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1 Introduction

The anti-de Sitter/conformal field theories (AdS/CFT) correspondence provides us a holo-

graphic dual description of the strongly coupled field theories with a weakly coupled grav-

itational system [1–3]. In recent years, this correspondence has been applied to study

the holographic superconductor model, which is constructed by a scalar field coupled to

a Maxwell field in an AdS black hole background [4–6]. It shows that the black hole

becomes unstable and the scalar field condensates beyond the horizon below a critical tem-

perature. According to AdS/CFT correspondence, the instability of the bulk black hole

is dual to the conductor and superconductor phase transition. Recently, the holographic

dual of the insulator and superconductor system is also established in the background of an

AdS soliton [7]. Due to the potential applications to the condensed matter physics, these

gravity duals attracted a lot of attention and many properties have been disclosed, see for

examples [8]–[26].

The instability in the holographic superconductor models usually corresponds to the

second order phase transition. It was stated in [27, 28] that the holographic superconductor

via the Stückelberg mechanism allows the first order phase transition to occur when the

model parameter surpasses some threshold value. Some interesting extensions were done

in [29, 30] by including backreaction. It was found that the backreaction can trigger the

first order phase transition when the Stückelberg model parameter is below its critical

threshold. It was announced in [31] that the Stückelberg mechanism together with the

backreaction will determine the order of phase transition when applying the Stückelberg

mechanism to the AdS soliton spacetime. Generally speaking, there is only the second

order phase transition for different masses of the scalar field in the probe limit [32]. Since

the order of phase transition desponds on the choices of the couplings and the mass of the

scalar field is crucial to the formation of the scalar hair in the superconductor model, it is
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interesting to explore the effect of the scalar mass m on the order of phase transition in

the Stückelberg model especially with backreaction.

On the other hand, the entanglement entropy is a powerful tool to keep track of the

degrees of freedom in a strongly coupled system when other traditional probes might not

be available. According to the AdS/CFT correspondence, the entanglement entropy may

provide us new insights into the quantum structure of the spacetime [33, 34]. Ryu and

Takayanagi [35, 36] have presented a proposal to compute the entanglement entropy of

CFTs from the minimal area surface in the gravity side. This proposal provides a simple

and elegant way to calculate the entanglement entropy of a strongly coupled system which

has a gravity dual. Since then, there have been a lot of works studying the entanglement

entropy in various gravity theories [37–45]. Extending the investigation to the holographic

superconductors, Albash and Johnson observed in the metal/superconductor system that

the entanglement entropy in superconducting case is always less than the one in the metal

phase and the entropy as a function of temperature is found to have a discontinuous slop

at the transition temperature Tc in the case of the second order phase transition [46].

However, there is a discontinuous jump in the entropy when including the first order phase

transition [46], which means that the entropy can be used to determine the order of phase

transition. Cai et al. investigated the entanglement entropy of the holographic p-wave

superconductor phase transition and observed the second order, first order and zeroth

order phase transitions from the behavior of the entanglement entropy at some intermediate

temperatures [47, 48]. Arias and Landea computed the holographic entanglement entropy

for both p and p + ip systems, and showed that the entanglement entropy satisfies an

area law [49]. More recently, Kuang et al. examined the properties of the entanglement

entropy in the four-dimensional AdS black hole and found that near the contact interface

of the superconducting to normal phase the entanglement entropy has a different behavior

due to the proximity effect [50]. In the insulator/superconductor transition, it is shown

that the entanglement entropy for a half space first increases and reaches its maximum

at a certain chemical potential and then decreases monotonically as chemical potential

increases [51–54]. As a further step along this line, it is of great interest to generalize the

investigation on the entanglement entropy of general holographic superconductors via the

Stückelberg mechanism and study systematically the effects of the mass, model parameter

and backreaction on the entropy. Furthermore we want to obtain some general feature for

the entanglement entropy of the holographic dual models both in the backgrounds of the

AdS soliton and AdS black hole.

The outline of this work is as follows. In section II, we will study the entanglement

entropy of the general superconductors in the AdS soliton. In section III, we will extend

our discussion to the AdS black hole. We will conclude our main results in the last section.

2 General superconductor in AdS soliton

2.1 Bulk equations of motion and boundary conditions

In the probe limit, it was argued that only second order phase transition can happen in

the AdS soliton background [7]. Considering the backreaction of the matter field to the
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background, it was found that strong backreaction can bring about first order phase tran-

sition [25]. Applying the Stückelberg mechanism to the soliton configuration, it concluded

that when the backreaction of the matter field becomes weaker, the Stückelberg parame-

ter combined with the backreaction can accommodate the first order phase transition to

occur [31]. Applying the Stückelberg mechanism to insulator/superconductor phase tran-

sition in the five-dimensional AdS soliton spacetime, it stated in [52] that the entanglement

entropy serves as a good probe to the order of phase transition. We will generalize the

discussion in [51, 52, 54] to the more general superconductor by choosing various masses

m and charges q of the scalar field, and examining the formation of scalar hair in another

Stückelberg superconductor model which is different from that in ref. [52].

The generalized Stückelberg Lagrange density reads [31]

L = R+
(d− 1)(d− 2)

L2
− 1

4
FµνFµν − (∂ψ)2 −m2|ψ|2 − F (ψ)(∂p− qA)2, (2.1)

where ψ(r) and Aµ are the scalar and Maxwell fields, d is the dimensionality of the space-

time, and L is the AdS radius which will be scaled unity in our calculation. Here we will

change the strength of backreaction with the charge of the scalar field q. When q → ∞ with

the fixed qψ and qφ, the backreaction of the matter fields becomes negligible and the met-

ric solutions reduce to the pure AdS soliton spacetime. For the general function F (ψ), in

contrast to F (ψ) = ψ2 + ζψ6 discussed in ref. [52], we will choose F (ψ) = ψ2 + q2c4ψ
4 [31]

in this work, where c4 is the model parameter. Setting qA = Â and considering the

gauge symmetry Â → Â + ∂Λ and p → p + Λ, we can fix the gauge p = 0 by using the

gauge freedom.

Since we are interested in including the backreaction, we will choose the metric in the

form [25]

ds2 = r2[−eC(r)dt2 + eD(r)B(r)dη2 + dx2 + dy2] +
dr2

r2B(r)
, (2.2)

where we require that B(r) vanishes at some radius r0 which is the tip of the soliton. In

order to smooth the solutions at the tip, we should impose a period κ for the coordinate η

κ =
4πe−D(r0)/2

r20B
′(r0)

. (2.3)

Choosing the Maxwell and scalar fields in the form

A = φ(r)dt, ψ = ψ(r), (2.4)

we can obtain the equations of motion

ψ′′ +

(

5

r
+
B′

B
+
C ′

2
+
D′

2

)

ψ′ +
q2φ2e−C

r4B

(

ψ + 2q2c4ψ
3
)

− m2

r2B
ψ = 0, (2.5)

φ′′ +

(

3

r
+
B′

B
− C ′

2
+
D′

2

)

φ′ − 2q2φ

r2B

(

ψ2 + q2c4ψ
4
)

= 0, (2.6)

C ′′ +
1

2
C ′2 +

(

5

r
+
B′

B
+
D′

2

)

C ′ −
[

φ′2 +
2q2φ2

r2B

(

ψ2 + q2c4ψ
4
)

]

e−C

r2
= 0, (2.7)
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B′

(

3

r
−C ′

2

)

+B

(

ψ′2− 1

2
C ′D′+

e−Cφ′2

2r2
+
12

r2

)

+
q2φ2e−C

r4
(ψ2+q2c4ψ

4)+
1

r2
(

m2ψ2−12
)

=0, (2.8)

D′ =
2r2C ′′ + r2C ′2 + 4rC ′ + 4r2ψ′2 − 2e−Cφ′2

r(6 + rC ′)
. (2.9)

Since the equations are coupled and nonlinear, we have to count on the numerical approach.

We will integrate these equations from the tip r0 out to the infinity.

At the tip, there are four independent parameters r0, ψ(r0), φ(r0) and C(r0). Consid-

ering the two useful scaling symmetries

r → ar, (t, η, x, y) → (t, η, x, y)/a, φ→ aφ, (2.10)

C → C − 2 ln b, t→ bt, φ→ φ/b, (2.11)

we can adjust the solutions to satisfy r0 = 1 and C(r0) = 0. At r → ∞, after choosing

m2 > m2
BF = − (d−1)2

4 = −4 [55], the scalar and Maxwell fields have the form

ψ =
ψ−
rλ−

+
ψ+

rλ+
+ · · ·, φ = µ− ρ

r2
+ · · ·, (2.12)

where λ± = 2 ±
√
4 +m2 are the conformal dimensions of the operators, µ and ρ can be

interpreted as the chemical potential and charge density in the dual theory respectively.

We will fix ψ− = 0 and use ψ+ =< O+ > to describe the phase transition in the following

discussion. In order to recover the pure AdS boundary, we also need C(r → ∞) = 0 and

D(r → ∞) = 0. It should be noted that, after obtaining the solutions, we will scale them

to satisfy κ = π [25].

2.2 Holographic entanglement entropy in insulator/superconductor transition

In this section, we want to explore the properties of the phase transition through the

topological entanglement entropy method. The authors in refs. [35, 36] have presented a

proposal to compute the entanglement entropy of conformal field theories (CFTs) from the

minimal area surface in gravity side. Consider a strongly coupled field theory with gravity

dual, the entanglement entropy of subsystem Ā with its complement is given by searching

for the minimal area surface γĀ in the bulk with the same boundary ∂Ā of a region Ā.

Then the entanglement entropy of Ā with its complement is given by

SĀ =
Area(γĀ)

4GN
, (2.13)

where GN is the Newton’s constant in the bulk. For simplicity, we consider the entan-

glement entropy for a half space which corresponds to a subsystem Ā defined by x > 0,

−R
2 < y < R

2 (R → ∞), 0 ≤ η ≤ κ. Then the entanglement entropy can be deduced from

eq. (2.13) as [51, 52, 54]

Shalf
Ā

=
Rκ

4GN

∫ 1
ε

r0

re
D(r)
2 dr =

Rπ

8GN

(

1

ε2
+ S

)

, (2.14)

where r = 1
ε is the UV cutoff. The first term is divergent as ε→ 0. In contrast, the second

term does not depend on the cutoff and thus is physical important. As a matter of fact,
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Figure 1. (Color online) The entanglement entropy as a function of the chemical potential µ for

κ = π. The dashed blue line in each panel corresponds to the entropy without backreaction or

the entropy of pure AdS soliton solution. The left panel is for the case c4 = 0, m2 = −15/4 and

the three lines from top to bottom correspond to increasing q, i.e., q = 1.7 (red), q = 2 (green)

and q = 3 (blue) respectively. The middle one shows the case q = 1.7, c4 = 0 and the three lines

from top to bottom correspond to decreasing m2, i.e., m2 = −149/40 (red), m2 = −15/4 (green)

and m2 = −151/40 (blue) respectively. The right one presents the case m2 = −15/4, q = 1.7, and

the three lines correspond to decreasing c4, i.e., c4 = 0.46 (red), c4 = 0.45 (green) and c4 = 0.44

(blue) respectively.

this finite term is the difference between the entropy in the pure AdS soliton and the pure

AdS space, and S = −1 corresponds to the pure AdS soliton.

Now we are in a position to study the effects of the charge q, mass m and model

parameter c4 on the entanglement entropy. In the left panel of figure 1, we present the

value of the entanglement entropy S as a function of chemical potential µ with c4 = 0,

m2 = −15/4 for different charges q in the superconductor phase. In order to compare with

the result obtained in refs. [51, 52, 54], we also give the curve for the case q = 2. From the

picture, we can see that the entropy is a constant, i.e., S = −1 in the insulator phase. Note

that there is a phase transition between the insulator and superconductor phases around

the critical chemical potential µc, i.e., µc refers to the onset of a phase transition. After

condensate, i.e., µ > µc, the entropy first rises and arrives at its maximum as the chemical

potential µ increases, then decreases monotonously. Obviously, for each value of the charge

q, there is a discontinuity in the slope of S at the critical chemical potential µc, which

indicates that the second order phase transition occurs. Furthermore, we find that as the

charge q decreases, the critical chemical potential µc and the maximum of the entropy S

become larger, which shows that the larger critical chemical potential µc corresponds to

the larger maximum of the entropy S after the scalar field condensates in the case of the

second order phase transition.

In the middle panel of figure 1, we show the behavior of the entanglement entropy S

as a function of chemical potential µ with q = 1.7, c4 = 0 for different masses m. For each

value of the mass m, after condensate, the entropy first rises and arrives at its maximum as

the chemical potential µ increases, then decreases monotonously. Similar to the left panel,

there is a discontinuity in the slope of S at the critical chemical potential µc, which can

be regarded as the signature of the second order phase transition. Again, we see that the

larger µc corresponds to the larger maximum of S after condensate.

In the right panel of figure 1, we plot the entanglement entropy S as a function of
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Figure 2. (Color online) The condensate < O+ >
1

λ+ as a function of the chemical potential µ

for κ = π. The three lines in the left panel from top to bottom correspond to decreasing c4, i.e.,

c4 = 0.46 (red), c4 = 0.45 (green), c4 = 0.44 (blue) for the fixed m2 = −15/4 and q = 1.7. The

three lines in the right one correspond to c4 = 0.26 (red), c4 = 0.25 (green), c4 = 0.24 (blue) for

the fixed m2 = −3 and q = 1.7.

chemical potential µ with m2 = −15/4, q = 1.7 for different model parameters c4. We want

to examine the entropy by allowing the first order phase transition to occur. Similar to the

findings obtained in ref. [52], we find that the entropy becomes multivalued near the critical

chemical potential µc when c4 > 0.45. Obviously, there is a sudden jump in the entropy,

which indicates a first order phase transition there. This is in good agreement with the

results in the left panel of figure 2, where we exhibit the condensate of < O+ > for selected

values of the charge q, mass m and model parameter c4. It should be noted that, when

neglecting the backreaction of the matter fields on the background, the topological entropy

is always a constant, i.e., S = −1 and we can not distinguish the order of phase transition.

For clarity, we also detect the effect of the mass m on the condensation in this general

insulator/superconductor model, which is missing in our previous work [31]. Choosing

q = 1.7, m2 = −3 and −15/4, we show the condensate < O+ >1/λ+ as a function of the

chemical potential µ for different values of c4 in figure 2. We see that there is a threshold

value c4 of c4. When we enhance c4 across the threshold, the condensate operator does not

have a monotonic behavior, which indicates that the holographic insulator/superconductor

system in AdS soliton experiences a first order phase transition. For the fixed q = 1.7,

we find c4 = 0.25 and c4 = 0.45 corresponds to the cases of m2 = −3 and m2 = −15/4

respectively, which means that the threshold value of c4 will decrease as the mass m2

increases. Thus, we conclude that for the fixed q and c4, the more negative mass m2 make

the first order phase transition harder to occur. Moreover, the appearance of the first

order phase transition in figure 2 can be used to back up the numerical findings in the

entanglement entropy S shown in the right panel of figure 1.
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3 General superconductor in AdS black hole

3.1 Bulk equations of motion and boundary conditions

It was announced in [46] that the belt entanglement entropy experiences a jump when

allowing the first order phase transition to occur in the four-dimensional AdS black hole

background. In this section, we will extend the discussion by including the first order

phase transition through Stückelberg mechanism. Taking backreaction of the spacetime

into account, we take the ansatz for the metric of the four-dimensional AdS black hole

ds2 = −g(r)e−χ(r)dt2 +
dr2

g(r)
+ r2(dx2 + dy2). (3.1)

It requires that g(r) vanishes at some radius r+ which corresponds to the horizon of the

black hole. So the Hawking temperature reads

TH =
g′(r+)e

−χ(r+)/2

4π
. (3.2)

Assuming the matter fields in the forms

A = φ(r)dt, ψ = ψ(r), (3.3)

We can obtain equations of motion

χ′ +

[

rψ′2 +
r

g2
eχφ2

(

ψ2 + q2c4ψ
4
)

]

= 0, (3.4)

g′ −
(

3r

L2
− g

r

)

+ rg

[

1

2
ψ′2 +

1

4g
eχφ′2 +

m2

2g
ψ2 +

1

2g2
eχφ2

(

ψ2 + q2c4ψ
4
)

]

= 0, (3.5)

φ′′ +

(

2

r
+
χ′

2

)

φ′ − 2
(

ψ2 + q2c4ψ
4
)

g
φ = 0, (3.6)

ψ′′ +

(

2

r
− χ′

2
+
g′

g

)

ψ′ − m2

g
ψ +

1

g2
eχφ2

(

ψ + 2q2c4ψ
3
)

= 0. (3.7)

Using the shooting method, we can solve these equations of motion numerically by inte-

grating them from the horizon out to the infinity.

At the horizon, there are four independent parameters r+, ψ(r+), φ
′(r+) and χ(r+).

Considering the symmetry

r → ar, (t, x, y) → (t, x, y)/a, φ→ aφ, g → a2g, (3.8)

we can adjust the solutions to satisfy r+ = 1. At the asymptotic AdS boundary (r → ∞),

after choosing m2 above the BF bound m2 ≥ m2
BF = −(d− 1)2/4 = −9/4 [55], the scalar

and Maxwell fields behave like

ψ =
ψ−
rλ−

+
ψ+

rλ+
+ · · ·, φ = µ− ρ

r
+ · · ·, (3.9)

with λ± = (3 ±
√
9 + 4m2)/2. Just as in the models of AdS soliton, we also take ψ− = 0

and the scalar condensation is described by the operator ψ+ =< O+ >. After obtaining

– 7 –
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the superconducting solutions, we will take the transformation qψ → 1√
2
ψ, qφ → φ, c4

2 →
c4, and use γ = 1

q2
to describe the strength of backreaction [12, 29]. Note that this

transformation does not change the topological entanglement entropy and the order of

phase transitions. When γ → 0, i.e., q → ∞ with the fixed qψ and qφ, it reduces to the

standard holographic model in the absence of backreaction [27–29].

3.2 Holographic entanglement entropy in superconductor transition

It was found in metal/superconductor system that the entanglement entropy in supercon-

ducting case is always less than the one in the metal phase and the entropy as a function

of temperature is found to have a discontinuous slop at the transition temperature Tc in

the case of second order phase transition [46, 50]. In this section, we want to continue the

discussion by examining the effects of the backreaction γ, mass m and model parameter c4
on the entropy.

Consider the subsystem Ã with a straight strip geometry described by − l
2 6 x 6

l
2 , 0 ≤ y ≤ L̃, where l is defined as the size of region Ã and L̃ is a regulator which can be

set to infinity. Minimizing the area of hypersurface γÃ whose boundary is the same as the

stripe Ã, the entanglement entropy for a belt geometry can be expressed as [46]

S =

∫ z∗

ε
dz
z2∗
z2

1
√

(z4∗ − z4)z2g(z)
− 1

ε
, (3.10)

with

l

2
=

∫ z∗

ε
dz

z2
√

(z4∗ − z4)z2g(z)
, (3.11)

where z∗ satisfies the condition dz
dx |z∗ = 0 with z = 1

r and the UV cutoff r = 1
ε has been

taken into consideration.

The entanglement entropy as a function of temperature T with different values of the

backreaction γ and mass m for fixed l = 1 and c4 = 0 is shown in figure 3. We find

that, away from the probe limit, i.e., γ 6= 0, there is a discontinuity in the slope of S at

the critical temperature, which indicates the second order phase transition to occur. After

condensate, the entropy decreases monotonously, which is in agreement with the conclusion

obtained in [46, 50]. From the picture, it also can be concluded that the critical temperature

increases if we decrease γ or m2. Furthermore, we can get a relation, i.e., the higher critical

temperature corresponds to the smaller entropy. When γ = 0, the topological entropy and

its slope are continuous around the critical temperature. Thus, we can not determine the

order of phase transition in the probe limit, which is reasonable since we have neglected

the backreaction of matter fields on the metric.

Now we want to exhibit the behavior of the entanglement entropy if the first order

phase transition appears. Generally speaking, the order of the phase transition strongly

depends on the choice of coupling. Thus, in figure 4 we plot the condensate < O+ > as a

function of the temperature T with fixed ρ = 1 and γ = 0.1 for different model parameters

c4. We observe that, in this Stückelberg model, the high correction of the scalar field ψ4

– 8 –
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Figure 3. (Color online) The entanglement entropy as a function of temperature T for fixed l = 1

and c4 = 0 with ρ = 1. The left panel is for the case m2 = −2, the dashed line is from the Reissner-

Nordström AdS black holes and the solid curve is from the superconductor solutions. From top to

bottom, the three sets of lines correspond to decreasing γ, i.e., γ = 0.2 (red), γ = 0.1 (green) and

γ = 0 (blue) respectively. Similarly, the right panel represents the case γ = 0.1, and the three solid

lines from top to bottom correspond to decreasing m2, i.e., m2 = −1 (red), m2 = −1.5 (green) and

m2 = −2 (blue) respectively.
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Figure 4. (Color online) The condensate < O+ > as a function of the temperature T for fixed

γ = 0.1 and ρ = 1. The three lines in the left panel from right to left correspond to decreasing c4
with the fixed m2 = −2, i.e., c4 = 0.8 (red), c4 = 0.7 (green), c4 = 0.6 (blue), the right one is for

c4 = 0.4 (red), c4 = 0.3 (green), c4 = 0.2 (blue) with the fixed m2 = −1/2 respectively.

causes the first order phase transition for different values of m2. We can easily obtain the

threshold value c4 = 0.7 for the fixed m2 = −2 and c4 = 0.3 for the fixed m2 = −1/2.

Above this threshold value, the condensate operator does not have a monotonic behavior,

which indicates the appearance of first order phase transition. Correspondingly, we find

that in figure 5, where we show the entanglement entropy as a function of the temperature T

for fixed ρ = 1 and γ = 0.1, the entropy becomes multivalued near the critical temperature

Tc and there is a discontinuous jump in the entropy if c4 > c4. This means that, similar to

the findings in [52], the entropy can distinguish the order of phase transition in our general

superconductor model. It is interesting to note that the jump of the entanglement entropy

may be a quite general feature for the first order phase transition.

From above discussion, we note that the entanglement entropy can be used to deter-
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Figure 5. (Color online) The entanglement entropy as a function of the temperature T for fixed

l = 1 and γ = 0.1 with ρ = 1. The dashed line is from the Reissner-Nordström AdS black holes

and the solid curve is from the superconductor solutions. The three solid lines in the left panel

from right to left correspond to decreasing c4 with the fixed m2 = −2, i.e., c4 = 0.8 (red), c4 = 0.7

(green), c4 = 0.6 (blue), the right one is for c4 = 0.4 (red), c4 = 0.3 (green), c4 = 0.2 (blue) with

the fixed m2 = −1/2 respectively.

mine the threshold value c4. Thus, in order to see the effects of the backreaction γ, mass m

on c4 more clearly, we plot c4 as a function of the scalar mass m2 for different backreactions

γ in figure 6 by calculating the entanglement entropy of the system. It is found that for

each fixed γ, c4 decreases as we increase m2. That is to say that the more negative mass

will depress the first order phase transition. On the other hand, for the chosen m2, it is

shown that c4 decreases as we increase γ in the range [0, 0.57], but it increases very slightly

as we increase γ when γ > 0.57. Our more precise calculation shows that c4 → 1.74 when

γ = 0 and m2 → −9/4, and c4 = 0.05 if γ = 0.57 and m2 = 0, which means that there are

an upper limit of this threshold c4 = 1.74 and a bottom bound c4 = 0.05. Above this upper

limit, there is only the first order phase transition for all choice of m2 satisfying the BF

bound. If c4 ∈ [0.05, 1.74], we observe that c4 combined with m2 and γ can trigger the first

order phase transition. Below the bottom bound, there is always the second order phase

transition, which indicates that we can not rely on the backreaction coupled with the scalar

mass to trigger the first order phase transition with c4 < 0.05. This is totally different from

the insulator/superconductor transition model in the AdS soliton where the strong backre-

action can always trigger the first order phase transition [31]. Obviously, the entanglement

entropy is a good probe to explore the property of the holographic dual models.

4 Conclusions

We have introduced a general class of gravity dual models via Stückelberg mechanism

and investigated the behavior of the entanglement entropy of the systems both in the

backgrounds of the AdS soliton and AdS black hole. We noted that the holographic entan-

glement entropy is a good probe to explore the properties of the phase transition. In the

AdS soliton background, by calculating the holographic entanglement entropy for a half

space in the insulator/superconductor transition, we found that the larger critical chemical
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Figure 6. (Color online) The threshold value c4 as a function of the scalar mass m2 for dif-
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0, 0.05, 0.10, 0.20, 0.70 and 0.57 (red). The vertical dashed line is for the case m2 = m2
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= −9/4.

Note that the lines correspond to γ = 0.57 and γ = 0.7 almost coincide with each other.

potential corresponds to the larger maximum of the entropy after the scalar field conden-

sates in the case of the second order phase transition. Furthermore, we observed that the

backreaction coupled with the scalar mass and the model parameter can determine the

order of phase transition and the more negative mass will make the first order phase tran-

sition harder to happen. Extending our calculation into the AdS black hole background,

we obtained the effects of the backreaction, the scalar mass and the model parameter on

the holographic entanglement entropy for a strip shape. If the model parameter c4 larger

than some threshold value determined by the backreaction and the scalar mass, we saw

that the entropy becomes multivalued near the critical temperature and there is a discon-

tinuous jump in the entropy, which indicates the appearance of first order phase transition.

We argued that the jump of the entanglement entropy may be a quite general feature for

the first order phase transition. It is also interesting to note that we can not rely on the

backreaction coupled with the scalar mass to trigger the first order phase transition if the

model parameter is below its bottom bound, which is totally different from the insula-

tor/superconductor transition model in the AdS soliton where the strong backreaction can

always trigger the first order phase transition.
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Holographic Insulator/Superconductor Model, JHEP 10 (2012) 107 [arXiv:1209.1019]

[INSPIRE].

[53] R.-G. Cai, L. Li, L.-F. Li and R.-K. Su, Entanglement Entropy in Holographic P-Wave

Superconductor/Insulator Model, JHEP 06 (2013) 063 [arXiv:1303.4828] [INSPIRE].

[54] W. Yao and J. Jing, Holographic entanglement entropy in insulator/superconductor transition

with Born-Infeld electrodynamics, JHEP 05 (2014) 058 [arXiv:1401.6505] [INSPIRE].

[55] P. Breitenlohner and D.Z. Freedman, Positive Energy in anti-de Sitter Backgrounds and

Gauged Extended Supergravity, Phys. Lett. B 115 (1982) 197 [INSPIRE].

– 14 –

http://dx.doi.org/10.1088/1126-6708/2007/01/090
http://arxiv.org/abs/hep-th/0611035
http://inspirehep.net/search?p=find+J+JHEP,0701,090
http://dx.doi.org/10.1016/j.nuclphysb.2007.12.017
http://arxiv.org/abs/0709.2140
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B796,274
http://dx.doi.org/10.1088/1126-6708/2008/07/097
http://arxiv.org/abs/0805.1891
http://inspirehep.net/search?p=find+J+JHEP,0807,097
http://dx.doi.org/10.1088/1751-8113/42/50/504008
http://arxiv.org/abs/0905.0932
http://inspirehep.net/search?p=find+J+J.Phys.,A42,504008
http://dx.doi.org/10.1007/JHEP04(2011)025
http://arxiv.org/abs/1101.5813
http://inspirehep.net/search?p=find+J+JHEP,1104,025
http://dx.doi.org/10.1007/JHEP07(2011)109
http://arxiv.org/abs/1101.5781
http://inspirehep.net/search?p=find+J+JHEP,1107,109
http://dx.doi.org/10.1007/JHEP10(2011)147
http://arxiv.org/abs/1107.4363
http://inspirehep.net/search?p=find+J+JHEP,1110,147
http://dx.doi.org/10.1007/JHEP02(2012)095
http://arxiv.org/abs/1110.1074
http://inspirehep.net/search?p=find+J+JHEP,1202,095
http://dx.doi.org/10.1007/JHEP04(2012)122
http://arxiv.org/abs/1202.2068
http://inspirehep.net/search?p=find+J+JHEP,1204,122
http://dx.doi.org/10.1007/JHEP05(2012)079
http://arxiv.org/abs/1202.2605
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.2605
http://dx.doi.org/10.1007/JHEP07(2012)027
http://arxiv.org/abs/1204.5962
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.5962
http://arxiv.org/abs/1310.6239
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.6239
http://dx.doi.org/10.1007/JHEP01(2013)157
http://arxiv.org/abs/1210.6823
http://inspirehep.net/search?p=find+J+JHEP,1301,157
http://arxiv.org/abs/1401.5720
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.5720
http://dx.doi.org/10.1007/JHEP07(2012)088
http://arxiv.org/abs/1203.6620
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.6620
http://dx.doi.org/10.1007/JHEP10(2012)107
http://arxiv.org/abs/1209.1019
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.1019
http://dx.doi.org/10.1007/JHEP06(2013)063
http://arxiv.org/abs/1303.4828
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.4828
http://dx.doi.org/10.1007/JHEP05(2014)058
http://arxiv.org/abs/1401.6505
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.6505
http://dx.doi.org/10.1016/0370-2693(82)90643-8
http://inspirehep.net/search?p=find+J+Phys.Lett.,B115,197

	Introduction
	General superconductor in AdS soliton
	Bulk equations of motion and boundary conditions
	Holographic entanglement entropy in insulator/superconductor transition

	General superconductor in AdS black hole
	Bulk equations of motion and boundary conditions
	Holographic entanglement entropy in superconductor transition

	Conclusions

