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Abstract. In this paper, we give an overview of several dissipated results on the p-variation property of a function presented
in a suitable way. More specifically, we attempt to show: (1) usefulness of this property in a calculus of rough functions; (2) a
relatively thorough knowledge of the p-variation property of a sample function of basic stochastic processes; and (3) an almost
unexplored area of statistical analysis seeking to estimate the p-variation index.
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1. INTRODUCTION

The p-variation is a generalization of the total variation of a function. More specifically, for 0 < p < ∞ and
−∞ < a < b < +∞, the p-variation of a real-valued function f on an interval [a, b] is

vp(f ) := vp

(
f ; [a, b])

:= sup

{
n∑

i=1

∣∣f (ti) − f (ti−1)
∣∣p: a = t0 < t1 < · · · < tn = b, n � 1

}
. (1)

We say that f has bounded p-variation if vp(f ) < ∞. Thus, a function has bounded total variation if it has
bounded 1-variation. A regulated function f is called rough if it has infinite 1-variation, that is, if v1(f ) = +∞.
The p-variation gives a convenient way to measure a degree of roughness.

More importantly, the p-variation appears to be a useful tool in calculus of rough functions. In Section 2
below, we give few selected results from [16] illustrating both the calculus and importance of the p-variation
property. To apply this calculus we need to know those values of p for which the p-variation of a given function
is bounded. Since vp(f )1/p is a nonincreasing function of p, there is a minimal value p0 such that vp(f ) < ∞
for each p > p0. Thus, for a function f on an interval [a, b], we define the p-variation index of f by

υ
(
f ; [a, b]) :=

{
inf{p > 0: vp(f ; [a, b]) < ∞} if the set is nonempty,

+∞ otherwise.
(2)
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Best known examples of rough functions are sample functions of suitable classes of stochastic processes. In
Section 3 below, we review boundedness of p-variation results for basic classes of stochastic processes. In the last
section, we discuss two methods of estimating the p-variation index of a function given by finitely many values.

We continue the introduction with more details about the p-variation for point functions as well as for interval
functions.

Classes of rough functions. As examples in Section 3 show, one obtains more exact information about rough-
ness of a function when the power function u �→ up of increments |f (ti) − f (ti−1)| in (1) is replaced by a more
general function u �→ �(u), which gives rise to what is called the �-variation or a generalized variation. Let
� be a strictly increasing continuous unbounded function on [0,∞) such that �(0) = 0. The class of all such
functions is denoted by V . Let J = [a, b] be a closed interval of real numbers with −∞ < a � b < +∞. If a < b,
an ordered set κ = {ti}ni=0 of points in [a, b] such that a = t0 < t1 < · · · < tn = b is called a (point) partition. The
set of all point partitions of [a, b] is denoted by P[a, b].

Let X = (X,‖ · ‖) be a Banach space, and let f be a function from an interval J = [a, b] into X. If a < b, for
κ = {ti}ni=0 in P[a, b], the �-variation sum is

s�(f ;κ) :=
n∑

i=1

�
(∥∥f (ti) − f (ti−1)

∥∥).
Thus, the �-variation of f over [a, b] is 0 if a = b and otherwise

v�(f ) := v�(f ;J) := sup
{
s�(f ;κ): κ ∈ P(J )

}
.

We say that f has bounded �-variation if v�(f ) < ∞. The class of all functions from J into X with bounded
�-variation is denoted by W�(J ;X), and W�(J ) := W�(J ;R) if X = R. The class W�(J ;X) need not be a
vector space in general but can be enlarged to such a space, which also can be made a Banach space. Since we
do not use it in this paper, we settle for the following special case.

Taking �p(u) := up , u � 0, with 0 < p < ∞, let vp(f ;J) := v�p(f ;J), which agree with (1) when X = R.
In this case, we write Wp :=W�p . For 1 � p < ∞, let

‖f ‖J,(p) := vp(f ;J)1/p and ‖f ‖J,[p] := ‖f ‖sup + ‖f ‖J,(p),

where ‖f ‖sup = supt∈J ‖f (t)‖ is the sup norm of f . By Hölder’s and Minkowski’s inequalities, it follows that
‖ · ‖J,(p) is a seminorm and ‖ · ‖J,[p] is a norm on Wp(J ;X). In fact, Wp(J ;X) is a Banach space with norm
‖ · ‖J,[p].

A function f from an interval J ⊂ R into X is called regulated on J or f ∈ R(J ;X) if it has left and
right limits in X everywhere. In particular, f ∈ R([a, b];X) with a < b if f has a limit f (t−) := lims↑t f (s)

for each t ∈ (a, b] and a limit f (t+) := lims↓t f (s) for each t ∈ [a, b). We call �−f (t) := f (t) − f (t−) the
left jump of f at t ∈ (a, b], and �+f (t) := f (t+) − f (t) the right jump of f at t ∈ [a, b). For J = [a, b],
let �−

J f (t) := �−f (t) if t ∈ (a, b] or 0 if t = a, let �+
J f (t) := �+f (t) if t ∈ [a, b) or 0 if t = b, and let

�±
J f := �−

J f + �+
J f . A regulated function is bounded and has at most countably many nonzero jumps. A

function is regulated if and only if it is a uniform limit of step functions. Also, a function is regulated on [a, b] if
and only if it has bounded �-variation on [a, b] for some convex function � ∈ V (see [10] or [15, Part III]).

Again let X = (X,‖ · ‖) be a Banach space, and let S be a set in R. A function f : S → X is said to be Hölder
of order α, or simply α-Hölder if

‖f ‖S,(Hα) := sup
{‖f (t) − f (s)‖/|t − s|α: s, t ∈ S, s 	= t

}
< +∞.

The class of all α-Hölder functions from S to X is denoted by Hα(S;X), and Hα(S) := Hα(S;R) if X = R. If
f has the α-Hölder property, then f has bounded p-variation with p = 1/α. A continuous function of bounded
p-variation for some 1 � p < ∞ need not have the α-Hölder property. For example, the series

∞∑
k=1

sin kt

k log k
, 0 � t � 1,
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converges uniformly to the sum g, which is absolutely continuous and, hence, has bounded p-variation for each
1 � p < ∞. However, this g satisfies no Hölder property of order α > 0 (see [6, Section 10.6.1 (2)] for details).

Let f : [a, b] → X have bounded p-variation on [a, b]. For any a < u < b, we have

vp

(
f ; [a,u])+ vp

(
f ; [u,b])� vp

(
f ; [a, b]).

Thus, the function [a, b] 
 t �→ vp(f ; [a, t]) := w(t) is nondecreasing and, for any a � s � t � b,

∥∥f (t) − f (s)
∥∥�

[
w(t) − w(s)

]1/p
. (3)

Conversely, if this holds for some nondecreasing w, then f has bounded p-variation. Thus, f has bounded
p-variation on [a, b] if and only if (3) holds for some nondecreasing function w.

Local p-variation. As before, let X be a Banach space, J = [a, b], and 0 < p < ∞. For a function f : J → X,
its local p-variation is defined by

v∗
p(f ) := v∗

p(f ;J) := inf
λ∈P(J )

sup
{
sp(f ;κ): κ ⊃ λ

}
.

For a regulated function f : J → X, let

σp(f ) := σp(f ;J) :=
∑

a<t�b

∥∥�−f (t)
∥∥p +

∑
a�t<b

∥∥�+f (t)
∥∥p

.

Then we have σp(f ) � v∗
p(f ) � vp(f ). We say that a function f : J → X has p∗-variation on J and write

f ∈W∗
p(J ;X) if σp(f ) = v∗

p(f ) < +∞.
By Propositions 2.12 and 2.13 of [15, Part II], W∗

p = Wp if p < 1 and v∗
1(f ) = v1(f ). If 1 � q < p < ∞,

then Wq ⊂W∗
p ⊂Wp . For 1 < p < ∞ and an even integer M > 1, the series

∞∑
k=1

M−k/p sin
(
2πMkt

)
, 0 � t � 1,

converges uniformly to the sum g, which is (1/p)-Hölder continuous, and so g ∈Wp[0,1]. However, if
M1−(1/p) > 4, then g 	∈W∗

p[0,1].
For 1 < p < ∞ and a regulated function f : J → X, one can show that f has p∗-variation on J if and only

if f is a limit in (Wp,‖ · ‖[p]) of step functions. Also, f has p∗-variation on J if and only if the finite limit
limκ sp(f ;κ) exists under refinements of partitions κ of J .

Interval functions. Each nondecreasing and right-continuous function h on a real line R defines the Lebesgue–
Stieltjes measure λh on R by letting λh((u, v]) := h(v) − h(u) for −∞ < u � v < +∞ and then extending λh

to the Borel σ -algebra. Certainly, a σ -finite extension is not possible if h is a rough function. It is known (see,
e.g., Appendix B.1 of [33]) that an additive function λ on an algebra extends to a measure if and only if λ is
exhaustive and upper-continuous at ∅. We will see that functions defined and upper-continuous at ∅ only on
intervals have a close relation with regulated point functions, similar to the one between the Lebesgue–Stieltjes
measure λh and the function h.

Let J be a nonempty interval in a real line R, let I(J ) be the class of all subintervals of J which may
be closed or open at either end, including empty set, and let X = (X,‖ · ‖) be a Banach space. Any function
µ: I(J ) → X is called an interval function on J . An interval function µ on J is called additive if µ(A ∪ B) =
µ(A) + µ(B) whenever A,B ∈ I(J ) are disjoint and A ∪ B ∈ I(J ). If µ is an additive interval function, then
µ(∅) = 0. For intervals, An ↓ A means A1 ⊃ A2 ⊃ · · · and ∩∞

n=1An = A. An interval function µ on J is called
upper-continuous if µ(An) → µ(A) for any A1,A2, . . . ∈ I(J ) such that An ↓ A. If the latter property holds
only with A = ∅, then µ is called upper-continuous at ∅. The class of all additive and upper-continuous interval
functions on J with values in X is denoted by AI(J ;X).
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Given a regulated point function, one can define an additive interval function as follows. Let h be a regulated
function on [a, b] with values in X. Define the interval function µh ≡ µh,[a,b] on [a, b] by

µh((u, v)) := h(v−) − h(u+) for a � u < v � b,

µh({u}) := �±
[a,b]h(u) for u ∈ [a, b], (4)

and extend µh to all elements of I[a, b] by additivity. Note that µh does not depend on the values of h at its
jump points in (a, b) and µh((u, v]) = h(v) − h(u) for a � u < v � b if h is right-continuous.

In a converse direction, given any interval function µ on [a, b], define a point function Rµ,a on [a, b] by

Rµ,a(t) :=
{

µ(∅) if t = a,

µ([a, t]) if t ∈ (a, b]. (5)

Now the upper-continuity property of an additive interval function can be characterized as follows.

THEOREM 1. For an additive interval function µ: I[a, b] → X, the following are equivalent:
(a) µ ∈AI([a, b];X);
(b) µ is upper-continuous at ∅;
(c) µ = µh on I[a, b] for some regulated function h such that h(a) = 0;
(d) Rµ,a is regulated, Rµ,a(t−) = µ([a, t)) for t ∈ (a, b], and Rµ,a(t+) = µ([a, t]) for t ∈ [a, b).

Using (d), it follows that, for an additive and upper-continuous interval function µ on [a, b], we have µ = µh

if h = Rµ,a .

p-Variation of interval functions. Let J be a nonempty interval, open or closed at either end. An ordered
collection {Ai}ni=1 of disjoint nonempty subintervals Ai of J is called an interval partition of J if their union
is J and s < t for all s ∈ Ai and t ∈ Aj whenever i < j . The class of all interval partitions of J is denoted by
D(J ). An interval partition A is a refinement of an interval partition B, written A� B, if each interval in A is
a subinterval of an interval in B.

Let J be a nonempty interval, let X = (X,‖ · ‖) be a Banach space, and let µ be an interval function on J

with values in X. For A= {Ai}ni=1 ∈ D(J ), the p-variation sum is

sp(µ;A) :=
n∑

i=1

∥∥∥∥∥µ
(

i⋃
j=1

Aj

)
− µ

(
i−1⋃
j=1

Aj

)∥∥∥∥∥
p

,

where the union over the empty set of indices is defined as the empty set. If µ is additive, then

sp(µ;A) =
n∑

i=1

∥∥µ(Ai)
∥∥p

.

The p-variation of µ on J is the interval function vp(µ) := vp(µ; ·) on J defined by

vp(µ;A) := sup
{
sp(µ;A): A ∈ D(A)

}
if A ∈ I(J ) is nonempty, or as 0 if A = ∅. We say that µ has bounded p-variation if vp(µ;J) < ∞. The class
of all interval functions µ: I(J ) → X with bounded p-variation is denoted by Ip(J ;X). For 1 � p < ∞, let

‖µ‖J,(p) := vp(µ;J)1/p and ‖µ‖J,[p] := ‖µ‖sup + ‖µ‖(p),

where ‖µ‖sup = sup{‖µ(A): A ∈ I(J )} is the sup norm of µ. As for point functions, we have that, on Ip(J ;X),
‖ · ‖J,(p) is a seminorm and ‖ · ‖J,[p] is a norm, and (Ip(J ;X),‖ · ‖J,[p]) is a Banach space.



106 R. Norvaiša

Let J be a nonempty interval, and let µ ∈ AI(J ;X). For t ∈ J , the singleton {t} is an atom of µ if
µ({t}) 	= 0. The set of all atoms of µ is at most countable, and so the following is well defined. For 0 < p < ∞,
if A ∈ I(J ) is nonempty, let

σp(µ;A) :=
∑
t∈A

∥∥µ({t})∥∥p and v∗
p(µ;A) := inf

B∈D(A)
sup
{
sp(µ;A): A�B

}
,

and if A = ∅, we let the two quantities to be equal to 0. Then σp(µ) = σp(µ; ·) and v∗
p(µ) = v∗

p(µ; ·) are
interval functions on J . In general, we have the following relations:

σp(µ;A) � v∗
p(µ;A) � vp(µ;A)

for each A ∈ I(J ). For 0 < p < ∞, we say that µ has p∗-variation and write µ ∈ AI∗
p(J ;X) if σp(µ;J) =

v∗
p(µ;J) < +∞.

It is not hard to prove that if µ ∈ AI∗
p(J ;X), then, for each A ∈ I(J ), the limit limA sp(µ;A) exists

under refinements of interval partitions A of A and is finite. Also, for µ ∈ AI(J ;X), if 1 � q < p < ∞, then
Iq(J ;X) ⊂AI∗

p(J ;X).
We will say that µ is a rough interval function if v1(µ) = +∞.

Historical notes. The notion of �-variation of a (point) function is suggested by Young [63]. He attributed the
introduction of the power case �(u) = up to Norbert Wiener. Wiener [59], in fact, defined

v̄p(f ) := lim
ε↓0

sup
{
sp(f ;κ): |κ| � ε

}
.

It is is different, in general, from the local p-variation v∗
p(f ) introduced by Love and Young [35]. Before Young

[61], the p-variation was used by Lévy [34] in connection with stable stochastic processes and by Marcinkiewicz
[41] in connection with Fourier series.

2. CALCULUS OF ROUGH FUNCTIONS

Integration. We wish to be able to integrate one rough function with respect to another rough function or with
respect to a rough interval function. Certainly, we cannot use the Lebesgue–Stieltjes integral for this purpose.
The Riemann–Stieltjes and the refinement Riemann–Stieltjes integrals have defects when an integrand and an
integrator have a jump at the same point, even if both functions have bounded 1-variation. In this section, we
survey few selected results from the calculus based on the Kolmogorov integral used to integrate with respect
to a rough interval function. Its superiority in the present context over other integrals, including the refinement
Young–Stieltjes integral, is acknowledged.

We recall definitions and discuss some properties of the integrals just mentioned referring to [16] for details.
For simplicity, we restrict our presentation to the case where functions take values in a Banach algebra B

with norm ‖ · ‖ (the case of a Banach space-valued functions is treated in [16]). Let f and h be B-valued
functions defined on [a, b] for some −∞ < a � b < +∞. If κ = {ti}ni=0 is a partition of [a, b] with a < b, then
|κ| := maxi |ti − ti−1| is its mesh and an ordered pair τ = (κ, {si}ni=1) is called a tagged partition of [a, b] if
si ∈ [ti−1, ti] for i = 1, . . . , n. The tagged partition τ is a refinement of a partition λ of [a, b] if λ ⊂ κ . For a
tagged partition τ = ({ti}ni=0, {si}ni=1) of [a, b], the Riemann–Stieltjes sum based on τ is

SRS(f, dh; τ) :=
n∑

i=1

f (si)
[
h(ti) − h(ti−1)

]
.

The Riemann–Stieltjes or RS integral (RS)
∫ b
a

f dh is defined to be 0 in B if a = b and otherwise exists and
equals A ∈ B if, for a given ε > 0, there is a δ > 0 such that∥∥A − SRS(f, dh; τ)

∥∥< ε (6)
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for each tagged partition τ = ({ti}ni=0, {si}ni=1) of [a, b] with mesh |{ti}ni=0| < δ. The refinement Riemann–

Stieltjes or RRS integral (RRS)
∫ b

a
f dh is defined to be 0 in B if a = b and otherwise exists and equals A ∈ B

if, for each ε > 0, there is a point partition λ of [a, b] such that (6) holds for each tagged partition τ of [a, b]
which is a refinement of λ. The RRS integral extends the RS integral, since, for any partition λ, a refinement
κ of λ has mesh less than that of λ.

It is easy to check that an integral of an indicator function with respect to itself does not exist in the RRS

sense and, hence, in the RS sense. More generally, if (RS)
∫ b
a

f dh exists, then f and h have no common

discontinuities, that is, for each t ∈ [a, b], at least one of f and h is continuous at t . Also, if (RRS)
∫ b

a
f dh

exists, then f and h have no common one-sided discontinuities, that is, for each t ∈ (a, b], at least one of f
and h is left-continuous at t and, for each t ∈ [a, b), at least one of f and h is right-continuous at t .

We prefer integrals which have no restrictions on jumps of an integrand and integrator. Among several such
classical integrals, we discuss the refinement Young–Stieltjes integral defined as follows. Suppose, in addition,
that h is a regulated function on [a, b]. For a point partition {ti}ni=0 of [a, b] with a < b, a tagged partition
({ti}ni=0, {si}ni=1) is called a Young tagged point partition if ti−1 < si < ti for each i = 1, . . . , n. Given a Young
tagged point partition τ = ({ti}ni=0, {si}ni=1), define the Young–Stieltjes sum SYS(f, dh; τ) based on τ by

SYS(f, dh; τ) :=
n∑

i=1

{
[f �+

[a,b]h](ti−1) + f (si)
[
h(ti−) − h(ti−1+)

]+ [f �−
[a,b]h](ti)

}
. (7)

The refinement Young–Stieltjes or RYS integral (RYS)
∫ b

a
f dh is defined to be 0 in B if a = b and otherwise

exists and equals A ∈ B if, for each ε > 0, there is a point partition λ of [a, b] such that∥∥A − SYS(f, dh; τ)
∥∥< ε (8)

for each Young tagged point partition τ of [a, b] which is a refinement of λ.
We say that the full Stieltjes integral (S)

∫ b
a

f dh exists if (a), (b), and (c) hold, where

(a) (RYS)
∫ b

a
f dh exists;

(b) if f and h have no common one-sided discontinuities, then (RRS)
∫ b

a
f dh exists;

(c) if f and h have no common discontinuities, then (RS)
∫ b

a
f dh exists.

Then let

(S)

b∫
a

f dh := (RYS)

b∫
a

f dh.

Now we turn to defining an integral of a point function with respect to an interval function. For a nonempty
interval J , a Young interval partition of J is any interval partition consisting of singletons and open intervals.
A tagged Young interval partition of J is a Young interval partition of J together with a member (tag) of each
interval in the partition. We skip singletons with tags from the notation of a tagged Young interval partition.
Let J be an interval, and let µ be an additive interval function on J with values in B. If J is nonempty, for a
tagged Young interval partition

σ = ({(ti−1, ti )
}n
i=1, {si}ni=1

)
of J , let

SYS(f, dµ;J,σ ) :=
n∑

i=1

f (si)µ((ti−1, ti )) +
n∑

i=0

f (ti)µ({ti} ∩ J). (9)

The Kolmogorov integral
∫
J

f dµ is defined to be 0 in B if J is empty and otherwise exists and equals A ∈ B

if, for each ε > 0, there is an interval partition A of J such that∥∥A − SYS(f, dµ;J,σ )
∥∥< ε (10)
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for each tagged Young interval partition σ of J which is a refinement of A. This is a special case of the
integral introduced by Kolmogorov [26].

Let µ be an additive and upper-continuous interval function on J , and let f be a bounded function on J

such that the Kolmogorov integral
∫
J

f dµ exists. Then

I(J ) 
 A �→
∫
A

f dµ

is an additive and upper-continuous interval function on J . Thus, in the case J = [a, b], for any a � c � b, we
have ∫

[a,b]
f dµ =

∫
[a,c)

f dµ +
∫

[c,b]
f dµ =

∫
[a,c]

f dµ +
∫

(c,b]
f dµ. (11)

The additivity property of the RYS integral means that, for each a � c � b,

(RYS)

b∫
a

f dh = (RYS)

c∫
a

f dh + (RYS)

b∫
c

f dh. (12)

One can see a difference between the two additivity properties if one takes h defined on [a, b] = [0,2] by
h(t) := 0 for t ∈ [0,1) ∪ (1,2] and h(1) := 1, µ := µh,[0,2] ≡ 0 defined by (4), and c = 1. Then each integral
in (11) is zero, while the two integrals on the right of (12) are equal to f (1)�−h(1) and f (1)�+h(1),
respectively. This example shows that the two integration methods define two different families of indefinite
integrals { ∫

[0,t]
f dµ: t ∈ [0,2]

}
	=
{

(RYS)

t∫
0

f dh: t ∈ [0,2]
}

,

and so give rise to two different ways to model evolutions.
The following shows that the question of existence of the Kolmogorov integral can be reduced to the

question of existence of the RYS integral. Let µ be an additive and upper-continuous interval function on
[a, b] with values in B, and let h := Rµ,a be defined by (5). Then, for any function f : [a, b] → B, we have

∫
[a,b]

f dµ = (RYS)

b∫
a

f dh

if either side is defined. This follows from the fact that µ = µh noted following Theorem 1 and since

SYS

(
f, dµh; [a, b], σ )= SYS(f, dh; τ)

for each

σ = ({(ti−1, ti )
}n
i=1, {si}ni=1

)
and τ = ({ti}ni=0, {si}ni=1

)
.

It appears simpler to treat the existence question for the RYS integral described in the next subsection.

Existence of the full Stieltjes integral. Let f ∈ Wq [a, b], h ∈ Wp[a, b], and p−1 + q−1 > 1. In 1936,

L.C. Young [61] proved that
∫ b

a
f dh exists (1) as the RS integral if the two functions have no common

discontinuities, (2) as the RRS integral if the two functions have no common one-sided discontinuities, and
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(3) in the sense defined by L.C. Young (not defined here) for any two such functions. Also, in which ever
sense the integral exists, the inequality

∣∣∣∣∣
b∫

a

f dh

∣∣∣∣∣� K‖f ‖[q]‖h‖(p)

holds with a finite constant K = K(p,q). L.C. Young acknowledged that E.R. Love had contributed to finding
a proof of this inequality, and so we call it the Love–Young inequality.

The p- and q-variation conditions are no longer sufficient for the stated integrability fact if p−1 + q−1 = 1.
But one can replace these conditions by the more general �- and �-variation condition as follows. Let
�,� ∈ V , and let φ, ψ be their inverses, respectively, such that

∞∑
k=1

φ(k−1)ψ(k−1) < +∞. (13)

If f ∈ W�[a, b] and h ∈ W� [a, b], then the full Stieltjes integral
∫ b
a

f dh exists and, for any s ∈ [a, b], we
have ∣∣∣∣∣

b∫
a

[
f − f (s)

]
dh

∣∣∣∣∣� K

∞∑
k=1

φ
(v�(f )

k

)
ψ
(v�(h)

k

)

for some finite constant K . This result follows from Theorems 5.1 and 5.5 of Young [64].
D’yačkov [17] found necessary and sufficient conditions for a pair of convex functions � and � in V such

that the Riemann–Stieltjes integral (RS)
∫ b
a f dh exists for any f ∈W�[a, b] and h ∈W� [a, b], provided that

f and h have no common discontinuities. More generally, we will say that a pair of functions �,� ∈ V form
a Stieltjes pair if the full Stieltjes integral (S)

∫ b
a

f dh exists for any f ∈W�([a, b];B) and h ∈W�([a, b];B),
where B is a Banach algebra.

The necessary and sufficient integrability conditions are formulated in terms of increasing sequences {nk} =
{n1, n2, . . .} of positive integers which may be finite or infinite. Also, an inverse of a convex function in V will
be a continuous nondecreasing function from [0,∞) onto itself, which is subadditive and called a modulus of
continuity. Let ξ be a modulus of continuity. A sequence {nk} is called ξ -lacunary if, for some C < ∞, the
inequalities

m∑
k=1

nkξ
(
n−1

k

)
� Cnmξ

(
n−1

m

)
and

∞∑
k=m

ξ
(
n−1

k

)
� Cξ

(
n−1

m

)
hold for each m = 1,2, . . . . There exists an infinite ξ -lacunary sequence {nk} if and only if v = o(ξ(v))

as v ↓ 0. If a convex function � ∈ V is such that, for some a > 0 and 1 < α < β < ∞, the inequalities
uβ � �(u) � uα hold for each u ∈ [0, a], then the sequence {2k} is �−1-lacunary.

Let φ and ψ be moduli of continuity. We say that a sequence η = {nk} is a W(φ,ψ)-sequence if

inf
k�1

max

{
φ(n−1

k+1)

φ(n−1
k )

,
ψ(n−1

k+1)

ψ(n−1
k )

,
nkφ(n−1

k )

nk+1φ(n−1
k+1)

,
nkψ(n−1

k )

nk+1ψ(n−1
k+1)

}
> 0.

The sequence {2k} is W(φ,ψ)-sequence for φ and ψ . For moduli of continuity φ, ψ and for a sequence
η = {nk}, let

�(φ,ψ;η) :=
∞∑

k=1

nkφ
(
n−1

k

)
ψ
(
n−1

k

)
� +∞.

For any moduli of continuity φ and ψ , one can show that �(φ,ψ; {2k}) < +∞ if and only if (13) holds.



110 R. Norvaiša

The next statement is a special case of a theorem proved in [16], which extends Theorem 2 of
D’yačkov [17].

THEOREM 2. The following conditions about convex functions � and � in V with inverses φ and ψ ,
respectively, are equivalent:

(a) � and � form a Stieltjes pair;
(b) �(φ,ψ;η) < +∞ for any φ- and ψ-lacunary sequence η;
(c) �(φ,ψ;η) < +∞ for some W(φ,ψ)-sequence η.

Since (c) holds for the sequence {2k} if and only if (13) holds, the preceding theorem implies the result
of L.C. Young. Also, using Theorem 2 one can show (see [16]) that Beurling’s condition is sufficient for the
integrability: convex functions � and � in V form a Stieltjes pair if

(RS)

1∫
0+

φ(u)

u
dψ(u) < +∞.

Product integration. To give an heuristic idea of a product integral, consider the Riemann integral equation

f (t) = f (a) +
t∫

a

f (s)A(s)ds, a � t � b,

with respect to a vector-valued function f , where A is a matrix-valued continuous function on [a, b]. Let
t ∈ (a, b], and let κ = {ti}ni=0 be an interval partition of [a, t]. Letting �i := ti − ti−1 for i = 1, . . . , n, if f is
a solution, then we approximately have

f (t) ≈ f (tn−1) + f (tn−1)A(tn−1)�n = f (tn−1)
[
I + A(tn−1)�n

]
= f (a)

[
I + A(t0)�1

] · · · [I + A(tn−1)�n

]
,

where I is the identity matrix. Taking a limit of the right side as the mesh |κ| = maxi �i of the partition κ

goes to 0, if it exists, we get the matrix

t

a

(
I + A(s)ds

) := lim|κ|↓0

[
I + A(t0)�1

] · · · [I + A(tn−1)�n

]
, (14)

called the product integral of A over [a, t]. If this holds for each t ∈ (a, b], the product integral gives the
solution

f (t) = f (a)

t

a

(
I + A(s)ds

)
, a � t � b.

This representation is originated by Volterra [57]. Almost at the same time, Peano [47] suggested a represen-
tation of the solution as a series of iterated integrals of the form

f (t) = f (a) +
∞∑

k=1

∫
a<s1<s2<···<sk<t

f (a)A(s1)A(s2) · · ·A(sk)ds1 ds2 · · · dsk

for each t ∈ (a, b], which is often considered as a series representation of the product integral (14). Similarly,
if h is a matrix-valued C1 function on [a, b], the unique solution f of the Riemann–Stieltjes integral equation

f (t) = f (a) +
t∫

a

f dh, a � t � b,
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can be represented using the product integral with respect to h,

t

a

(I + dh) := lim|κ|↓0
[I + �1h] · · · [I + �nh], (15)

where �ih := h(ti) − h(ti−1) for i = 1, . . . , n. Apparently, the existence and some properties of the product
integral with respect to a rough function h were treated only in [15, Part II], where one can find further
related references.

In [16], the product integral is defined and treated with respect to an interval function, and so it is
a multiplicative interval function. In this section, we consider interval functions with values in a Banach
algebra. Let B be a Banach algebra with norm ‖ · ‖ and identity 1I. The set of all interval functions on
J = [a, b] with values in B having bounded p-variation is denoted by Ip(J ;B). The subset AIp(J ;B)

consists of all elements in Ip(J ;B) which are additive and upper-continuous. Endowed with the norm
‖ · ‖J,[p] and 1 � p < ∞, the two sets are Banach spaces.

Let µ be a B-valued additive interval function on J = [a, b] with a < b. For a nonempty interval A ∈ I(J )

and for an interval partition A= {Ai}ni=1 of A, let

P(µ;A,A) :=
n∏

i=1

(
1I + µ(Ai)

)= (1I + µ(A1)
) · · · (1I + µ(An)

)
.

Since B may not be commutative, the product sign is used with the prescribed order, different from the one
in [16]. Also in this paper, the product integral with respect to µ is the interval function

P := (1I + dµ): A �→
A

(1I + dµ) =:P(µ;A), A ∈ I(J ),

defined by A(1I + dµ) := limA P(µ;A,A) if A is nonempty and the limit exists under refinements of
partitions A of A, and

∅
(1I + dµ) := 1I.

The product integral (1I + dµ), if it exists, is ∗-multiplicative, that is, for any A,B ∈ I(J ) such that
A ∪ B ∈ I(J ) and s < t for s ∈ A, t ∈ B if both intervals are nonempty, we have

P(µ;A ∪ B) = P(µ;A)P(µ;B).

The product integral with the opposite order of multiplication is called multiplicative.
For a real-valued interval function, we have the following equivalent statements:

THEOREM 3. Let µ be a real-valued additive upper-continuous interval function on J . (1I + dµ) exists
and is nonzero on J if and only if µ ∈ AI∗

2(J ) and µ({t}) 	= −1 for all t ∈ J . If either of the two equivalent
statements hold, then, for each A ∈ I(J ),

A

(1 + dµ) = eµ(A)
∏
A

(1 + µ)e−µ,

where the product converges absolutely for nonempty A and equals 1 for A = ∅.

The situation is not as clear when B is a general Banach algebra. There are examples (discussed in [16])
of Banach algebras B and interval functions µ on J with values in B such that µ ∈ AIp(J ;B) for all
p ∈ (2,∞) but the product integral with respect to µ does not exist. For an interval function µ on J with
values in an arbitrary Banach algebra B, the following holds.

THEOREM 4. If B is a Banach algebra and µ ∈ AIp(J ;B) for some p < 2, then (1I + dµ) exists and
the nonlinear operator P

AIp(J ;B) 
 µ �→P(µ) = (1I + dµ) ∈ Ip(J ;B) (16)
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acts between the two Banach spaces.

We call P the product integral operator. Due to the earlier result in [15, Part II] for the product integral
operator acting between point functions, it is not surprising that P has a Taylor series expansion around
each element µ ∈ AIp(J ;B), and the series has infinite radius of uniform convergence. The kth term of the
Taylor series is defined by the interval function Qk

µ(ν) = {Qk
µ(A): A ∈ I(J )}, where

Qk
µ(ν)(A) =



∫
A

µ̂((s, b] ∩ A)ν(ds)µ̂([a, s) ∩ A) if k = 1,∫
A

µ̂((s1, b] ∩ A)ν(ds1)
∫
[a,s1)∩A

µ̂((s2, b] ∩ A)ν(ds2)

· · · ∫[a,sk−1)∩A
µ̂((sk, b] ∩ A)ν(dsk)µ̂([a, sk) ∩ A) if k � 2.

(17)

More specifically, the following holds.

THEOREM 5. Let B be a Banach algebra and 1 � p < 2. The product integral operator (16) is a uniformly
entire mapping on AIp(J ;B). More specifically, for µ ∈AIp(J ;B), the following hold:

(a) for each integer k � 1 and ν ∈AIp(J ;B), relation (17) defines the interval function

Qk
µ(ν) = {Qk

µ(ν)(A): A ∈ I(J )
}

of bounded p-variation;
(b) for each integer k � 1, the mapping

AIp(J ;B) 
 ν �→ Qk
µ(ν) ∈ Ip(J ;B)

is a k-homogeneous polynomial;
(c) the power series ∑

k�1

Qk
µ(ν − µ) from AIp(J ;B) to Ip(J ;B)

around µ has infinite radius of uniform convergence and its sum is equal to P(ν) −P(µ).

The following is a special case of the preceding theorem: a Taylor series expansion of the product integral
operator around 0.

COROLLARY 6. Let µ ∈AIp([a, b];B) with 1 � p < 2 and a < b. Then, for any interval A ⊂ J ,

A

(1I + dµ) = 1I + µ(A) +
∑
k�2

∫
A

µ(ds1)

∫
[a,s1)∩A

µ(ds2) · · ·
∫

[a,sk−1)∩A

µ(dsk). (18)

This Taylor expansion has a form analogous to Peano’s series mentioned earlier.
The product integral with respect to an interval function also gives solutions of suitable linear integral

equations. First, consider the most straightforward candidate of such a linear Kolmogorov integral equation:

f (t) = x +
∫

[a,t]
f dµ, a � t � b.

Letting µ = δc be a unit mass at c ∈ (a, b) yields the equality f (c) = x + f (c), and so there is no solution
to this equation, unless x = 0.
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Now consider two other linear integral equations for Kolmogorov integrals

f (t) = x +
∫

(a,t]
f− dµ, a � t � b, (19)

g(t) = x +
∫

[a,t)

g dµ, a � t � b. (20)

We will see that the two equations have nontrivial solutions. But the solutions can be different if µ has an
atom. For example, let µ = δc again be a unit mass at c ∈ (a, b). Then we have two linear equations, and
their solutions are f (t) = x(1+1[c,b](t)) and g(t) = x(1+1(c,b](t)), respectively. Thus, f (c) = 2x 	= x = g(c),
unless x = 0.

More generally, the product integral with respect to an interval function gives solutions of the nonhomo-
geneous linear Kolmogorov integral equations as stated next.

THEOREM 7. Let µ,ν ∈ AIp(J ;B) for some 1 � p < 2, let q � p be such that p−1 + q−1 > 1, and let
x ∈ B. Then the following two statements hold:

(a) The integral equation

f (t) = x +
∫

(a,t]
f− dµ + ν((a, t]), a � t � b,

has a solution f in Wp(J ;B), which is unique in Wq(J ;B),

f (t) := xP
(
µ; (a, t])+ ∫

(a,t]
P
(
µ; (·, t))dν, a � t � b.

(b) The integral equation

g(t) = x +
∫

[a,t)

g dµ + ν
([a, t)

)
, a � t � b,

has a solution g in Wp(J ;B), which is unique in Wq(J ;B),

g(t) := xP
(
µ; [a, t)

)+ ∫
[a,t)

P
(
µ; (·, t))dν, a � t � b.

Nonlinear integral equations. To simplify a formulation we state further results for real-valued point func-
tions and interval functions. Given a function (u, s) �→ ψ(u, s) from R×J into R and a function f : J → R,
let

(Nψf )(s) := ψ
(
f (s), s

)
, s ∈ J.

Then Nψ takes any function f into another function Nψf on J and is called the Nemytskii operator (or the
superposition operator).

Consider two nonlinear integral equations for Kolmogorov integrals

f (t) = x +
∫

(a,t]
(Nψf )− dµ, a � t � b, (21)

g(t) = x +
∫

[a,t)

(Nψg)dµ, a � t � b, (22)
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which agree with Eqs. (19) and (20), respectively, when ψ(u, s) ≡ u. Clearly, the two nonlinear equations
can have different solutions if µ has an atom as well. Next we formulate conditions on ψ sufficient to prove
the existence of a unique solution for each of the two equations (21) and (22).

Definition 8. Let 0 < γ � 1, 0 < q < ∞, J = [a, b] with a < b, and let ψ ≡ ψ(u, s): R × J → R.
1. For a nonempty set B ⊂ R, we say that ψ is s-uniformly γ -Hölder on B × J or ψ ∈ UHγ (B × J), if

there exists a finite constant H such that∣∣ψ(u, s) − ψ(v, s)
∣∣� H |u − v|γ

for all u,v ∈ B and all s ∈ J .

2. For any 0 < p < ∞ and µ = {ui}ni=1 ⊂ R, let

wp(µ) := max
i

|ui | + max

{
m∑

j=1

|uθ(j) − uθ(j−1)|p: {θ(j)}mj=0 ⊂ {1, . . . , n}
}

.

For a nonempty set B ⊂ R, we say that ψ is in the class Wγ,q(B × J) if, for each 0 � K < ∞, there
is a finite constant W = W(K) such that

n∑
i=1

∣∣ψ(ui, si) − ψ(ui, si−1)
∣∣q � Wq (23)

for each partition {si}ni=0 of J and for each finite set µ = {ui}ni=1 ⊂ B such that wγq(µ) � K . Let
Wγ,q(ψ,K;B × J) be the minimal W � 0 such that (23) holds for a given K .

3. Let

HWγ,q(B × J) := UHγ (B × J) ∩Wγ,q(B × J) for any B ⊂ R.

We say that ψ is in the class HW loc
γ,q(R × J) if, for each positive integer m, Bm := {u ∈ R: |u| � m}

and ψ is in the class Wγ,q(Bm × J).

4. We say that ψ is in the class WGγ,q(R × J) if there is a finite constant C such that, for each
0 � K < ∞,

Wγ,q(ψ,K;R × J) � C(1 + Kγ ). (24)

5. Finally, let

HWGγ,q(R × J) := UHγ (R × J) ∩WGγ,q(R × J).

To give some feeling about the stated conditions on ψ we make some remarks. Let �∞(S) be the
Banach space of real-valued bounded functions defined on a set S with the supnorm. First, it is clear that
ψ ∈UHγ (R × J) if and only if

R 
 u �→ ψ(u, ·) ∈Hγ

(
R;�∞(J )

)
.

Second, if ψ ∈W1,q(R × J), then ψ(u, ·) ∈Wq(J ) for each u ∈ R. Also, if

J 
 s �→ ψ(·, s) ∈Wq

(
J ;�∞(R)

)
,

then ψ ∈ Wγ,q(R × J) for each γ ∈ (0,1]. Finally, ψ ∈ HWGγ,q(R × J) if and only if ψ ∈ UHγ (R × J)

and there is a finite constant D such that, for each g ∈Wγ q(J ) and any nondegenerate interval A ⊂ J ,

∥∥Nψg
∥∥

A,[q] � D
(
1 + ‖g‖γ

A,[γ q]
)
.
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Now we are ready to formulate conditions for the existence of solutions of nonlinear Kolmogorov
integral equations.

THEOREM 9. Let J = [a, b], α ∈ (0,1], 1 � p < 1 + α, and µ ∈ AIp(J ). Suppose that ψ ∈HWG1,p(R ×
J) is u-differentiable on R with derivative ψ

(1)
u ∈ HW loc

α,p/α(R × J). Then each of the two integral equations
(21) and (22) has a unique solution in Wp(J ).

For functions f,F : R → R, NF defined by NF f := F◦f is called the autonomous Nemytskii operator.
If ψ(u, s) ≡ F(u), this theorem implies:

COROLLARY 10. Let J = [a, b], α ∈ (0,1], 1 � p < 1 + α, and µ ∈AIp(J ). Suppose that F is Lipschitz
on R with derivative F ′ ∈ Hloc

α . Then the conclusion of Theorem 9 holds with the Nemytskii operator Nψ

replaced by the autonomous Nemytskii operator NF .

If, in this corollary, the function F is locally Lipschitz, that is, if F ∈ Hloc
1+α , then the existence and

uniqueness of solutions hold locally.
Theorem 9 is proved in [16] using two methods. First, the Banach fixed-point theorem is applied, and,

second, performing an iteration similar to the classical Picard iteration. Namely, let f0 := g0 := x, and, for
each n � 1 and all t ∈ [a, b], let

fn(t) := x +
∫

(a,t]
(Nψfn−1)− dµ and gn(t) := x +

∫
[a,t)

(Nψgn−1)dµ.

We call {fn}n�0 and {gn}n�0 the Picard iterate associated to the integral equations (21) and (22), re-
spectively. Under the hypotheses of Theorem 9, each of the two sequences of Picard iterates converges in
Wp(J ) to the unique solution in Wp(J ) of the corresponding integral equation.

Suppose that ψ(u, s) ≡ u. Then the integral equations (21) and (22) are linear. In this case, the nth
Picard iterate associated to (21) with n � 2 can be recursively written in a closed form as follows: for
a � t � b,

fn(t) = x + xµ
(
(a, t])+ ∫

(a,t]

[ ∫
(a,s)

(fn−2)− dµ

]
µ(ds) = · · ·

= x

{
1 + µ

(
(a, t])+ n∑

k=2

∫
(a,t]

µ(ds1)

∫
(a,s1)

µ(ds2) · · ·
∫

(a,sk−1)

µ(dsk)

}
.

By (18), fn(t) is a partial sum of the Taylor series expansion of the product integral with respect to µ

over the interval A = (a, t].
Historical notes. A detailed treatment of the Riemann–Stieltjes and the refinement Riemann–Stieltjes inte-
grals was given by Pollard [48]. W.H. Young [66], in a paper written in detail by his wife G.C. Young, first
defined what we call the Young–Stieltjes sum but only for a step function. Their daughter R.C. Young [65]
defined the sums more generally but considered limits of such sums only as mesh tends to zero, and the
integral so obtained does not go beyond the Riemann–Stieltjes integral (Proposition 6.35 of [14]). Glivenko
[21] wrote a book on the Stieltjes integral, where he defined and pointed out the superiority of the RYS

integral over the RRS integral when the integrator function has bounded 1-variation. The RYS integral was
used by L.C. Young [64] (son of W.H. and G.C. Young) and Gehring [7] and latter was rediscovered by
Ross [50]. There are several alternatives to the integrals discussed above. Some of them were suggested by
Smith [54], L.C. Young [61], Ward [58], L.C. Young [62], Izumi and Kawata [22], Kurzweil [32], Macaev
and Solomjak [39], and Korenblum [28], [29]. Different approaches to defining a contour integral

∫
�

f (z)dz

over a fractal curve (continuous rough function) � are discussed by Kac [24].
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An interest of the p-variation property and an integration of rough functions was motivated by demands
of a vast area of Fourier analysis. We refer to [15, Part IV] for an annotated bibliography, which includes
some of these works. To the best of our knowledge, the first treatment of integral equations with respect
to rough functions is due to Kurzweil [32]. A recent interest to such integral equations was motivated by
works of Dudley [11], [12] and Lyons [36], [37]. As compared to the calculus above, T. Lyons’ analysis
uses iterated integral representation of solutions of integral equations with respect to continuous rough
functions and algebraic approach (see [38]).

3. STOCHASTIC PROCESSES AND p-VARIATION: EXAMPLES

Let X = {X(t): t � 0} be a real-valued stochastic process on a complete probability space (�,F,Pr). For
each ω ∈ �, the function X(·) = X(·,ω) is called a sample function of X. In this section, we review
results concerning degree of roughness of sample functions of stochastic processes.

Suppose that almost all sample functions of a stochastic process X have bounded p-variation on [0, t]
for some 0 < p < ∞ and 0 < t < ∞. Since the set of partitions P[0, t] is uncountable, the function

ω �→ vp

(
X(·,ω); [0, t])≡ sup

{
sp
(
X(·,ω);κ): κ ∈ P[0, t]} (25)

need not be measurable. But the measurability of this function is often needed once we are going to apply
the p-variation calculus to stochastic processes as in Kubilius [30] and [31]. The idea is to use, instead of
(25), its measurable modification defined as follows.

Definition 11. Let X = {X(t): t � 0} be a stochastic process, and let � ∈ V . We say that X has locally
bounded �-variation (or locally bounded p-variation if �(u) ≡ up) and write X ∈ W loc

� , if (a) and (b)
hold, where

(a) for almost all ω ∈ �,

v�

(
X(·,ω); [0, t])< +∞ ∀ t > 0; (26)

(b) there exists an F(X)-adapted stochastic process v�(X) = {v�(X; t): t � 0} such that, for a Pr-null
set �0, if ω /∈ �0, then

v�

(
X(·,ω); [0, t])= v�(X; t)(ω) ∀ t > 0. (27)

We call v�(X) the �-variation stochastic process (or p-variation stochastic process if �(u) ≡ up) of X.

For large classes of stochastic processes, condition (b) follows from (a) in Definition 11, and so one
needs to worry only about (26). A stochastic process X = {X(t): t � 0} has regulated sample functions if
X(·,ω) ∈ R[0,∞) for almost all ω ∈ �. If almost all sample functions of a regulated stochastic process
X are right-continuous, then X is called a cadlag stochastic process. The following statement is proved
in [16].

THEOREM 12. Let X = {X(t): t � 0} be either a separable stochastic process continuous in probability,
or a cadlag stochastic process. If, for some � ∈ V , (26) holds for almost all ω ∈ �, then X has locally
bounded �-variation.

The p-variation property has been investigated for many classes of stochastic processes. However,
the results are scattered over many different journals. Below we provide some of these results. More
information can be found in the annotated reference list on p-variation in [15, Part IV].
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Gaussian stochastic processes. A stochastic process X = {X(t): t � 0} is said to be Gaussian if the vector
{X(t1), . . . ,X(tn)} has an ndimensional normal distribution for all t1, . . . , tn in [0,∞) and all n � 1.

The boundedness of p-variation of a Gaussian stochastic process X can be estimated using σX defined
by

σX(s, t) :=
(
E
[
X(t) − X(s)

]2)1/2
for s, t � 0.

For � ∈ V and 0 < t < ∞, let

v�(σX) := v�

(
σX; [0, t]) := sup

{
n∑

i=1

�
(
σX(ti−1, ti )

)
: {ti}ni=0 ∈ P[0, t]

}
.

Let

�p,2(u) :=
[
u
(

log log(1/u)
)1/2
]p

for 0 < u � e−e,

�p,2(u) := up for u > e−e, and �p,2(0) := 0.

If �(u) ≡ up or �(u) ≡ �p,2(u), then we write vp(σX) or vp,2(σX), respectively, instead of v�(σX).
A necessary condition for a separable mean-zero Gaussian stochastic process X to have locally

bounded p-variation can be obtained easily as follows. By a theorem of Fernique [13, Lemma 2.2.5]
applied to the seminorm ‖ · ‖ = ‖ · ‖(p),[0,t] we have

∞ > E‖X‖p � sup
{
Esp(X;κ): κ ∈ P[0, t]}= Kpvp

(
σX; [0, t]),

where Kp := E|Z|p for a standard normal random variable Z. Thus, we have the following:

PROPOSITION 13. Let X be a separable mean-zero Gaussian stochastic process, and let 1 < p < ∞. If
X has locally bounded p-variation, then vp(σX; [0, t]) < ∞ for each 0 < t < ∞.

This necessary condition is not sufficient as the case of a Brownian motion shows. Let B = {B(t): t �
0} be a Brownian motion with σB(s, t) = √|t − s|, t, s � 0. As proved by P. Lévy, for any 0 < t < ∞, we
have almost surely

vp(B; [0, t])
{

< +∞ if p > 2,

= +∞ if p � 2.
(28)

On the other hand, v2(σB; [0, t]) = t .
Next is a sufficient condition for boundedness of the p-variation of almost all sample functions of a

Gaussian process due to Jain and Monrad [23], which is necessary in some cases.

THEOREM 14. Let X be a separable mean-zero Gaussian stochastic process, and let 1 < p < ∞. If,
vp,2(σX; [0, t]) < ∞ for each 0 < t < ∞, then X has locally bounded p-variation.

Let X be a separable mean-zero Gaussian stochastic process. If vp(σX) < ∞ for some 1 < p < ∞ and
if p′ > p, then vp′,2(σX) < ∞. Thus, by Theorem 14, X has locally bounded p′-variation. On the other
hand, if, for some 1 < p < ∞, X has locally bounded p-variation, then vp(σX) < ∞ by Proposition 13.
This observation allows one to find the index of p-variation.

COROLLARY 15. Let X be a separable mean-zero Gaussian stochastic process. Then, for each 0 < t <

∞, with probability 1

υ
(
X; [0, t])= inf

{
p > 0: vp

(
σX; [0, t])< ∞}.
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Fractional Brownian motion. A fractional Brownian motion BH = {BH (t): t � 0} with exponent H ∈ (0,1)

is a Gaussian process with mean 0 and covariance function

E
{
BH(t)BH (s)

}= 1

2

{
t2H + s2H − |t − s|2H

}
for t, s � 0 (29)

and BH(0) = 0 almost surely. Since the right side of (29) is equal to t ∧ s for H = 1/2, BH is a
Brownian motion B in this case. From (29) it follows that, for all t, u � 0,

σH (u) := σBH
(t, t + u) =

[
E
[
BH (t + u) − BH (t)

]2]1/2 = uH .

Let 0 < H < 1 and 1 < p < ∞. Then, for any 0 < T < ∞,

vp

(
σBH

; [0, T ])=
{+∞ if pH < 1,

T pH if pH � 1.

Thus, by Corollary 15, for each 0 < t < ∞, the p-variation index of a fractional Brownian motion BH is
given by

υ
(
BH ; [0, t])= 1/H with probability 1. (30)

The next statement provides a more precise description of the p-variation of a fractional Brownian
motion. Let

�H(u) := u1/H

(2LLu)1/(2H)
for u > 0,

where

LLu := loge | loge u|, and �H(0) := 0.

THEOREM 16. Let 0 < H < 1 and 0 < t < ∞. Almost all sample functions of a fractional Brownian
motion BH satisfy the relation

lim
δ↓0

sup
{
s�H

(BH ;κ): κ ∈ P[0, t] and mesh |κ| � δ
}= t. (31)

For the case H = 1/2, (31) was proved by Taylor [55, Theorem 1]. The general case of (31) with �
instead of = follows from Theorem 3 of Kawada and Kôno [25], since almost all sample functions of
BH are continuous. The converse inequality does not follow from Theorem 4 of Kawada and Kôno [25],
since their condition (v) fails to hold for σ 2(u) = σ 2

H(u) = u2H , u > 0. A direct proof of this theorem
can be found in [16].

Markov processes. Let B be the Borel σ -algebra on R. A stochastic process X on a probability space
(�,F,Pr) is called a Markov process if there exists a Markov kernel Ps,t (·, ·), 0 � s < t < ∞, on (R,B)

such that, for all 0 � s < t < ∞, x ∈ R, and B ∈B,

Pr
(
X(t) ∈ B |X(s) = x

)= Ps,t (x,B).

Markov processes with certain power-type bounds on their Markov kernels can be chosen to have locally
bounded p-variation.

Let P = {Ps,t (·, ·): 0 � s < t < ∞} be a Markov kernel on (R,B). For 0 < T < ∞, let αT be the
function on [0, T ] × (0,∞) defined by αT (0, r) := 0 for r > 0 and, for r, h > 0,

αT (h, r) := sup
{
Ps,t

(
x, {y ∈ R: |x − y| � r}): x ∈ R, 0 � s � t � (s + h) ∧ T

}
.
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It is well known that a suitable behavior of αT guarantee the existence of a cadlag or a sample-
continuous Markov process X with the Markov kernel P (see, e.g., Theorem 11.1 of [52]). As will be
seen, the following property of αT yields the boundedness of p-variation for some p of sample functions
of a Markov process. For β � 1 and γ > 0, the kernel P is said to belong to the class M(β, γ ) if,
given 0 < T < ∞, there exist constants r0 > 0 and K > 0 such that

αT (h, r) � Khβ

rγ

for all h ∈ [0, T ] and r ∈ (0, r0].
Next is a variant of the result due to Manstavičius [40].

THEOREM 17. Let β � 1 and γ > 0. For any probability measure ν on R and any Markov kernel P

on (R,B) in the class M(β, γ ), there exists a cadlag Markov process with the Markov kernel P and
initial distribution ν which has locally bounded p-variation for each p > γ/β .

We apply this theorem to the Markov kernel of a symmetric α-stable Lévy motion. A stochastic
processes X = {X(t): t � 0} is called a symmetric α-stable Lévy motion if X is cadlag, X(0) = 0
almost surely, has independent increments, and the increments X(t) − X(s) have stable distribution
Sα((t − s)1/α,0,0) for any 0 � s < t < ∞ and for some 0 < α < 2 (see Samorodnitsky and Taqqu [51]).
Using the fact that X is 1/α-self-similar, it follows that

Ps,t

(
x, {y ∈ R: |x − y| � r})= Pr

(|X(t) − X(s)| � r
)
� K(t − s)r−α

for all x ∈ R, 0 � s � t < ∞, and r > 0, where K := supλ>0 λα Pr(|X(1)| � λ) < ∞. It then follows that,
for any 0 < T < ∞,

αT (h, r) � Kh

rα

for all h ∈ [0, T ] and r > 0. Then Theorem 17 implies that there is a symmetric α-stable Lévy motion
which has locally bounded p-variation for each p > α.

In Theorem 17, the hypothesis p > γ/β , in general, cannot be replaced by p � γ /β as follows from
Theorem 18 or Theorem 19 below.

Homogeneous Lévy process. Let X = {X(t): t � 0} be a separable and continuous in probability stochas-
tic process with independent increments. Then X is called a Lévy process if almost all its sample
functions are cadlag and X(0) = 0 almost surely. A Lévy process X is called homogeneous if, for all
t, s � 0, the distribution of the increment X(t + s) − X(t) does not depend on t . Given a real number a,
a positive number b, and a σ -finite measure LX on R \ {0} such that

LX

({x ∈ R: |x| > δ})< ∞ for each δ > 0 and
∫

R\{0}
(1 ∧ x2)LX(dx) < ∞,

let

�(u) := iau − bu2 +
∫

R\{0}

(
eiux − 1 + iuh(x)

)
LX(dx) (32)

for u ∈ R, where h is a bounded Borel function. The function � is called the characteristic exponent,
and the measure LX is called the Lévy measure. Then the characteristic function of a homogeneous Lévy
process X is given by

E exp
{
iuX(t)

}= exp
{
t�(u)

}
for all t � 0 and u ∈ R.
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It is well known that sample functions of a homogeneous Lévy process X with the characteristic
exponent (32) have bounded 1-variation if and only if b ≡ 0 and∫

R\{0}

(
1 ∧ |x|)LX(dx) < ∞ (33)

(cf., e.g., Theorem 3 on p.279 of Gikhman and Skorokhod [8]). The following result of Bretagnolle [4,
Théorème III b] is less well known.

THEOREM 18. Let 1 < p < 2, and let X = {X(t): t � 0} be a mean-zero homogeneous Lévy process
with characteristic exponent (32) such that b ≡ 0. Then X has locally bounded p-variation if and only if∫

R\{0}

(
1 ∧ |x|p)LX(dx) < ∞.

A less precise but more general result is a characterization of the p-variation index (see (2) for
the definition) of a sample function of a Lévy process using the Blumenthal–Gettor index. Let X be a
homogeneous Lévy process. The Blumenthal–Getoor index of X is defined by

β(X) := inf

{
α > 0:

∫
R\{0}

(
1 ∧ |x|α)LX(dx) < ∞

}
,

where LX is the Lévy measure of X. Note that 0 < β(X) � 2. If X has no Gaussian part, then, for any
0 < t < ∞, the p-variation index υ(X; [0, t]) = β(X) almost surely. This follows from Theorems 4.1 and
4.2 of Blumenthal and Getoor [2] and from Theorem 2 of Monroe [42].

Hyperbolic Lévy motion. A homogeneous Lévy process X is called a hyperbolic Lévy motion if, in its
characteristic exponent (32), b ≡ 0 and the Lévy measure LX(dx) = g(x;α, δ)dx, where

g(x;α, δ) = 1

π2|x|
∞∫

0

exp{−|x|√2y + (α)2}
y(J 2

1 (δ
√

2y) + Y 2
1 (δ

√
2y))

dy + exp{−|x|}
|x|

for α > 0 and δ � 0. Here J1 and Y1 are the Bessel functions of the first and second kind, respectively.
Eberlein and Keller [18] used a hyperbolic Lévy motion to model stock price returns and showed (ibid,
p. 295) that g(x;α, δ) ∼ x−2 as x → 0. Therefore, by Theorem 18, a hyperbolic Lévy motion X has
locally bounded p-variation for each p > 1, and so the p-variation index υ(X; [0,1]) = 1 almost surely.

Normal inverse Gaussian Lévy process. A homogeneous Lévy process X is called a normal inverse
Gaussian Lévy process if the parameters of the characteristic exponent (32) are given by b ≡ 0 and

a = (2αδ/π)

1∫
0

sinh(βx)K1(αx)dx

and the Lévy measure LX(dx) = f (x;α,β, δ)dx, where

f (x;α,β, δ) = αδ

π

e−βx

|x| K1(α|x|) = δ

π
√

2

eβx

|x|
∞∫

0

y−1/2e−|x|
√

2y+α2
dy

for α > 0, 0 � |β| < α, µ ∈ R, and δ > 0. Here K1 denotes the modified Bessel function of third
order and index 1. Barndorff-Nielsen [1] showed that f (x;α,β, δ) ∼ (δ/π)x−2 as x → 0. Therefore, by
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Theorem 18, a normal inverse Gaussian Lévy process H has locally bounded p-variation for each p > 1,
and so the p-variation index υ(X; [0,1]) = 1 almost surely.

α-Stable Lévy motion. A homogeneous Lévy process X is called an α-stable Lévy motion of index
α if its characteristic exponent (32) is given by b ≡ 0 and the Lévy measure LX = Lα,r,q , where
Lα,r,q(dx) := rx−1−α dx if x > 0 and Lα,r,q(dx) := q(−x)−1−α dx if x < 0 for α ∈ (0,2) and r, q � 0
with r + q > 0. If α < 1, then (33) holds and

∫
hdLX < ∞. In this case, it is said that an α-stable

Lévy motion has no drift if a + ∫ hdLX = 0. The following result is due to Fristedt and Taylor [20,
Theorem 2].

THEOREM 19. Let Xα = {Xα(t): t ∈ [0,1]} be an α-stable Lévy motion with α ∈ (0,2) having no drift
if α < 1 and with r = q if α = 1. For a function � ∈ V , with probability 1

lim|κ|→0
s�(Xα;κ) ≡ lim|κ|→0

n∑
i=1

�
(|Xα(ti) − Xα(ti−1)|

)=∑
(0,1]

�
(|�−Xα|), (34)

where |κ| is the mesh of a partition κ = {ti}ni=0 of [0,1].
To apply this result it is useful to recall that the right side of (34) is finite almost surely

if and only if
∫ 1
−1 �(u)u−1−α du < ∞. Xu [60] established necessary and/or sufficient conditions for

the boundedness of the p-variation of a sample function of a symmetric α-stable processes with
possibly dependent increments. More information about p-variation of stable processes can be found in
Fristedt [19].

4. ESTIMATING THE p-VARIATION INDEX

Suppose that we are given a set G = {(ti , xi)}ni=1 of finitely many points on a plane, where t0 := 0 <

t1 < · · · < tn = 1 and {xi}ni=1 ⊂ R. Assume that the data G is generated by an unknown function f so
that f (ti) = xi for i = 1, . . . , n. We wish to estimate the p-variation index υ(f ) := υ(f ; [0,1]) defined
by (2). Note that this index with values in [0,∞] exists for any function f . Why should we care
about estimating the p-variation index?

The p-variation calculus was used to model stock price changes in [43]. As we have seen in
Section 2, solutions of Kolmogorov integral equations with respect to an additive upper-continuous
interval function µ exist, provided that µ has bounded p-variation for some p < 2. Thus, if we
wish to apply the p-variation calculus to model real phenomena, then we should try to find methods
allowing one to check our assumptions on the p-variation from real data. In particular, we need to test
the hypothesis that the p-variation index is less than 2.

A completely different approach to model financial markets using game-theoretic probability and
continuous nonstandard functions of p-variation have been proposed by Shafer and Vovk [53]. One of
the conditions for pricing options using games is that the p-variation of such a function should be less
than or equal to 2.

As we have seen in Section 3, the p-variation index of sample functions of basic stochastic
processes is related to their parameters. For example, relation (30) for a fractional Brownian motion
BH with exponent H and relation υ(Xα; [0,1]) = α for an α-stable Lévy motion Xα . Therefore, an
α-stable Lévy process and a fractional Brownian motion with Hurst exponent H , both have the same
p-variation index in the case α = 1/H ∈ (1,2). On the other hand, for each t , the random variable
BH (t) has exponentially small probability tail, while the random variable Xα(t) has no even the second
moment. Also the two relations can be used in different ways comparing new and old statistical
procedures for estimating different parameters. In this case, an estimate v̂ of the p-variation index
can also be interpreted as an estimate of either of the two parameters 1/H or α if v̂ ∈ (1,2) and
if the estimation procedure does not assume the continuity. Therefore, estimation of the p-variation
index offers a new perspective to analyzing data sets and is closely related to an estimation of fractal
dimension (see, e.g., Cutler [5]).

We review two methods of estimating the p-variation index proposed in [44] and [45].
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Orey index. First is a method of estimation of the p-variation index of a sample function for a class
of Gaussian stochastic processes. Let X = {X(t): t � 0} be a mean-zero Gaussian stochastic process
with stationary increments and continuous in quadratic mean. Let σ be the incremental variance of X

given by

σ(u) := σX(t, t + u) =
(
E
[
X(t + u) − X(t)

]2)1/2
, t, u � 0.

Following Orey [46], let

γ∗ := inf
{
γ > 0: uγ /σ(u) → 0, asu ↓ 0

}= lim sup
u↓0

( logσ(u)

logu

)

and

γ ∗ := sup
{
γ > 0: uγ /σ(u) → +∞, asu ↓ 0

}= lim inf
u↓0

( logσ(u)

logu

)
.

Note that 0 � γ ∗ � γ∗ � ∞. If γ∗ = γ ∗, then we say that X has the Orey index γX := γ∗ = γ ∗.
Let X has the Orey index γX. By the definitions of γ∗ and γ ∗ it follows that

inf
{
p > 0: vp(σX; [0, t]) < ∞}= 1/γX

for each 0 < t < ∞. Thus, by Corollary 15, for each 0 < t < ∞, with probability 1, the p-variation
index υ(X; [0, t]) = 1/γX. Therefore, an estimation of the p-variation index of X means an estimation
of the Orey index.

The idea of estimating the Orey index of X is based on a result of Gladyshev [9] concerning
a rescaled quadratic-variation property of a Gaussian stochastic process X with stationary increments.
To state his result in the case where X is a fractional Brownian motion BH , let λm = {i2−m: i =
0, . . . ,2m}, m = 1,2, . . . , be a nested sequence of dyadic partitions of [0,1]. Gladyshev [9, Section 3]
proved that the relation

lim
m→∞

log
√

s2(BH ;λm)/2m

log(1/2m)
= H

holds for almost all sample functions of BH . Since the incremental variance σ(u) ≡ uH when X = BH ,
it follows that the Orey index γBH

of BH exists and equals the Hurst exponent H , and so the right
side of the preceding formula is equal to the Orey index of BH .

More generally, one can formulate Gladyshev’s idea as follows. Again, let X be a mean-zero
Gaussian stochastic process with stationary increments, continuous in quadratic mean, and let σ be its
incremental variance. We say that the strong limit theorem on [0,1] holds for X if there is a sequence
η = {Nm}m�1 of integers strictly increasing to infinity and a finite constant C such that the limit

lim
m→∞

s2(X;λm)

Nmσ(1/Nm)2 = C (35)

exists almost surely, where {λm}m�1 is a sequence of partitions λm = {i/Nm}Nm

i=0 of [0,1] associated to
η. Note that if X is a Brownian motion B, then the incremental variance σ(u) ≡ √

u and the strong
limit theorem for B means the existence of the quadratic variation for B. Gladyshev [9] and others
proved the strong limit theorem (35) for a large class of stochastic processes (see [44] for a review
of results).

Suppose that the strong limit theorem (35) holds for X. For each m � 1, we have the identity

log

√
s2(X;λm)

Nm

= logσX(1/Nm) + 1

2
logC + 1

2
log
(

1 + s2(X;λm)

CNmσ(1/Nm)2
− 1
)
.
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Then, also assuming that X has the Orey index γX, it follows that the limit

lim
m→∞

log
√

s2(X;λm)/Nm

log(1/Nm)
= γX (36)

exists for almost all sample functions of X. This relation was used in [44] to estimate the Orey
index from a sample function of a stochastic process X given its values at finitely many points.

Oscillation summing index. Let f be a real-valued function defined on an interval [0,1]. Let η =
{Nm}m�1 be a sequence of strictly increasing positive integers. Again with η we associate a
sequence {λm}m�1 of partitions λm = {i/Nm}Nm

i=0 of [0,1]. For i = 1, . . . ,Nm, the subintervals �i,m :=
[(i − 1)/Nm, i/Nm] have the same length 1/Nm. For each m � 1, let

Q(f ;λm) =
Nm∑
i=1

Osc(f ;�i,m), (37)

where, for a subset A ⊂ [0,1],
Osc(f ;A) := sup

{|f (t) − f (s)|: s, t ∈ A
}= sup

t∈A

f (t) − inf
s∈A

f (s).

The sequence

Qη(f ) := {Q(f ;λm)
}
m�1

is called the oscillation η-summing sequence. For a bounded nonconstant function f on [0,1] and any
sequence η as above, let

δ−
η (f ) := lim inf

m→∞
log(Q(f ;λm)/Nm)

log(1/Nm)
and δ+

η (f ) := lim sup
m→∞

log(Q(f ;λm)/Nm)

log(1/Nm)
.

Then we have

0 � δ−
η (f ) � δ+

η (f ) � 1. (38)

The leftmost inequality follows from the bound

Q(f ;λm)

Nm

� Osc
(
f ; [0,1])< ∞,

which is valid for each m � 1. The rightmost inequality in (38) holds, since Q(f ;λm) � C/2 > 0 for
all sufficiently large m � 1. Indeed, if f is continuous, then C = v1(f ; [0,1]). Otherwise, f has a
jump at some point t ∈ [0,1], so that C can be taken to be a saltus at t if t 	∈ λm for all sufficiently
large m, or C can be taken to be a one-sided nonzero saltus at t if t ∈ λm for infinitely many m.

Let f be any nonconstant real-valued function on [0,1], and let η = {Nm}m�1 be a sequence
of strictly increasing positive integers as before. If δ−

η (f ) = δ+
η (f ), then we say that f has the

oscillation η-summing index δη(f ), which is then defined by

δη(f ) := δ−
η (f ) = δ+

η (f ) = lim
m→∞

log(Q(f ;λm)/Nm)

log (1/Nm)
. (39)

As explained below in more detail, one can show that whenever the metric entropy index or
the Hausdorff–Besicovitch dimension of the graph of f has a suitable value, then the oscillation
η-summing index δη(f ) exists and

δη(f ) = 1

1 ∨ υ(f )
. (40)
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The relations (40) and (39) were used in [45] to estimate the p-variation index υ(f ; [0,1]) of a
sample function f = X(·,ω) of a stochastic process X given its values at finitely many points.

To formulate sufficient conditions of existence of the oscillation η-summing index, we recall some
notation. Let E be a nonempty bounded subset of the plane R

2, and let N(E;ε), ε > 0, be the
minimum number of closed balls of diameter ε required to cover E. The lower and upper metric
entropy indices of the set E are defined respectively by

�−(E) := lim inf
ε↓0

logN(E;ε)
log(1/ε)

and �+(E) := lim sup
ε↓0

logN(E;ε)
log(1/ε)

.

If �−(E) = �+(E), then the common value, denoted by �(E), is called the metric entropy index of
the set E. To recall the Hausdorff–Besicovitch dimension of E, let diam(A) denote the diameter of a
set A ⊂ R

2. An ε-covering of a bounded set E ⊂ R
2 is a countable collection {Ek}k�1 of sets such

that E ⊂ ∪kEk and supk diam(Ek) � ε. For s > 0, the Hausdorff s-measure of E is defined by

Hs(E) := lim
ε↓0

inf

{∑
k�1

(
diam(Ek)

)s
: {Ek}k�1 is an ε-covering of E

}
.

Clearly, 0 � Hs(E) � ∞, and the function s �→ Hs(E) is nonincreasing. In fact, given any subset
E ⊂ R

2, there is a critical value sc such that Hs(E) = ∞ for s < sc and Hs(E) = 0 for s > sc. This
critical value sc is called the Hausdorff–Besicovitch dimension of E and is denoted by dimHB(E).

Let f be a regulated function on [0,1], let gr(f ) be the graph of f in R
2, and let

η = {Nm}m�1 be a sequence of strictly increasing positive integers as before. In Appendix A of [45],
it is proved that {

2 − δ+
η (f ) = } lim sup

m→∞
log(NmQ(f ;λm))

logNm

� 2 − 1

1 ∨ υ(f )

and

�−(gr(f )
)
� lim inf

m→∞
log(NmQ(f ;λm))

logNm

{= 2 − δ−
η (f )

}
.

Now, these two bounds give us Theorem 1 of [45]:

THEOREM 20. For any sequence η, a regulated nonconstant function f on [0,1] has the oscillation
η-summing index δη(f ) and (40) holds provided the metric entropy index �(gr(f )) of the graph gr(f )

of f is defined and

�(gr(f )) = 2 − 1

1 ∨ υ(f )
.

Alternatively, a similar sufficient condition can be formulated using the Hausdorff–Besicovitch
dimension of the graph. It is easy to show that, for any bounded subset E ⊂ R

2, dimHB(E) �
�−(E). Therefore, we have

COROLLARY 21. For any sequence η, a regulated nonconstant function f on [0,1] has the oscillation
η-summing index δη(f ) and (40) holds, provided that

dimHB(gr(f )) = 2 − 1

1 ∨ υ(f )
. (41)

The Hausdorff–Besicovitch dimension seems to be an excellent tool in pure mathematics, and there
are lots of results concerning a theoretical computation of this dimension for various sets. According
to Tricot [56, p. 258] it has no practical utility for estimating fractal dimensions. Nevertherless, it
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seems to us that a knowledge of the Hausdorff–Besicovitch dimension of some sets can be used in
justifying more practical estimation methods as shown above. In support of this claim we give next
few examples.

Let Xα be a symmetric α-stable process for some 0 < α � 2. Then, by Theorem B of Blumenthal
and Getoor [3], for almost all sample functions of Xα , we have

dimHB

(
gr(Xα)

)= 2 − 1

1 ∨ α
= 2 − 1

1 ∨ υ(Xα)
.

For another example, let X be a mean-zero Gaussian stochastic process with stationary increments,
continuous in quadratic mean, and having the Orey index γX ∈ (0,1). Then, by Theorem 1 of Orey
[46], for almost all sample functions of X, we have

dimHB

(
gr(X)

)= 2 − γX = 2 − 1

υ(X)
.

For these stochastic processes, by Corollary 21, we have the following result.

COROLLARY 22. Let X = {X(t): 0 � t � 1} be a stochastic process, and let η = {Nm}m�1 be a
sequence of strictly increasing positive integers. The relation

δη(X) ≡ lim
m→∞

log(Q(X;λm)/Nm)

log(1/Nm)
= 1

1 ∨ υ(X)

holds for almost all sample functions of X, provided that either (a) or (b) holds, where
(a) X is a symmetric α-stable process for some α ∈ (0,2], that is, X is a cadlag stochastic process

with independent stationary increments having a symmetric α-stable distribution if α ∈ (0,2) and
X is a standard Brownian motion if α = 2;

(b) X is a mean-zero Gaussian stochastic process with stationary increments continuous in quadratic
mean and such that the Orey index γX exists.

Similar results for more general processes than (a) and (b) of the preceding corollary can be
respectively found in Pruitt and Taylor [49, Section 8] and in Kôno [27].
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