeneous. Let p,q ∈ S+(n) and let M ≥ m >  be

such that Mp ≥ q ≥mp. Then

k(M)h(Pn)�
(
J(p)
Pn

)
≥ h(Qn)�

(
J(q)
Qn

)

≥ k(m)h(Pn)�
(
J(p)
Pn

)
.

Proof Take v(p) = Pn and g(p) = J(p). The functionals v and g are positive homogeneous, v
is additive and g is superadditive. Using Theorem  we get that the composite functional
η� is superadditive on S+(n) and k-positive homogeneous. Hence, we apply Lemma  and
get the wanted inequalities. �

Remark  If h(t) = t, then we get results from []. In the same paper Dragomir discussed
applications involving the Hölder and Minkowski functionals, but we leave that direction
of investigation at this moment. In the rest of this section, we want to point out applica-
tions to some other Jensen-type functionals.

On the Jensen-Steffensen conditions
Now, let f be a real function on an interval I ⊆ R. In the previous theorem weights pi
are non-negative and considered cone C is the cone S+(n). For some choices of points

http://www.journalofinequalitiesandapplications.com/content/2014/1/30
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x, . . . ,xn ∈ I , this cone can be substituted with a larger cone. Let x = (x, . . . ,xn) be fixed
monotonic n-tuple of elements from I , and let us define the set S(x,n) by

S(x,n) =

{
p ∈ Rn : Pn > , ≤ Pk ≤ Pn,where Pk =

k∑
i=

pi,
n∑
i=

pi
Pn

xi ∈ I

}
.

The set S(x,n) is a cone. By the Jensen-Steffensen inequality [, p.], the difference J(p) =∑n
i= pif (xi) – Pnf (

∑n
i=

pi
Pn xi), where f is convex on I , is non-negative for each p ∈ S(x,n).

Using a similar proof as for the Jensen functional on S+(n), we get that J is superadditive
for a convex function f and applying Theorem  we obtain that the functional η� given by
() is superadditive and the corresponding boundedness property holds.
The boundedness property of the Jensen functional under the Jensen-Steffensen condi-

tions with an additional normalizing property Pn =  was proved in [] by using a different
method.

Applications to the Jensen-Mercer functional
Mercer in paper [] proved the Jensen-type inequality which includes boundary points
of an interval. Namely, he stated the following result, which is nowadays called the Jensen-
Mercer inequality.
The Jensen-Mercer inequality. Let p = (p, . . . ,pn) be a non-negative n-tuple with Pn =∑n
i= pi > , and let x,x, . . . ,xn ∈ [a,b]. If the real function f is convex on [a,b], then

f

(
a + b –


Pn

n∑
i=

pixi

)
≤ f (a) + f (b) –


Pn

n∑
i=

pif (xi).

If f is concave, then the reversed inequality holds.
Let us fix f : [a,b] → R, and points xi ∈ [a,b], i = , , . . . ,n. Let us define the Jensen-

Mercer functional as JM : S+(n)→ R

JM(p) = Pn
(
f (a) + f (b)

)
–

∑
pif (xi) – Pnf

(
a + b –


Pn

∑
pxi

)
.

It is easy to see that the functional JM is positive homogeneous, non-negative for a convex
function f and non-positive for a concave function f . Superadditivity of the functional JM
was considered in []. In fact we have the following result.

Theorem  [] If f is convex, then the Jensen-Mercer functional JM is superadditive on
S+(n).
If f is concave, then JM is subadditive on S+(n).

Applying results of the second section, we have the following theorem.

Theorem  Let h be a non-negative submultiplicative function, f be a convex function,
and let � : [,∞)→ [,∞) be an h-concave non-decreasing function. Then the functional
ζ : S+(n) → R defined by

ζ (p) = h(Pn)�

(
f (a) + f (b) –


Pn

n∑
i=

pif (xi) – f

(
a + b –


Pn

n∑
i=

pixi

))

is superadditive on S+(n).

http://www.journalofinequalitiesandapplications.com/content/2014/1/30


Nikolova and Varošanec Journal of Inequalities and Applications 2014, 2014:30 Page 10 of 17
http://www.journalofinequalitiesandapplications.com/content/2014/1/30

Proof Consider the functionals v(p) = Pn and g(p) = JM(p). The functional v is additive
and g is superadditive and

η�(p) = h
(
v(p)

)
�

(
g(p)
v(p)

)
= ζ (p).

Hence, by applying Theorem , we get the desired result. �

Corollary  Let us suppose that the assumptions of Theorem  are fulfilled, and let h be
k-positive homogeneous. If p,q ∈ S+(n) and M ≥m >  are such that Mp ≥ q ≥mp, then

k(M)h(Pn)�
(
JM(p)
Pn

)
≥ h(Qn)�

(
JM(q)
Qn

)

≥ k(m)h(Pn)�
(
JM(p)
Pn

)
.

The proof follows from Corollary .

Applications to the Beckenbach functional
As [, Theorem ] shows, if f is convex for x ∈ [,a] and starshaped in [,b], b > a, then,
for xi ∈ [,b] and αi ∈ (, ),

∑n
i= αi = , we have

f

(
a
b

n∑
i=

αixi

)
≤ a

b

n∑
i=

αif (xi).

That inequality is known as the Beckenbach inequality. Let us consider the Beckenbach
functional Ja,b

Ja,b(p) =
a
b

n∑
i=

pif (xi) – Pnf

(
a
b

n∑
i=

pi
Pn

xi

)
,

where p,q ∈ S+(n) and a, b, f satisfy assumptions of the Beckenbach inequality.
The above-mentioned theorem shows that Ja,b(p) ≥ .

Proposition  The functional Ja,b is superadditive.

Proof It yields that

Ja,b(p + q) – Ja,b(p) – Ja,b(q)

= –(Pn +On)f

(
Pn

Pn +Qn

a
b

n∑
i=

pi
Pn

xi +
Qn

Pn +Qn

a
b

n∑
i=

qi
Qn

xi

)

+ Pnf

(
a
b

n∑
i=

pi
Pn

xi

)
+ Pnf

(
a
b

n∑
i=

qi
Qn

xi

)

≥ –(Pn +Qn)

[
Pn

Pn +Qn
f

(
a
b

n∑
i=

pi
Pn

xi

)
+

Qn

Pn +Qn
f

(
a
b

n∑
i=

qi
Qn

xi

)]

+ Pnf

(
a
b

n∑
i=

pi
Pn

xi

)
+ Pnf

(
a
b

n∑
i=

qi
Qn

xi

)
= ,
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because f is convex on [,a] and

a
b

n∑
i=

pi
Pn

xi ≤ a,
a
b

n∑
i=

qi
Qn

xi ≤ a. �

Theorem Let h be a non-negative submultiplicative function, let f be a convex function,
and let � : [,∞)→ [,∞) be an h-concave non-decreasing function. Then the functional
η� : S+(n) → R defined by

η�(p) = h(Pn)�

(
a
b

n∑
i=

pi
Pn

f (xi) – f

(
a
b

n∑
i=

pi
Pn

xi

))

is superadditive on S+(n). Furthermore, if h is k-positive homogeneous, p,q ∈ S+(n) and
M ≥m >  such that Mp ≥ q ≥mp, then

k(M)h(Pn)�
(
Ja,b(p)
Pn

)
≥ h(Qn)�

(
Ja,b(q)
Qn

)

≥ k(m)h(Pn)�
(
Ja,b(p)
Pn

)
.

Proof Consider the functionals v(p) = Pn and g(p) = Ja,b(p). The functional v is additive and
g is superadditive, and applying Theorem  we get that η� is superadditive. The bound-
edness property follows from Corollary . �

4 Case 2: function v is superadditive
In the previous section the function v was additive. Now, we will show some examples of
applications with a superadditive function v.

Applications to the Chebyshev functional for sums
Let a and b be two real n-tuples. We call them similarly ordered if

(ai – aj)(bi – bj)≥ 

for any i, j = , . . . ,n. If the above inequality is reversed, then n-tuples are called oppositely
ordered.
Let us denote

T(a,b,p) =
n∑
i=

pi
n∑
i=

piaibi –
n∑
i=

piai
n∑
i=

pibi.

The statement of the classical Chebyshev inequality is the following (see [, pp.-]).
The Chebyshev inequality. Let a = (a, . . . ,an) and b = (b, . . . ,bn) be two n-tuples of real

numbers and p = (p, . . . ,pn) be a non-negative n-tuple. If a and b are similarly ordered,
then the Chebyshev inequality

T(a,b,p) ≥ 

holds. If a and b are oppositely ordered, then the reversed inequality holds.
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In the following theorem, we consider a quasilinear property of the Chebyshev func-
tional p 
→ T(a,b,p).

Theorem  If a and b are similarly ordered real n-tuples, p ≥ , then the functional
T(a,b,p) is superadditive in the variable p. If a and b are oppositely ordered real n-tuples,
then the functional T(a,b,p) is subadditive.

Proof Let us suppose that a and b are similarly ordered n-tuples, and let us consider a sum
T(a,b,p + q) – T(a,b,p) – T(a,b,q). We have

T(a,b,p + q) – T(a,b,p) – T(a,b,q)

=
n∑
i=

pi
n∑
i=

qiaibi +
n∑
i=

qi
n∑
i=

piaibi –
n∑
i=

piai
n∑
i=

qibi

–
n∑
i=

qiai
n∑
i=

pibi = Ln.

After simple calculation we get

Ln+ = Ln +
n∑
j=

(pn+qj + qn+pj)(aj – an+)(bj – bn+).

Since p and q are non-negative and a and b are similarly ordered, we have

Ln+ ≥ Ln ≥ Ln– ≥ · · · ≥ L = ,

which means that T(a,b,p) is superadditive. If a and b are oppositely ordered, the proof
is similar. �

Let us apply results from the second section to the functional T(a,b,p).

Theorem  Let h be a non-negative submultiplicative function, and � : [,∞)→ [,∞)
is h-concave and non-decreasing.

(i) If a and b are similarly ordered, then the functional η�(p) = h(P
n)�(T(a,b,p)Pn

) is
superadditive on S+(n).
Furthermore, if h is k-positive homogeneous, p,q ∈ S+(n) andM ≥m >  are such

thatMp ≥ q ≥mp, then

k
(
M)h(P

n
)
�

(
T(a,b,p)

P
n

)
≥ h

(
Q

n
)
�

(
T(a,b,q)

Q
n

)

≥ k
(
m)h(P

n
)
�

(
T(a,b,p)

P
n

)
. ()

(ii) If a and b are oppositely ordered, then the functional η�(p) = h(P
n)�( –T(a,b,p)Pn

) is
superadditive on S+(n). If, additionally, the assumptions on h, p, q,M and m are
satisfied as in case (i), then inequalities () hold with substitution T → –T .
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Proof If a and b are similarly ordered, let us define v and g as v(p) = P
n and g(p) = T(a,b,p).

These functionals are positive homogeneous of order  and superadditive. By Theorem 
with L =  we have that η� is superadditive, and by Corollary  for the functional η� we
obtain inequality ().
If a and b are oppositely ordered, then the functional –T(a,b,p) is superadditive and

non-negative, and we proceed as in the proof of case (i). �

Remark  If �(x) = x, i.e., h(t) = t, k(t) = t, and if a and b are similarly ordered n-tuples,
then for p, q such thatMp ≥ q ≥mp, we get

MT(a,b,p) ≥ T(a,b,q) ≥mT(a,b,p). ()

If p ≥ q, i.e., M = , then from the above inequalities we get the following property of
monotonicity:

T(a,b,p) ≥ T(a,b,q). ()

If a and b are oppositely ordered, then the reversed inequalities in () and () hold.
Let us take p = p(n) = (p,p, . . . ,pn), p(n–) = (p,p, . . . ,pn–, ), p(n–) = (p,p, . . . ,pn–,

, ) · · ·p() = (p,p, , . . . , , ). Since p(n) ≥ p(n–) ≥ · · · ≥ p() we can use the abovemono-
tonicity to obtain the following result.

Corollary  If a and b are similarly ordered n-tuples and p ≥ , then

T
(
a,b,p(n)

) ≥ T
(
a,b,p(n–)

) ≥ T
(
a,b,p(n–)

) ≥ · · · ≥ T
(
a,b,p()

) ≥ 

and

T(a,b,p) ≥ max
≤i<j≤n

[
(pi + pj)(piaibi + pjajbj) – (piai + pjaj)(pibi + pjbj)

]
.

If a and b are oppositely ordered, then the reversed inequalities in the above inequalities
hold with substitution max→min in the second result.

The Chebyshev functional for integrals
Let f , g be real functions on I = [a,b]. Let S+(I) be the cone of non-negative functions p
on I such that p, pf , pg and pfg are integrable. Denote

T(f , g,p) =
∫ b

a
p(x)dx

∫ b

a
p(x)f (x)g(x)dx

–
∫ b

a
p(x)f (x)dx

∫ b

a
p(x)g(x)dx.

The Chebyshev inequality for integrals states that T(f , g,p) ≥  when f and g are similarly
ordered, i.e.,

(
f (x) – f (y)

)(
g(x) – g(y)

) ≥ .
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If f and g are oppositely ordered, then T(f , g,p) ≤ . It is known that the following identity
holds:

T(f , g,p) =



∫ b

a

∫ b

a
p(x)p(y)

(
f (x) – f (y)

)(
g(x) – g(y)

)
dxdy.

Using that identity, we obtain that

T(f , g,p + q) – T(f , g,p) – T(f , g,q)

=



∫ b

a

∫ b

a

[
p(x)q(y) + q(x)p(y)

](
f (x) – f (y)

)(
g(x) – g(y)

)
dxdy≥ 

when f and g are similarly ordered. So we have superadditivity of this functional p 
→
T(f , g,p) on the cone S+(I). If f and g are oppositely ordered, then the functional –T(f , g,p)
is superadditive. Here we will show only how Corollary  can be applied to this situation.

Corollary  Let h be a non-negative submultiplicative function, which is k-positive ho-
mogeneous and � : [,∞) → [,∞) is h-concave and non-decreasing. Let f and g be simi-
larly ordered. If p,q ∈ S+(I) such that P =

∫ b
a p(x)dx > , Q =

∫ b
a q(x)dx >  and M ≥m > 

are such that Mp(x) ≥ q(x)≥mp(x), then

k
(
M)h(P)�(

T(f , g,p)
P

)
≥ Q�

(
T(f , g,q)

Q

)

≥ k
(
m)h(P)�(

T(f , g,p)
P

)
.

Proof Let the function v be defined by v(p) = (
∫ b
a p(x)dx). It is superadditive and positive

homogeneous of order s = . The function g will be the Chebyshev functional T(f , g,p).
It is also positive homogeneous of order s = , superadditive and non-negative. By Corol-
lary  for the functional η�(p) = h(v(p))�( g(p)v(p) ) = h(P)�(T(f ,g,p)P ) with L = , K (t) = k(t),
we obtain the wanted inequality. �

Remark  If �(x) = x, i.e., h(t) = t, k(t) = t, and if the functions f and g are similarly
ordered, then for p,q ∈ S+(I) such thatMp(x) ≥ q(x)≥mp(x), we get

MT(f , g,p) ≥ T(f , g,q) ≥mT(f , g,p).

If p(x) ≥ q(x), i.e.,M = , then from the above inequalities we get the following property
of monotonicity:

T(f , g,p) ≥ T(f , g,q).

If f and g are oppositely ordered, then the reversed inequalities hold.

Applications to the Milne functional
Let us consider the Milne inequality (see [, pp.-]): Let ai, bi, i = , . . . ,n, be positive
real numbers. Then

n∑
i=

(ai + bi)
n∑
i=

aibi
ai + bi

≤
n∑
i=

ai
n∑
i=

bi.
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It is easy to get a weighted version of the Milne inequality using substitutions

ai → piai, bi → pibi,

where p, . . . ,pn are positive real numbers. Of course, it can be improved to non-negative
weights.
Define the Milne functional as follows:

JMi(p) =
n∑
i=

piai
n∑
i=

pibi –
n∑
i=

pi(ai + bi)
n∑
i=

piaibi
ai + bi

.

TheweightedMilne inequalitymeans that JMi(p) ≥ . Also, it is easy to see that JMi(αp) =
αJMi(p), i.e., JMi is positive homogeneous of order .

Theorem  The functional JMi(p) is superadditive on S+(n).

Proof It yields that

JMi(p + q) – JMi(p) – JMi(q)

=
n∑
i=

piai
n∑
i=

qibi +
n∑
i=

qiai
n∑
i=

pibi

–

( n∑
i=

pi(ai + bi)
n∑
i=

qiaibi
ai + bi

+
n∑
i=

qi(ai + bi)
n∑
i=

piaibi
ai + bi

)
= Ln.

After some (not so short, but simple) calculations, we get

Ln+ – Ln = pn

(
an

n∑
i=

qibi + bn
n∑
i=

qiai –
anbn
an + bn

n∑
i=

qi(ai + bi)

– (an + bn)
n∑
i=

qiaibi
ai + bi

)

+ qn

(
an

n∑
i=

pibi + bn
n∑
i=

piai –
anbn
an + bn

n∑
i=

pi(ai + bi)

– (an + bn)
n∑
i=

piaibi
ai + bi

)
.

The term in the first brackets, for instance, can be represented like


an + bn

n∑
i=

qi
ai + bi

(anbi – aibn).

So we have that

Ln+ ≥ Ln ≥ Ln– ≥ · · · ≥ L = ,

which means that JMi is superadditive and the proof is complete. �
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Wecan get results similar to those from the previous subsection. Let v(p) = P
n and g(p) =

JMi(p). Then the functional η� defined by

η�(p) = h
(
P
n
)
�

(
JMi(p)
P
n

)

is superadditive and it has boundedness property which follows from Corollary . As in
Remark , we have the following chain of inequalities.

Corollary  If a,b,p ≥ , then

JMi
(
p(n)

) ≥ JMi
(
p(n–)

) ≥ JMi
(
p(n–)

) ≥ · · · ≥ JMi
(
p()

) ≥ 

and

JMi(p) ≥ max
≤i<j≤n

[
(piai + pjaj)(pibi + pjbj)

–
(
pi(ai + bi) + pj(aj + bj)

)( piaibi
ai + bi

+
pjajbj
aj + bj

)]
.
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16. Krnić, M, Lovričević, N, Pečarić, J: On some properties of Jensen-Mercer’s functional. J. Math. Inequal. 6, 125-139

(2012)
17. Beckenbach, EF: Superadditivity inequalities. Pac. J. Math. 14, 421-438 (1964)
18. Hardy, GH, Littlewood, JE, Pólya, G: Inequalities. Cambridge University Press, Cambridge (1952)

10.1186/1029-242X-2014-30
Cite this article as: Nikolova and Varošanec: Properties of some functionals associated with h-concave and
quasilinear functions with applications to inequalities. Journal of Inequalities and Applications 2014, 2014:30

http://www.journalofinequalitiesandapplications.com/content/2014/1/30

	Properties of some functionals associated with h-concave and quasilinear functions with applications to inequalities
	Abstract
	Keywords

	Introduction and preliminaries
	Functionals associated with monotone h-concave and h-convex functions
	Case 1: function v is additive
	Applications to Jensen-type inequalities
	On the Jensen-Steffensen conditions
	Applications to the Jensen-Mercer functional
	Applications to the Beckenbach functional

	Case 2: function v is superadditive
	Applications to the Chebyshev functional for sums
	The Chebyshev functional for integrals
	Applications to the Milne functional

	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


