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An m-sequence (PN sequence) preestimator scheme for direct-sequence spread spectrum (DS-SS) signal acquisition by using
block sequence estimation (BSE) is proposed and analyzed. The proposed scheme consists of an estimator and a verifier which
work according to the PN sequence chip clock, and provides not only the enhanced chip estimates with a threshold decision logic
and one-chip error correction among the first m received chips, but also the reliability check of the estimates with additional
decision logic. The probabilities of the estimator and verifier operations are calculated. With these results, the detection, the
false alarm, and the missing probabilities of the proposed scheme are derived. In addition, using a signal flow graph, the average
acquisition time is calculated. The proposed scheme can be used as a preestimator and easily implemented by changing the internal
signal path of a generally used digital matched filter (DMF) correlator or any other correlator that has a lot of sampling data
memories for sampled PN sequence. The numerical results show rapid acquisition performance in a relatively good CNR.
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1. INTRODUCTION

PN sequence acquisition is a precondition for stable and re-
liable spread spectrum communication. The research on PN
sequence acquisition has been continuing for more than 20
years to improve its performance, stability, and acquisition
speed [1, 2].

There are two representative methods for the acquisition
of a PN sequence. One is a sequential estimation method
that uses one of the important characteristics of the PN se-
quence generation with linear feedback shift register (LFSR)
structure. That is, if m chips of the PN sequence can be es-
timated correctly from the received signal, these chips can
be loaded into the m-shift-register generator to synchronize
the system. In 1977, Ward and Yiu enhanced this method
with recursive-aided sequential estimation [3]. In spite of
its simple structure and rapid acquisition performance, this
method cannot be used for low SNR radio environment
because of the performance degradation and its instability.
Several studies [4, 5, 6] have been done with a majority-

logic decoder to enhance the acquisition performance us-
ing a large number of parity-check sums for each chip. Re-
cently, a seed-accumulating sequential estimation scheme [7]
has been proposed by accumulating each chip of the received
seeds of m chips, and another modified scheme [8] has been
developed with a two-threshold decision logic which pro-
vides not only chip estimates but also the reliability of the
chip estimates by findingm consecutive estimates.

The other is a serial-search method with a correlation
circuit. In 1984, Polydoros and Weber clearly analyzed the
performance of this method [9], especially with matched
filter [10]. Although the matched filter method is known
as very efficient and stable for PN sequence synchroniza-
tion, it takes much more time than the sequential estima-
tion method in a relatively good CNR environment because
of its structural characteristics and sequence-search win-
dow uncertainty. Commercially, the matched filter is imple-
mented with digital logic elements such as registers, adders,
multipliers, and so forth [2]. Hence, a sampling rate for
the PN sequence chip, bits per sample, and the correlating
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Figure 1: LFSR circuit for a generalizedm-sequence generator.

r(t) Long-term (kTc) correlation and acquisition test
with estimated PN sequence phase

Local PN generator
Estimated current-state register

State load

∫ Tc

0
r(t)dt

Initial PN phase
estimator

PN phase
verifier

PN sequence phase preestimator

Figure 2: Acquisition model.

∫ Tc

0
r(t)dt

m chips

m chips

m chips

Path
control

Setupm + 1 local
PN generators

Test with threshold γ1
& select the possible

path

Verify with
threshold γ2

Estimating
&

verifying
control

Figure 3: Detailed block diagram of the PN sequence phase preestimator.

(integration) period determine the structural complexity
and acquisition performance of a digital matched filter
(DMF) correlator.

Alternatively, we can adopt the adaptive detection
scheme based on the MMSE (minimum mean-squared er-
ror) criterion to successfully deal with the multiple-access
interference or multiuser detection, which requires an esti-
mation process, training with known data sequence, or blind
channel estimation [11, 12].

In this paper, we propose a preestimator scheme that
can cooperate with a DMF correlator for PN sequence ac-
quisition sharing the unused elements of the DMF structure
within a given period of time (filling up the time of the DMF
registers with the sampled PN chips or the given fixed op-
eration time limits), and can analyze its performance. This
scheme provides one-chip error correction capability of the
initially loaded PN sequence chips on the LFSRs and a flexi-
bility tomanage structural resources of a correlator structure.

In Sections 2 and 3, the block sequence estimation (BSE)
structure and its probabilistic performance are explained in
detail, and the average acquisition time will be calculated
in Section 4. Section 5 gives numerical results that show the

acquisition performance of the proposed scheme. Finally, we
conclude our work in Section 6.

2. PN SEQUENCE BLOCK ESTIMATOR

PN sequence generator corresponding to a generator polyno-
mial has an LFSR form illustrated in Figure 1. In this figure,
the boxes represent the shift register where m is the number
of the registers, circles containing subscripted letter coeffi-
cients gm represent a connection if the coefficient is a 1 or no
connection if the coefficient is a 0, and circles containing “+”
mean modulo-2 adders or exclusive-OR gates [2]. The num-
ber of shift registers, connection coefficients, and modulo-2
adders depends on a given generator polynomial. This gen-
erator circuit is used for the local PN sequence generators of
the proposed preestimator scheme. Because the explanation
about this LFSR topic is beyond the scope of this paper, we
will skip the details.

Figures 2 and 3 show a conceptual application diagram of
the proposed scheme. This scheme consists of several compo-
nents such as an integrator for chip duration Tc, a bit slicer,
an estimator, and a verifier. As shown in Figure 2, if a correct
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Figure 4: PN phase estimator.

PN sequence phase is estimated, this sequence can be loaded
on a local PN generator and tested for a long time (given a
period of time kTc), where k is a positive integer. In Figure 2,
after finishing its operation with fail or success to estimate
the correct PN sequence phase in a given operation time, the
structure of the preestimator block will be disassembled and
returned to the elements of the original correlator structure.

The proposed PN sequence phase preestimator works as
follows.

(1) Setupm+1 local PN sequence generators (LFSR paths)
with the first receivedm PN chips as follows:
(1) loadm PN chips as the initial shift register values

at a no-error LFSR path;
(2) loadm PN chips as the initial shift register values

inverting position #1 chip at the error position #1
LFSR path;

(3) loadm PN chips as the initial shift register values
inverting position #2 chip at the error position #2
LFSR path;
...

(m + 1) loadm PN chips as the initial shift register values
inverting position #m chip at the error position
#m LFSR path.

(2) Receive the second m PN chips and shift all LFSRs by
m times with a chip clock.

(3) Test the Hamming distance between the second m PN
chips and each register’s residue values of the LFSRs.

(4) Select an LFSR path having minimum distance.
(5) If the selected path’s minimum distance value is lower

than threshold γ1, go to (6).
Else, go to (1) and repeat the previous steps because
the estimating procedure failed.

(6) Receive the third m PN chips and shift the selected
LFSR path bym times with the chip clock.

(7) Test the Hamming distance between the third m PN
chips and the register’s residue values of the survived
LFSR path.

(8) If the minimum distance is lower than threshold γ2,
go to (9).

Else, go to (1) and repeat the previous steps because
the verifying procedure failed.

(9) Optional test: long-term kTc correlation and acquisi-
tion test with estimated PN sequence phase.

The above operation can be separated into two operators’
work. One is the estimator (works from step (1) to step (5))
in Figure 4 that consists of m + 1 LFSR paths with one-error
correction capability and chooses the best possible correct
path. The other is the verifier (works from step (6) to step
(8)) that confirms the survived path whether the selection
is correct or not, as shown in Figure 5. The two operators’
comparator circuit has a very simple structure with an LFSR.
For providing one-error correction capability to the estima-
tor, m + 1 local PN generator paths are needed as shown in
Figure 4.

After receiving the first m PN chips, the no-error LFSR
path stores these received m chips as the m register’s initial
values, and otherm local LFSR path register values are trans-
ferred from the received buffers with one inverted chip that
is corresponding to the chip error position buffer value to
the path order of the local LFSR paths referred to in Figure 4.
Among the m + 1 local LFSR paths, the one path that sur-
vived through the estimator test is assumed as a possible
correct one. This test uses the Hamming distance compari-
son method betweenm-time-shifted local LFSR paths’ regis-
ter residue values and the second received m PN chip buffer
values, path by path. After calculating the distances, we se-
lect one path that has the minimum distance value among
the LFSR paths, and the selected path’s Hamming distance
is smaller than the given selection threshold γ1 to confirm
whether the choice is correct or not. Hence, we can assume
that the selected LFSR path is a possible correct path by the
estimator.

The selected local LFSR path shifted by another m times
with the chip clock will be compared with the third received
m PN chips and tested with the verification threshold γ2 at
the verifier in Figure 5. If the verification test passed, the pro-
posed scheme declares success of the PN sequence acquisi-
tion and finishes its operation.
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Figure 5: PN phase verifier for the verification mode.

Table 1: Number of registers.

Scheme Number of registers
BSE 240

DMF correlator (128 chip)
2 samples/chip 2048
4 samples/chip 4096

DMF correlator (256 chip)
2 samples/chip 4096
4 samples/chip 8192

To make all LFSR paths uncorrelated with each other due
to the relationship between each LFSR path’s retained register
values, the local LFSR path will be shifted more thanm times
with the chip clock. Therefore, the proposed scheme can fin-
ish all the estimation process in a minimum 3m PN chip time
at the best case, and it is the basis of rapid acquisition.

In the case where the proposed BSE scheme is used with
the DMF correlator, Table 1 shows how many registers (bit
memories) are required to implement the proposed scheme
compared to a DMF correlator and gives an idea to share the
furnished registers of a DMF correlator. We assume that the
bits per PN chip sample are 8 and the length of the LFSR
registerm is 15.

3. DETECTION AND FALSE ALARM PROBABILITY

The probabilities of passing through the acquisition pro-
cesses shown in Figure 6 are defined in Table 2. These proba-
bilities can be calculated with combinational probability.

To calculate each probability in Table 2, we assume that
the received chip error probability is Pe at the given CNR.
The respective correct probability of the received PN chips
to the incorrect path register values is 1/2, and to the correct
path registers value is 1− Pe. That is, when one correct LFSR
path exists because there is none or one-chip error among
the received m PN chips, the probability of the correct path
selection will be calculate with Pe, whereas if a correct LFSR
path does not exist or an incorrect LFSR path is selected, the
following steps will use 1/2 instead of Pe because the values in
the m-time shifted LFSR and the newly received m PN chips
can be assumed as uncorrelated random sequences for each
other.

As shown in Figure 2, the received PN chips have a hard-
decision value “1” or “0” by the bit slicer. Hence, all proba-
bilities can be calculated based on Bernoulli trial cases.

In the process of selecting one LFSR path among one cor-
rect and other m incorrect LFSR paths at the estimator, we
can be faced up with selecting one of the m incorrect LFSRs.
This is due to the fact that the received m PN chips having
multiple errors and there is no prior information about the
correct path. There are two cases for the force to choose an
incorrect path with the probability PPathMiss, in spite of one of
the local LFSR paths being the correct path. First is when one
of the incorrect paths always wins over the correct path in
the comparison test to reach the second receivedm PN chips
with the probability PAF written as in (2). Multiple errors
(more than the threshold γ1) in the received m PN chips to
test the Hamming distance can lead the test to this result. Sec-
ond is when more than one of the incorrect paths’ Hamming
distance testing results is equal to the correct path’s. In this
case, one of these paths will be selected arbitrarily and this
choice can be incorrect with the probability PEF expressed as
in (3). Therefore,

PPathMiss = PAF + PEF, (1)

PAF =
γ1∑
γ=1

{
1−

[ m∑
k=γ

(
m
k

)(
1
2

)m]m}
· P(γ), (2)

PEF =
γ1∑
γ=1

m∑
k=1

k

k + 1

(
m
k

)[(
m
γ

)(
1
2

)m]k

×
[ m∑

j=γ+1

[(
m
j

)(
1
2

)m]]m−k
· P(γ),

(3)

where P(γ) is defined as follows:

P(γ) =
(
m
γ

)
P
γ
e
(
1− Pe

)m−γ
. (4)

If a successful acquisition of the PN sequence with the
detection probability PD in (5) is declared, the receiver starts
to dispread the received signal to recover the transmitted
symbols or to operate a long-time verification circuit like a
matched-filter correlator, if available, with the selected local
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Figure 6: Acquisition process diagram.

Table 2: Probability definitions.

Probability Definition
PC Probability of the one correct path existence amongm + 1 LFSR paths
PDet Probability of the correct path selection amongm + 1 LFSR paths
PN Det Probability of the one path selection among all incorrect LFSR paths
PPathMiss Probability of missing the correct path at the estimator
PAcq Probability of the acquisition declaration at the verifier
PFA1 Probability of the false acquisition declaration with PPathMiss at the verifier
PFA2 Probability of the false acquisition declaration with PN Det at the verifier

PN generator for a more reliable acquisition process:

PD = PCPDetPAcq, (5)

where

PC =
1∑

k=0

(
m
k

)
Pk
e

(
1− Pe

)m−k
,

PDet =
γ1∑
i=0

(
m
i

)
Pi
e

(
1− Pe

)m−i − PPathMiss,

PAcq =
γ2∑
k=0

(
m
k

)
Pk
e

(
1− Pe

)m−k
.

(6)

However, even though the acquisition is declared, if the
procedure is passed through the “verify incorrect case” node
in Figure 6, it results in a false alarm with probability PFA
given by

PFA = PCPPathMissPFA1 +
(
1− PC

)
PN DetPFA2, (7)

where

PFA1 =
γ2∑
k=0

(
m

m− k

)(
1
2

)m
,

PN Det =
γ1∑
k=0

(
m

m− k

)(
1
2

)m
,

PFA2 =
γ2∑
k=0

(
m

m− k

)(
1
2

)m
.

(8)

Contrary to the false alarm case, there are two missing cor-
rect LFSR path cases. First is PPathMiss from the estimator, and
second is 1 − PAcq from the verifier. Hence, we can calculate
the missing probability as follows:

PMiss = PCPPathMiss + PCPDet
(
1− PAcq

)
. (9)

4. AVERAGE ACQUISITION TIME

The signal flow graph of the PN code acquisition scheme
is shown in Figure 7. After the acquisition declaration, nor-
mally to verify whether the acquisition declaration is correct
or not, a long-time verification device, such as a matched
filter correlator, should be adopted. To analyze the perfor-
mance of the proposed acquisition scheme, if the scheme is
declared as a correct acquisition, then the verification device
will detect the PN sequence successfully.

The transfer function can be calculated with time delay Z
as follows:

F(Z) = PCPDetPAcqZ2

1− R(Z)
, (10)

where RR(Z) represents the sum of signal flow transfer func-
tions that have time delay because of the acquisition fail, and
is computed from

R(Z) = RF1(Z) + RC1(Z) + RC2(Z). (11)
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In (11), RF1(Z), RC1(Z), and RC2(Z) are defined, respectively,
by

RF1(Z) =
(
1− PC

) · [(1− PN Det
) · Z

+PN Det
{(
1− PFA2

)
+PFA2 · ZTe

} · Z2],
RC1(Z) = PC ·

[(
1− PDet − PPathMiss

) · Z
+PPathMiss ·

{(
1− PFA1

)
+PFA1 · ZTe

} · Z2],
RC2(Z) = PCPDet(1− PAcq

) · Z2.

(12)

The Te is the penalty time to be wasted at the additional
verification device, such as a matched filter correlator, be-
cause of the false alarm.

With this transfer function, the average acquisition time
can be calculated by differentiating the transfer function and
letting the time delay component Z = 1, resulting in

TAcq = d

dZ

[
F(Z)

]∣∣
Z=1 · Ta

=
(
2PCPD11PAC11

1− R(1)

+
PCPD11PAC11{
1− R(1)

}2 · d

dZ

[
R(Z)

]∣∣
Z=1

)
· Ta,

(13)

where Ta is the m-chips receiving time, the examination
time, filling up the registers of the LFSR with sampled chips
and withm-time LFSRs shifted with the chip clock.

5. NUMERICAL RESULTS

In this paper, this chip error probability will be considered
under an additive white Gaussian noise (AWGN) channel
where its two-sided power spectral density is N0/2. Also
BPSK modulated signal with the Pe in (14) is assumed:

Pe = Q

(√
2EC
N0

)
, (14)

where EC is the one-chip energy.

For the numerical calculations derived in the previous
sections, the register lengthm of the LFSR PN sequence gen-
erator is 15. The penalty time Te for the false alarm is as-
sumed as 128Tc.

In Figures 8 and 9, the detection and false alarm prob-
abilities are plotted versus CNR with given γ1, γ2. Figure 8
shows that the detection probability plots continuously rise
improving the acquisition performance until the saturation
near 0 dB. In Figure 9, the false alarm probability nearly
comes to be saturated at low CNR (worse than −5dB) be-
cause there can be multiple error chips among the received
m PN chips to be loaded into the estimator’s initial value,
the acquisition and false alarm probabilities are small. In mid
CNR (nearly from −5dB to −5dB), even though the estima-
tor estimates the correct PN sequence phase, the false alarm
probability can increase due to the erroneous received PN
chips used for the Hamming distance test and the decision
operation at the estimator and the verifier.

Figures 10 and 11 show the average acquisition time per-
formances as a function of the given γ1 and γ2 parameters.
Clearly, it is shown that the proposed structure can achieve
rapid acquisition performance, especially when CNR is bet-
ter than −5dB.

Figure 12 shows the comparison of the average acquisi-
tion time performance of the proposed BSE scheme in the
case of γ1 = γ2 = 3 with several other acquisition schemes:
the recursion-aided sequential estimation (RASE) scheme
[3] and the synchronization schemes using matched filter
and fixed integration methods [2]. To calculate the average
acquisition time of the matched filter and the fixed integra-
tion methods, we assume the best-probability case (lower-
bound), PD = 1 and PFA = 0. In addition, to be fair to
the referenced schemes, the penalty time and the integration
time are set the same as 128Tc. From Figure 12, we can find
that the BSE and the RASE show almost the same acquisi-
tion time performance when the CNR is higher than +4dB.
Comparing the BSE to the remaining two schemes, which are
assumed to be the best probabilistic cases, the proposed BSE
shows faster acquisition time performance than the others in
medium and high CNR.
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6. CONCLUSIONS

In this paper, a PN sequence preestimator scheme using the
BSE was proposed for the direct-sequence spread spectrum
(DS-SS) system. The estimator, a part of the proposed BSE
scheme, provides the enhanced chip estimates with threshold
decision logic and one-chip error correction among the
first m received chips. The one-error correction capability
of the estimator is entitled by the m + 1 local PN sequence
generators. The verifier is used for the reliability check of the
estimates with additional decision logic. From the numerical
analysis, we observed that the average acquisition time
is faster than the other referenced schemes in this paper.
In special, the BSE scheme kept up fast acquisition time
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until the CNR is fallen near to −4dB. The high hardware
complexity of the proposed BSE scheme is affordable when
the DMF correlator has already been used. That is, because
the component parts of the proposed scheme are similar to
those of the DMF correlator or any other correlator which
has many memory elements, it can be easily implemented by
changing the signal path connections and adding minimized
glue logics.

Therefore, the proposed scheme can be used as an effi-
cient rapid acquisition system or a flexible preestimator in
advance of the other correlator operation depending on the
quality of the received signal conditions to make up for the
weak points of each other in mid-to-high CNR environment.
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