
El Amrani et al. BMC Genomics  (2015) 16:645 
DOI 10.1186/s12864-015-1785-9

METHODOLOGY ARTICLE Open Access

MGFM: a novel tool for detection of tissue
and cell specific marker genes from
microarray gene expression data
Khadija El Amrani1, Harald Stachelscheid1,2, Fritz Lekschas1, Andreas Kurtz1,3*

and Miguel A. Andrade-Navarro4,5

Abstract

Background: Identification of marker genes associated with a specific tissue/cell type is a fundamental challenge in
genetic and cell research. Marker genes are of great importance for determining cell identity, and for understanding
tissue specific gene function and the molecular mechanisms underlying complex diseases.

Results: We have developed a new bioinformatics tool called MGFM (Marker Gene Finder in Microarray data) to predict
marker genes from microarray gene expression data. Marker genes are identified through the grouping of samples of
the same type with similar marker gene expression levels. We verified our approach using two microarray data sets
from the NCBI’s Gene Expression Omnibus public repository encompassing samples for similar sets of five human
tissues (brain, heart, kidney, liver, and lung). Comparison with another tool for tissue-specific gene identification and
validation with literature-derived established tissue markers established functionality, accuracy and simplicity of our
tool. Furthermore, top ranked marker genes were experimentally validated by reverse transcriptase-polymerase chain
reaction (RT-PCR). The sets of predicted marker genes associated with the five selected tissues comprised well-known
genes of particular importance in these tissues. The tool is freely available from the Bioconductor web site, and it is
also provided as an online application integrated into the CellFinder platform (http://cellfinder.org/analysis/marker).

Conclusions: MGFM is a useful tool to predict tissue/cell type marker genes using microarray gene expression data.
The implementation of the tool as an R-package as well as an application within CellFinder facilitates its use.
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Background
Large amounts of microarray experimental data are avail-
able in public repositories. Although a variety of pro-
grams have been developed to make use of these data,
the number of tools that identify marker genes is lim-
ited. Genes may be split into two categories based on the
number of tissues in which they are expressed [1]. Genes
that are expressed in many tissues are often designated as
housekeeping while those that are expressed in few tis-
sues are termed tissue-specific or marker genes. Marker
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genes are used to determine the tissue identity and to
characterize cells grown in vitro.

Since disease-associated genes are more likely to show
tissue specific expression [2], marker genes of healthy
tissues could also be used to understand the molecular
mechanisms underlying complex diseases.

Microarrays allow the parallel analysis of the expression
of several thousands of genes in hundreds of tissues/cell
types, and have been extensively used by the scientific
community. Consequently, a large amount of microarray
expression data has accumulated in public repositories.
The Gene Expression Omnibus (GEO) [3], contains cur-
rently expression data on 1,328,979 samples across 3848
datasets, and ArrayExpress [4] contains 1,649,790 assays
across 55,656 experiments. The aim of the current study
was to develop a tool to detect marker genes associated
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with small sets of normal tissue samples obtained from
microarray experiments. Here we introduce a new com-
putational tool to predict marker genes from microarray
gene expression data. The tool is available as a stand-
alone version (R-package called MGFM) in Bioconductor
[5] and it is also integrated into the CellFinder platform
(http://cellfinder.org/analysis/marker) to be used as an
online tool. CellFinder [6] is a comprehensive one-stop
resource for diverse data characterizing mammalian cells
in different tissues and in different development stages. It
is built from carefully selected data sets stemming from
other curated databases and the biomedical literature.

We verified MGFM using two microarray data sets from
the GEO public repository each encompassing samples
for similar sets of five human tissues (brain, heart, kidney,
liver, and lung). The accuracy of MGFM was verified with
known literature-curated marker genes. Using one of the
data sets MGFM identified 72 % of the known marker genes.
Moreover, top ranked marker genes were further validated
by RT-PCR.

Results
Marker genes are identified when sample grouping of
the same type exist with similar expression of the
marker gene (see Fig. 1 for an illustrative example and
Methods for details). After sorting the expression values
of probe sets in decreasing order, a probe set is considered
a potential marker of a sample type if the highest expres-
sion values represent all replicates of this sample type.
We consider the position in the sorted expression vector
that segregates different sample types a cut-point. Each
cut-point segregates elements of sample types into two

distinct sample groups. For each probe set, the expression
levels of the two sample groups are summarized as the
mean of expression values. The marker genes can then be
ranked according to a score ranging from 0 to 1, which
is the ratio of the second and first value in the vector of
mean expression values of a probe set. Values near 0 would
indicate high specificity and large values closer to 1 would
indicate low specificity.

We applied MGFM to two microarray data sets from
GEO. The first data set (#1) consists of triplicate sam-
ples from five human tissues (heart atrium, kidney cortex,
liver, lung, and midbrain). The microarray data set is pub-
licly available from GEO with the series number GSE3526
[7]. The second data set (#2) is derived from five human
tissues (brain, heart, kidney, liver, and lung) from two
GEO Series GSE1133 [8] and GSE2361 [9] (see Table 7).
Moreover, we compared the results with another tool
for tissue-specific gene identification [10] and validated
the identified markers using literature-curated markers
(Additional file 1) and experimentally by RT-PCR.

Marker selection
For data set #1, 12482 probe sets out of 54675 (com-
prising about 23 % of all probe sets on the microarray)
were identified as potential markers associated with the
five analyzed tissues. In data set #2 we identified 3836
probe sets from 22283 as potential markers, or approxi-
mately 17 % of the probes on the microarray. In order to
refine the number of predicted markers, they were ranked
according to their score (see Methods for details, Identifi-
cation of marker genes). To investigate how the number of
selected markers changes depending on the score, we used
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Fig. 1 An example showing how marker genes are identified by our method. The expression values correspond to the probe set "202357_s_at",
which represents the gene CFB (complement factor B)
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different cutoffs (Fig. 2). The number of potential markers
selected increases with less specific (higher) cutoffs.

Performance analysis
To evaluate the precision of the developed tool, we
searched the literature to collect genes used extensively
as markers for cell types within a tissue. A total of 142
literature-derived genes were found for the five human tis-
sues (brain, heart, kidney, liver, and lung) and will here
be called real markers (Additional file 1). In addition to
these markers, the cytochrome P450 genes (51 genes)
were used as markers for liver, since these genes are highly
expressed in the liver [11]. For validation of our poten-
tial marker sets, only real marker genes that were also
found on the microarray of each data set were consid-
ered for the validation. This corresponds to 187 marker
genes for data set #1 and 174 for data set #2. To vali-
date the performance of MGFM, the recall and precision
were examined using the collected markers. Two strate-
gies were used: i) The predicted markers for each of the
examined tissues were combined and compared with the
complete set of known markers of all examined tissues.
ii) The set of predicted markers for each tissue was com-
pared with the known markers of this tissue. Recall and
precision were analyzed, where recall is the fraction of
identified marker genes in the total number of real mark-
ers and precision is the fraction of marker genes identified
in the total number of predicted marker genes. Figures 3a)
and 3b) show the precision/recall curves for marker genes
predicted by MGFM using data set #1 and data set #2,

respectively. The grey curves show the precision/recall for
random selection. As illustrated, MGFM performed bet-
ter than random selection in both data sets. Using lower
score cutoffs results in higher precision and lower recall,
whereas higher score cutoffs results in lower precision
and higher recall. Tables 1 and 2 show the percentage
of probes on the microarray predicted as marker probe
sets and the percentage of correctly identified marker
genes using different score cutoffs for data sets #1 and #2,
respectively (see Methods for details on how probe sets
were mapped to genes). Decreasing the score from 1 to
0.9 reduced the percentage of probe sets predicted as
markers from 22.8 % (of 54675 probes on the microar-
ray) to 16 % (minus 6.8 %), while losing only 3.8 % of the
known literature-collected markers (see Table 1). Using
data set #2, MGFM predicted 17 % of the probes on the
microarray (22283 probe sets) as potential markers for the
examined tissues, which contain approximately 52 % of
the real markers. In comparison to the results achieved by
applying MGFM to data set #1, the reduction was higher,
while the precision was lower. Figures 4a) and 4b) show
the precision/recall curves for the predicted marker genes
of the examined tissues in data sets #1 and #2, respectively.
In both data sets the performance of MGFM differs depend-
ing on the tissues. The best performance is achieved for
heart or heart atrium, whereas the lowest precision was
obtained for brain or midbrain. Table 3 shows the num-
ber of correctly identified and known marker genes on
the microarrays of data sets #1 and #2 for each of the
examined tissues.
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El Amrani et al. BMC Genomics  (2015) 16:645 Page 4 of 12

0.0 0.2 0.4 0.6 0.8

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

a data set #1

Recall

P
re

ci
si

on

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.

00
0.

05
0.

10
0.

15
0.

20
0.

25
0.

30

b data set #2

Recall

P
re

ci
si

on

Fig. 3 Precision/Recall curves for the complete set of genes selected by MGFM as potential markers for the examined tissues using a data set #1 and
b data set #2. The gray curves show precision/recall for random selection

Comparison to t-test
A possible method to identify marker gene candidates is
to identify genes that are differentially expressed between
two experimental groups using a statistical test such as
a t-test. Genes associated with each sample type could
be used as markers. In order to further verify the per-
formance of our method, we applied t-test to both data
sets #1 and #2. Each tissue was compared against the other
tissues. The predicted markers for each of the examined
tissues were combined and compared with the complete
set of known markers of all examined tissues. At a score
cutoff of 0.9 MGFM outperformed the t-test (p value range:
from 0.01 to 0.09) in terms of precision (see Additional
file 2: Figures S1 and S2).

Overlap of sets of predicted marker genes
Next we compared the results obtained using data
sets #1 and #2. The aim was to confirm that the selec-
tion of marker genes by MGFM was consistent with the
tissues analyzed even if the data compared was obtained

from different platforms: Affymetrix Human Genome
U133A Array (GPL96) and Affymetrix Human Genome
U133 Plus 2.0 Array (GPL570), for data sets #1 and #2,
respectively. Figure 5 shows Venn diagrams that illustrate
comparisons of the predicted marker gene lists for the
examined tissues using both data sets #1 and #2. Obvi-
ously, the overlap of marker genes for the same tissue is
significantly higher than the overlap of markers for dif-
ferent tissues. These results suggest a possible strategy to
reduce the false positives by applying MGFM to more than
one data set including the tissue of interest, and to con-
sider the intersection of sets of markers associated with
the tissue of interest.

Enrichment of Gene Ontology terms
To assess whether the subsets of marker genes show
significant over-representation of biological characteris-
tics related to their corresponding tissues, Gene Ontology
(GO) [12] enrichment analysis was performed. Tables 4
and 5 show the enriched molecular function and the

Table 1 The percentage of probes on the microarray predicted as marker probe sets and the percentage of correctly identified marker
genes using different score cutoffs for data set #1

Score cutoff 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3

Selected marker probe sets (in %) 22.8 16 7.3 3.5 1.7 0.7 0.3 0.04

Identified marker genes (in %) 72.2 68.4 51.9 42.2 30.5 22.5 11.8 2.1
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Table 2 The percentage of probes on the microarray predicted as marker probe sets and the percentage of correctly identified marker
genes using different score cutoffs for data set #2

Score cutoff 1 0.9 0.8 0.7 0.6 0.5 0.4

Selected marker probe sets (in %) 17.2 11.9 4.9 1.8 0.7 0.2 0.02

Identified marker genes (in %) 51.7 46 29.3 20.7 13.8 5.2 0

enriched biological process of markers associated with the
examined tissues using data set #1 at a score cutoff of 0.9.
For each tissue five significantly enriched GO terms that
do not overlap more than 80 % are displayed. In the case
of molecular functions, we remark tropomyosin binding
and actin binding for heart (because of the heart muscle),
antiporter activity for the kidney, receptor binding for the
lung, and GTP binding for the midbrain (signal transduc-
tion). With respect to the biological process, we remark
xenobiotic metabolic process for the liver, transmembrane
transport for the kidney (salt and water transport), and
neurotransmitter transport or regulation of transmission
of nerve impulse for the midbrain.

PCR analysis
To verify the tissue-specific expression of top-ranked
marker genes, we examined these genes by RT-PCR. Top
ranked marker genes predicted using both data sets #1
and #2 were investigated. A total of 11 marker genes
were selected for liver and 12 genes for each of the tis-
sues: brain, heart, kidney, and lung. The resulting gel

electrophoresis images are shown in Additional file 3:
Figures S1, S2, S3, S4, S5, S6, S7, S8, S9, S10 and S11.
In addition, the PCR results are summarized in Table 6
using + or - for present or absent, respectively. As shown
in Table 6, all genes, predicted as markers of a tissue, were
indeed detected in that tissue except GAP43 in the brain,
and the four genes SLC12A1, SLC3A1, FXYD2, and CA12
predicted as markers of kidney.

Detection of novel marker genes
All identified marker genes are shown in Additional file 4
and descriptions of their functions provided if available.
There are 11 liver specific genes predicted and 12 genes
for each of the other four tissues. The set of marker
genes predicted by MGFM contained genes that have
been recently reported as novel marker genes, such as
SYNPO2L in the heart, KIF5C in the brain and AMDHD1
in the liver. SYNPO2L encodes a cytoskeletal protein.
Beqqali et al. [13] recently reported the corresponding
protein as a novel protein that interacts and colocalizes
with α-actinin at the Z-disc of the sarcomere. In a recent
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Fig. 4 Precision/Recall curves for genes selected by MGFM as potential markers for each of the examined tissues using a data set #1 and b data set #2
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Table 3 The number of correctly identified and known marker
genes on the microarrays of data sets #1 and #2 for each of the
examined tissues

Tissue Correctly identified/known
marker genes on the microarray

Data midbrain 16/33

set heart atrium 24/32

#1 kidney cortex 25/33

liver 39/65

lung 9/24

Data liver 26/60

set lung 7/24

#2 brain 9/28

kidney 17/31

heart 19/31

study, Willemsen et al. [14] suggested that mutations in
KIF4A and KIF5C cause intellectual disability by tipping
the balance between excitatory and inhibitory synaptic
excitability. These results indicate a role of KIF5C in
brain function. Song et al. [10] reported AMDHD1 as
new marker for liver. Hence, our comparatively easily
implementable method was able to discover novel marker
genes.

Discussion
In this work, we presented a new tool for detection of
marker genes from microarray gene expression data. The
tool is provided as a standalone version (a Bioconductor
package called MGFM) as well as a web application within
the CellFinder platform.

Using two different data sets, at a score cutoff of
0.9, MGFM validated 68.4 % of literature-curated mark-
ers while reducing the total number of probe sets pre-
dicted as markers from 54675 to 8789 (approximately
16 % of the probes on the microarray) and validated
46 % of literature-curated real marker genes while reduc-
ing the total number of predicted marker probe sets
from 22283 to 2664 (approximately 11.9 % of the probes),
respectively.

Song et al. [10] developed a method to identify tissue-
specific genes by analyzing microarray data. They used
the GEO data set GDS596 (see Table 7, data set #3) to
identify marker genes for the tissues: fat, heart, kidney,
liver, and lung. Song et al. reported that they confirmed
10 kidney, 11 liver, 11 lung, and 11 heart marker genes
by applying their approach. To assess if we would find
these genes using MGFM, we applied it to the same data
set using the samples representing the tissues: heart,
kidney, liver, and lung. All of these genes were found as
potential markers by MGFM except the genes AMDHD1
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Table 4 Gene Ontology enrichment (Molecular Function) of predicted marker genes for the examined tissues

GO ID GO p-value Expected count Gene count Size

Midbrain

GO:0008017 microtubule binding 1.02 × 10−11 14.02 43 148

GO:0030695 GTPase regulator activity 2.51 × 10−07 39.97 73 422

GO:0005525 GTP binding 4.18 × 10−06 31.73 58 335

GO:0030276 clathrin binding 4.27 × 10−06 1.89 10 20

GO:0017075 syntaxin-1 binding 5.28 × 10−06 1.23 8 13

Heart atrium

GO:0008307 structural constituent of muscle 3.12 × 10−24 1.73 25 44

GO:0003779 actin binding 2.81 × 10−21 13.63 58 346

GO:0005523 tropomyosin binding 1.34 × 10−08 0.55 8 14

GO:0051371 muscle alpha-actinin binding 2.46 × 10−08 0.28 6 7

GO:0031432 titin binding 4.07 × 10−08 0.43 7 11

Kidney cortex

GO:0008509 anion transmembrane transporter activity 4.9 × 10−16 8.77 40 226

GO:0015294 solute:cation symporter activity 8.98 × 10−11 3.03 19 78

GO:0015081 sodium ion transmembrane transporter activity 4.5 × 10−09 4.58 21 118

GO:0015297 antiporter activity 1.92 × 10−08 2.17 14 56

GO:0019534 toxin transporter activity 1.39 × 10−04 0.31 4 8

Liver

GO:0004497 monooxygenase activity 2.23 × 10−20 4.95 34 87

GO:0009055 electron carrier activity 4 × 10−20 8.20 43 144

GO:0048037 cofactor binding 1.17 × 10−16 14.11 52 248

GO:0020037 heme binding 2.06 × 10−15 6.83 34 120

GO:0005506 iron ion binding 1.53 × 10−14 8.54 37 150

Lung

GO:0005102 receptor binding 3.30 × 10−10 71.09 124 1129

GO:0004896 cytokine receptor activity 5.12 × 10−09 5.23 22 83

GO:0003823 antigen binding 1.78 × 10−08 3.02 16 48

GO:0019899 enzyme binding 6.89 × 10−07 69.58 110 1105

GO:0032395 MHC class II receptor activity 1.54 × 10−06 0.5 6 8

Column labels are as follows: GO ID is the GO identifier; GO is the description of the GO term; p-value is the hypergeometric p-value for over-representation of each GO term;
Expected/Gene Count are the expected and actual gene counts; and Size is the number of genes within each GO term

(amidohydrolase domain containing 1) for liver and
PRUNE2 (prune homolog 2) for heart. Song et al. reported
these two genes as new markers. We investigated if these
genes were found by MGFM using data sets #1 and #2.
The gene AMDHD1 was predicted by MGFM as potential
marker for liver using data set #1. The gene PRUNE2
was predicted by MGFM as marker for brain or midbrain
using both data sets #1 and #2. Song et al. described
their method but did not provide a tool for use. Here,
we provide a tool implemented in the R programming
language that can be easily used by calling the appropriate
functions. Finally, we were able to verify the marker genes

experimentally by comparative PCR in all five tissues.
While not all marker genes were unambiguous markers,
and some were not detected, the vast majority (92 %) was
experimentally confirmed (Table 6).

A description of the different marker genes identified by
MGFM is provided in Additional file 4.

Uses of MGFM in CellFinder
To date, MGFM can be used within CellFinder for the data
sets applied in the current study and will be extended by
storing preprocessed expression data derived from differ-
ent tissues and cell types to enable the identification of
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Table 5 Gene Ontology enrichment (Biological Process) of predicted marker genes for the examined tissues

GO ID GO p-value Expected count Gene count Size

Midbrain

GO:0007409 axonogenesis 4.49 × 10−22 46.71 118 489

GO:0010975 regulation of neuron projection development 5.58 × 10−20 21.4 70 224

GO:0006836 neurotransmitter transport 3.93 × 10−18 12.42 49 130

GO:0051969 regulation of transmission of nerve impulse 9.65 × 10−16 19.11 59 200

GO:0016358 dendrite development 6.24 × 10−13 12.51 42 131

Heart atrium

GO:0006941 striated muscle contraction 3.12 × 10−27 3.82 37 97

GO:0060047 heart contraction 3.34 × 10−27 5.76 44 146

GO:0048738 cardiac muscle tissue development 9.63 × 10−25 5.56 41 141

GO:0090257 regulation of muscle system process 4.29 × 10−24 5.76 41 146

GO:0030239 myofibril assembly 1.6 × 10−26 1.66 26 42

Kidney cortex

GO:0055085 transmembrane transport 2.03 × 10−18 29.19 83 757

GO:0007588 excretion 1.83 × 10−10 2.47 17 64

GO:0072006 nephron development 6.35 × 10−09 3.43 18 89

GO:0006814 sodium ion transport 8.87 × 10−08 4.47 19 116

GO:0072348 sulfur compound transport 1.74 × 10−05 0.89 7 23

Liver

GO:0008202 steroid metabolic process 8.68 × 10−46 15.33 90 267

GO:0032787 monocarboxylic acid metabolic process 3.34 × 10−35 24.57 100 428

GO:0006805 xenobiotic metabolic process 4.1 × 10−30 8.04 53 140

GO:0044282 small molecule catabolic process 2 × 10−28 14.7 69 256

GO:1901605 alpha-amino acid metabolic process 7.38 × 10−25 11.54 57 201

Lung

GO:0002684 positive regulation of immune system process 2.53 × 10−37 40.21 134 606

GO:0006954 inflammatory response 2.23 × 10−25 32.64 101 492

GO:0001816 cytokine production 4.95 × 10−25 31.32 98 472

GO:0046649 lymphocyte activation 1.2 × 10−24 31.12 97 469

GO:0009607 response to biotic stimulus 2.18 × 10−24 39.28 111 592

Column labels are as follows: GO ID is the GO identifier; GO is the description of the GO term; p-value is the hypergeometric p-value for over-representation of each GO term;
Expected/Gene Count are the expected and actual gene counts; and Size is the number of genes within each GO term

marker genes associated with a set of tissue samples or
cell types in an easy, fast and accurate way. More specif-
ically, MGFM has the following features to i) allow users
to conveniently modify the set of samples of interest by
adding or removing samples, ii) calculate the potential
marker genes at the gene level (using JetSet [15] to asso-
ciate genes to probe sets), iii) display and rank the list of
marker genes associated with each sample type according
to the specificity, and iv) download the list of all found
markers for further use. Moreover, probe sets are linked
to CellFinder’s gene view which allows for an immediate
evaluation of potential marker genes utilizing expression
values from the RNA Seq Atlas [16]. Also, gene ontology

annotations [12] are included for better understanding of
functional properties of genes.

Conclusion
We presented a new method for marker gene detec-
tion using microarray gene expression data. We verified
this method using two data sets from GEO describing
gene expression in comparable sets of five human tis-
sues. The sets of predicted marker genes associated with
the examined tissues comprised several well-known genes
of particular importance in these tissues. Furthermore,
we confirmed the tissue specific expression of predicted
novel markers by RT-PCR.
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Table 6 PCR results

Predicted marker genes for liver

Gene Liver Lung Heart Brain Kidney Gene Liver Lung Heart Brain Kidney

AKR1D1 + + - - - CYP2E1 + - - - -

FGG + - + - - APOC3 + - - - -

APOA2 + + - - - SERPINC1 + - - - -

CYP2C8 + - - - - AHSG + - - - -

GC + - - - - AMBP + - - - -

CPS1 + - - - -

Predicted marker genes for lung

Gene Liver Lung Heart Brain Kidney Gene Liver Lung Heart Brain Kidney

CLDN18 - + - - - LAMP3 - + + - -

NKX2-1 - + + - - AGER - + - - -

SCGB1A1 - + + - - LYZ + + + - -

SFTPB - + - - - SFTPD - + - - -

CYP4B1 - + + - - SFTPC - + - - -

CD52 - + + - - SLC34A2 - + - - +

Predicted marker genes for heart

Gene Liver Lung Heart Brain Kidney Gene Liver Lung Heart Brain Kidney

MYOZ2 - - + - - PLN - + + - +

TNNI3 - + + - - MB - - + - -

SYNPO2L - + + - - TTN - + + - +

MYH6 - - + - - MYL7 - - + - -

CSRP3 - - + - - MYH7 - - + - -

CKM - - + - - TPM1 + + + - +

Predicted marker genes for brain

Gene Liver Lung Heart Brain Kidney Gene Liver Lung Heart Brain Kidney

GAP43 - - - - - MBP - + + + +

GFAP - - - + - GRIA2 - - - + -

TMEFF1 - - - + - KIF5C - - - + -

FUT9 - - - + + STMN2 - - - + -

SYT1 - - - + - NEFM - - - + -

SNAP25 - + + + - GABBR2 - - - + -

Predicted marker genes for kidney

Gene Liver Lung Heart Brain Kidney Gene Liver Lung Heart Brain Kidney

SLC12A1 - - - - - CA12 - - - - -

SLC3A1 - - - - - PDZK1IP1 - - - - +

UMOD - - - - + FXYD2 - - - - -

AOC1 - - - - + CDH16 - - - - +

CD24 - + - - + SLC22A8 - - - - +

HSD11B2 - + - - + CLDN8 - - - - +

In summary, the main advantages of the application
presented herein are i) a short running time of some sec-
onds per analysis. This is achieved by sorting the gene

expression values instead of using gene differential expres-
sion. ii) MGFM offers the user the possibility to modify the
set of samples by easily removing or adding new samples.
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Table 7 The corresponding samples to the tissues in the 3 data
sets

Tissue Samples

Data midbrain GSM80699, GSM80700, GSM80701

set heart atrium GSM80654, GSM80655, GSM80656

#1 kidney cortex GSM80686, GSM80687, GSM80688

liver GSM80728, GSM80729, GSM80730

lung GSM80707, GSM80710, GSM80712

Data liver GSM44702, GSM18953, GSM18954

set lung GSM44704, GSM18949, GSM18950

#2 brain GSM44690, GSM18921, GSM18922

kidney GSM44675, GSM18955, GSM18956

heart GSM44671, GSM18951, GSM18952

Data liver GSM18953, GSM18954

set lung GSM18949, GSM18950

#3 heart GSM18951, GSM18952

kidney GSM18955, GSM18956

iii) MGFM is available as a standalone version (R-package)
as well as a web application integrated into the CellFinder
platform. We are currently working on a database to store
preprocessed expression data derived from different tis-
sues and cell types, in order to enable the identification of
marker genes associated with a set of samples of interest
in a convenient and fast way.

Materials and methods
Data sources
The microarray expression data are derived from GEO.
The first data set (#1) consists of 15 samples and is
derived from five human tissues (heart atrium, kidney
cortex, liver, lung, and midbrain). The microarray data
set is publicly available from GEO with the series num-
ber GSE3526 [7]. The second data set (#2) is derived
from five human tissues (brain, heart, kidney, liver, and
lung) from two GEO Series GSE1133 [8] and GSE2361
[9]. The third data set (#3) (used by Song et al. [10])
is derived from four human tissues (heart, kidney, liver,
and lung) from the GEO DataSet GDS596. Each tissue
is represented by two to three samples. Table 7 shows
the samples that represent the tissues in the three data
sets.

Data normalization
The Robust Multiarray Averaging [17] (RMA) procedure
was used for background correction, normalization, and
summarization of the AffyBatch probe-level data for data
sets #1 and #2. In addition, data set #2 was normal-
ized using the ComBat method from the R-package sva
(Version: 3.6.0) [18] in order to remove batch effects.

Identification of marker genes
Marker genes are identified following the steps below:

Sort of expression values for each probe set: In this
step the expression values are sorted in decreasing order.

Marker selection: To analyze the sorted distribution
of expression values of a probe set to define if it is a
potential candidate marker we define cut-points as those
that segregate samples of different types. A sorted dis-
tribution can have multiple cut-points; a cut-point can
segregate one sample type from the others, or it can
segregate multiple sample types from multiple sample
types. In the example given in Fig. 1, the distribution has
two cut-points (cut-point 1 and cut-point 2), the first
cut-point segregates liver samples from the rest, and the
second cut-point segregates brain samples from the rest.
Each cut-point is defined by the ratio of the expression
averages of the groups of samples adjacent to it. That is,
given a distribution with n cut-points and n+1 segregated
groups, cut-point i receives a score that is the ratio of the
average expression of samples in the group i+1 (following
the cut-point) divided by that of group i (preceding the
cut-point). This value is < 1 because the values are sorted
in decreasing order. The closer the values, the closer the
score to 1 and therefore the smaller is the gap between
expression values at the cut-point. We use this score to
indicate the specificity of the cut-point and by extension
of the probe set as marker between particular groups of
tissues. For simplicity, in this work we take only probe
sets as markers if they have a cut-point that segregates
one tissue at high expression from the rest (as in Fig. 1
for liver). We disregard negative markers (segregating
samples from one tissue at low expression) or multiple
tissue markers (segregating samples from more than one
tissue from other multiple tissues). However, our method
can calculate them (for example, as in Fig. 1, CFB can be
defined as a positive marker for liver and as a negative
marker for brain).

Mapping of probe sets to genes: Affymetrix probe sets
were mapped to Entrez GeneIDs using the 23 October
2013 release of NetAffx annotations [19].

Calculation of precision/recall curves
To validate the performance of MGFM, the recall and pre-
cision were examined using the literature-curated known
markers. Two strategies were used: i) The predicted mark-
ers for each of the examined tissues were combined and
compared with the complete set of known markers of
all examined tissues. ii) The set of predicted markers for
each tissue was compared with the known markers of this
tissue. A marker gene is considered as identified if the
corresponding selected probe set maps unambiguously to
this gene.
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Gene Ontology enrichment analysis
Gene ontology enrichment analysis was assessed with the
hypergeometric statistic as implemented in the R-package
GOstats [20] (Version: 2.32.0), with all genes on the
microarray as background. The cutoff for p-values was
0.01.

Venn diagrams
The Venn diagrams were generated using the R-package
VennDiagram (Version: 1.6.0) [21].

t-test
The p-values were adjusted for multiple testing using the
Benjamini-Hochberg procedure.

Ethics statement
Human kidney tissue was provided from leftover diag-
nostic biopsies from the Department of Nephrology
at Charite Universitätsmedizin Berlin. RNA from heart
and lung tissues was provided by the German Heart
Center Berlin, and RNA from liver from the Department
of Experimenal Surgery at Charite Universitätsmedizin
Berlin. All tissue donors were consented and ethics
approval obtained from the responsible ethics Committee
at Charite (Nr. EA1/110/10) and the German Heart Center
(Nr. EA4/028/12).

cDNA synthesis and PCR analysis
Human total RNA was isolated from liver, lung, heart
and kidney with TRIzol reagent (Invitrogen) according
to the manufacturer’s protocol. Human RNA from brain
was purchased from Clontech Laboratories (Mountain
View, CA, USA). RNA was reverse transcribed into cDNA
with random primers using SuperScript III First-Strand
Synthesis System (Invitrogen) according to the manufac-
turer’s protocol. Five μg of total RNA was used for cDNA
synthesis.

The PCR reaction consisted of 1 μl of cDNA, 0.5 μl of
10 mM deoxynucleoside triphosphate mix (dNTP), 5 μl
of 5X Crimson Taq (Mg-free) Reaction Buffer, 1.5 μl of
25 mM MgCl2, 0.5 μl of each 10 μM forward and reverse
primers, 0.125 μl of Crimson Taq DNA polymerase, and
nuclease-free water up to 25 μl. The cycling conditions
were performed as following: 95 °C for 2 min, followed by
30 cycles of 95 °C for 30 s, temperature specific annealing
for 30 s, and 72 °C for 45 s with a final elongation at 72 °C
for 7 min. A 1 % agarose gel was used to check PCR
amplification. All primers used are listed in Additional
file 5. The housekeeping gene beta-actin was used as
positive control.

Tool requirements
MGFM expects replicates for each sample type. Using repli-
cates has the advantage of increased precision of gene

expression measurements and allows smaller changes to
be detected. It is not necessary to use the same number of
replicates for all sample types. Normalization is necessary
before any analysis to ensure that differences in intensi-
ties are indeed due to differential expression, and not to
some experimental factors that add systematic biases to
the measurements. Hence, for reliable results normaliza-
tion of data is mandatory. When combining data from
different studies, other procedures should be applied to
adjust for batch effects.

Implementation of the online tool
The online version of MGFM integrated into CellFinder
is implemented in JavaScript for the frontend and PHP
together with Rserve [22] for the backend. JavaScript is
utilized to allow for asynchronous user interactions and
requests are sent to a PHP webservice, which handles in
and outputs and controls Rserve to call MGFM.

Software availability
The R-package MGFM is freely available from the Biocon-
ductor web site (http://www.bioconductor.org/packages/
release/bioc/html/MGFM.html).

Additional files

Additional file 1: Literature-curated marker genes. This file includes
marker genes collected from the literature. (104KB PDF)

Additional file 2: Plots of Precision/Recall comparing our method to
t-test. This file includes Plots of Precision/Recall comparing MGFM to t-test.
(462KB PDF)

Additional file 3: Gel electrophoresis images. This file includes the gel
electrophoresis images (Figures S1–S11). (981KB PDF)

Additional file 4: Description of the predicted marker genes.
(126KB PDF)

Additional file 5: Primer sequences. This file includes the list of all
primer sequences used by PCR. (55.7KB PDF)
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