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Abstract

Background: The prevalence of allergic diseases are increasing worldwide, emphasizing the need to elucidate
their pathogeneses. The aims of this study were to use a two-stage design to identify DNA methylation levels at
cytosine–phosphate–guanine (CpG) sites across the genome associated with atopy and high serum immunoglobulin E
(IgE), then to replicate our findings in an independent cohort.

Methods: Atopy was assessed via skin prick tests and high serum IgE. Methylation levels were measured from whole
blood using the Illumina Infinium HumanMethylation450 BeadChip from 18-year-old women (n = 245) and
men (n = 122) in the Isle of Wight birth cohort. After data cleaning and processing, and removing probes
with possible single nucleotide polymorphisms, DNA methylation levels from 254,460 CpG sites from the 245 women
were subjected to recursive Random Forest feature selection for stage 1. The sites selected from stage 1 were tested
in stage 2 for associations with atopy and high IgE levels (>200 kU/L) via logistic regression adjusted for predicted
cell-type proportions and sex. Sites significantly associated with atopy in stage 2 underwent replication tests in the
independent Swedish birth cohort BAMSE (n = 464).

Results: In stage 1, 62 sites were selected, of which 22 were associated with atopy in stage 2 (P-value range 6.5E−9
to 1.4E−5) and 12 associated with high IgE levels (P-value range 1.1E−5 to 7.1E−4) at the Bonferroni adjusted alpha
(0.05/62 = 0.0008). Of the 19 available sites, 13 were replicated.

Conclusions: We identified 13 novel epigenetic loci associated with atopy and high IgE that could serve as candidate
loci for future studies; four were within genes with known roles in the immune response (cg04983687 in the body of
ZFPM1, cg18219873 in the 5′UTR of PRG2, cg27469152 in the 3′UTR of EPX, and cg09332506 in the body of COPA).
Background
The prevalence of allergic disease is increasing world-
wide; approximately 40 % of the population of industri-
ally developed countries are considered to be affected
[1]. Many of these allergic diseases appear to have a
hereditary component but are also influenced by envir-
onmental stimuli [2], and the origin of the immune
response, including allergen sensitization, is thought to
start during the fetal period [3]. It is well recognized that
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environmental stimuli during critical prenatal and post-
natal periods can permanently alter metabolism and in-
fluence the risk of allergic diseases [4], yet the specific
molecular mechanisms through which this occurs are
poorly understood [1, 5].
Epigenetics, changes in gene activity not caused by alter-

ations to the sequence of DNA, may clarify some of these
mechanisms because much of cell lineage and tissue-
specific gene expression is tightly regulated by epigenetic
programming [1]. One of the most commonly studied
epigenetic mechanisms is DNA methylation (DNA-M),
the covalent addition of a methyl group to a cytosine
followed by a guanine (cytosine–phosphate–guanine; CpG).
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Changes in DNA-M affect gene transcription and have
been associated with disease [6]. Some of DNA-M’s roles in
the development of the immune system, immune cell-fate,
and allergic diseases have been unlocked, but substantial
gaps in knowledge still exist [1].
Atopy is defined as a positive reaction to a skin prick

test (SPT) or immunoglobulin E (IgE) production in
response to allergens [7]. IgE plays an important role in
many, but not all, allergic diseases, for example, asthma,
rhinitis, and eczema [7, 8]. High levels of IgE in the
blood are associated with both the risk and severity of
asthma, and cord blood IgE levels have been studied as
possible predictors of asthma and other atopic allergic
diseases [4]. Atopy is therefore connected to allergic dis-
ease, although many of the details of this relationship
are still unknown. Epigenetic epidemiology can help to
clarify the role that DNA-M plays in atopy by confirm-
ing candidate loci and revealing novel loci associated
with atopy [5].
Advances in genetic biotechnology have made it feas-

ible to measure DNA-M throughout an individual’s
epigenome and, consequently, epigenetic assessments
are becoming feasible in larger epidemiologic studies [9].
A growing challenge with epigenetic epidemiology is
that a vast amount of data is generated and new statis-
tical techniques are necessary to make sense of it. This
is because of small-n-large-p (few observations relative
to the number of predictors) and because traditional
methods are not optimized for identifying complex bio-
logical processes. Because of the large-scale data gener-
ated for each completed methylation assay, techniques
to select a subset of informative variables are needed
[10–12], particularly in cases of sparse data in which the
vast majority of predictors are uninformative [13].
Random Forest (RF), developed by Leo Breiman, is a

machine learning algorithm used for classification that
can handle the data issues discussed above [14]. A forest
composed of classification trees is grown using randomly
selected bootstrap samples of the data to form training
and testing sets of study participants. At each node
within each tree, the training set is partitioned into dif-
ferent classes with the split determined by a subset of
randomly chosen predictors. These two levels of ran-
domness, random selection of training/testing sets and
random testing of predictors, allow the RF to produce
robust classification predictions. Once the forest is
grown using the training sets, the observations in the
testing sets are classified via the forest and misclassifica-
tion rates can be used to evaluate the accuracy of the
forest [14].
Utilization of RF to analyze array data has increased in

recent years [15–18]; it is an ideal method for classifica-
tion with methylation data for several reasons. Unlike
most traditional methods, RF can be used for feature
selection when the number of variables exceeds the
number of observations, even when most variables are
uninformative; RF can use both numeric and categorical
variables; the algorithm can be optimized fairly easily by
varying the RF parameters; and adding trees does not
cause the model to become over-fit [14, 15, 19]. In
addition, biological processes are probably not linear in
nature; rather, they involve interactions between many
different molecules. Thus it is likely that methylation
changes at a combination of CpG sites could influence
disease states. RF allows for the identification of multiple
interacting predictors and identifies which of these are
most important without imposing a structure or model
on the way that it takes place.
Despite its increased presence in the analysis of

genomic data, few applications of the algorithm have
utilized the variable importance measures (VIM) and its
potential for feature selection [18]. While RF lends itself
to a variety of applications, we focused on using it for
feature selection.
In this study, we implemented a two-stage discovery

study within the Isle of Wight (IOW) birth cohort
to first select a set of atopy-candidate CpGs from
epigenome-wide data using a subsample and then to test
which of these sites were significantly associated with
atopy as defined by positive SPT or high total serum IgE
levels in the joint sample. Then, to validate our findings,
we ran replication tests in the independent Swedish
cohort BAMSE.

Methods
The Isle of Wight birth cohort
The IOW birth cohort was established to study the nat-
ural history of allergic disease among children born be-
tween 1 January 1989 and 28 February 1990 on the Isle
of Wight, UK. The study was approved by the local
research ethics committee (now named the National
Research Ethics Service, NRES Committee South
Central – Southampton B; 06/Q1701/34) and written
informed consent was provided by the infants’ parents.
After exclusion of adoptions, perinatal deaths, and re-
fusals, 1,456 children (95 %) were enrolled. Participants
were followed-up at ages 1 (n = 1,167), 2 (n = 1,174),
4 (n = 1,218), 10 (n = 1,373), and 18 years (n = 1,313);
detailed questionnaires were administered at each
follow-up. Details of the birth cohort have been described
elsewhere [20, 21]. At age 18 years, 245 women and 122
men were randomly selected from the cohort for genome-
wide DNA methylation screening as part of another study
assessing trans-generational inheritance of atopy.

Data collection and DNA methylation
At the 18-year follow-up, most of those who were seen
in-person received SPTs using a standard method [22]
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and with a battery of common allergens. Inhalant aller-
gens tested were house dust mite, cat, dog, Alternaria
alternata, Cladosporium herbarum, grass pollen mix,
and tree pollen mix. Food allergens tested were cows’
milk, soy, hens’ egg, peanut, and cod. Of the 245 women
included in the epigenetic analyses, SPTs were con-
ducted on 242 of them; 120 of the men received SPTs.
Blood samples for DNA extraction and serum for mea-
surements of IgE levels were also collected at 18 years of
age. Total serum IgE was measured in a subset of male
and female serum samples collected at age 18 (n = 144)
using Immunocap (Phadia, Uppsala, Sweden), designed
to measure IgE between 2.0 to 1,000 kU/L. DNA was ex-
tracted from whole blood using a standard salting-out
procedure [23]. DNA concentration was determined by
the Qubit quantitation kit (Life Technologies Ltd,
Paisley, Renfrewshire, UK). One microgram of DNA was
bisulfite-treated for cytosine to thymine conversion
using the EZ 96-DNA methylation kit (Zymo Research,
Irvine, CA, USA), following the manufacturer’s standard
protocol. Genome-wide DNA methylation was assessed
using the Illumina Infinium HumanMethylation450K
BeadChip (Illumina, Inc., San Diego, CA, USA), which
interrogates >484,000 CpG sites associated with approxi-
mately 24,000 genes. The BeadChips were scanned using
a BeadStation, and the methylation levels (β value, de-
scribed below) were calculated for each queried CpG
locus using the methylation module of GenomeStudio
software (Illumina, Inc.). Arrays were processed using a
standard protocol as described elsewhere [24], with mul-
tiple identical control samples assigned to each batch to
assess assay variability and samples randomly distributed
on microarrays to control against batch effects.

Data cleaning
The program for data cleaning was written in R (R
Development Core Team, 2012). Quality control (QC)
measures were employed to improve the reliability of
data prior to analysis. In our study, the detection P-value
reported by GenomeStudio was used as a QC measure of
probe performance. Probes with detection P-values > 0.01
in >10 % of the samples were removed [25]. The methyla-
tion data were then preprocessed and technical variations
removed via peak-correction using the Bioconductor IMA
(Illumina Methylation Analyzer) package. Excluding con-
trol probes and probes with poor detection P-values
yielded 383,998 remaining probes; 9,650 CpGs on the sex
chromosomes were also removed. The arrays were
processed in two batches; batch number was recorded
as a categorical variable, which was used in ComBat to
adjust for inter-array variation [26, 27]. Because the fe-
male and male samples were assessed in different
batches, some sites that survived QC in the female
sample did not survive QC in the male sample. A very
conservative approach was utilized for addressing intra-
probe single nucleotide polymorphisms (SNPs); to
ensure that our findings were not biased by SNPs af-
fecting methylation levels, we excluded all probes with
potential SNPs in the binding region or at base-pair ex-
tension (119,888 probes) according to the dbSNP data-
base (version 137), resulting in a final set of 254,460
CpGs for analysis. Removing all probes with possible
SNPs was necessary with our variable selection method
because the selection of any variable is conditional
upon the effects of other selected variables, thus inclu-
sion of SNP-biased probes can affect the inclusion of
other unbiased probes.

Variable definitions
Participants were defined as being atopic, the primary
outcome variable for this study, if they had a positive
SPT to at least one of the tested allergens [7]. Positive
SPTs were determined by a mean wheal diameter of 3
mm greater than the negative control; SPT results were
deemed inconclusive if the positive control resulted in a
diameter less than 3 mm. To internally validate our find-
ings from the SPT analyses, we also tested the same stat-
istical models but with dichotomous serum IgE levels
(IgE ≥ 200 kU/L versus IgE < 200 kU/L), which has been
shown to be predictive of allergy [28], as an alternate
outcome variable.
Methylation levels for each queried CpG were calcu-

lated as β values. These represent the proportions of
methylated (M) over methylated (M) and unmethylated
(U) sites (β = M/[c + M + U], with constant c intro-
duced to prevent the possibility of a zero in the denom-
inator), and can be interpreted as percent methylation; β
values close to 0 or 1 tend to suffer from severe hetero-
scedasticity. The β values were utilized for RF, described
below, which is a non-parametric method and does not
assume a normal distribution. However, for parametric
statistical analyses, such as logistic regressions used for
validation and replication, we utilized M-values, which
address the issue of heteroscedasticity and thus perform
better. M-values were calculated from the β values via
log2[β/(1 − β)] [29]. Prior to running parametric models,
boxplots and histograms were used to verify approxi-
mate normality and identify potential outliers.
Pearson’s chi-squared tests were used to determine if

prevalence of atopy and high IgE differed between the
female and male samples, within the epigenetic sam-
ple, and between the epigenetic sample and the entire
cohort. P-values were compared against an α-level of
0.05. We implemented a two-stage genome-wide ap-
proach [30]: stage 1 analyses selected a set of atopy-
candidate loci from genome-wide DNA-M within a
subsample (n = 245), and stage 2 analyses tested
those loci for associations with atopy and an alternate
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marker of atopy, high IgE, in the joint sample (n = 367).
The specific methods within each stage are detailed
below. The normalized DNA-M microarray data, as
well as covariates and outcomes used in both stage 1
and stage 2 analyses, described below, are available
via the University of Southampton ePrints Soton
(DOI: 10.5258/SOTON/379389).

The BAMSE cohort
Sites that were significantly associated with atopy in
stage 2 analyses were selected for replication in the
Children, Allergy, Milieu, Stockholm, Epidemiology
(BAMSE), a prospective population-based cohort study
of children recruited at birth and followed during child-
hood. Details of the study design, inclusion criteria, en-
rolment, and data collection are described elsewhere
[31]. In brief, 4,089 children born between 1994 and
1996 in four municipalities of Stockholm County were
enrolled. Longitudinal sensitization and questionnaire
data were collected through to age 8. The baseline and
follow-up studies were approved by the Regional Ethical
Review Board, Karolinska Institutet, Stockholm, Sweden,
and the parents of all participating children provided in-
formed consent. Blood samples collected at 8 years were
screened with Phadiatop [a mixture of common inhalant
allergens: birch, timothy, mugwort, cat, dog, horse,
mold (Cladosporium herbarum), and house dust mite
(Dermatophagoides pteronyssinus)] and fx5 (a mixture
of common food allergens: cow’s milk, egg white, soy
bean, peanut, cod fish, and wheat) (ImmunoCAP,
Phadia AB, Uppsala, Sweden). Atopy was defined as
a positive Phadiatop or a positive fx5 test with spe-
cific IgE antibody levels ≥0.35 kUA/L. Furthermore,
epigenome-wide DNA methylation was measured in
472 children using DNA extracted from blood samples
collected at the 8 year follow-up [32]. For this, 500 ng
DNA per sample underwent bisulfite conversion using the
EZ-96 DNA Methylation kit (Shallow; Zymo Research
Corporation, Irvine, CA, USA). Samples were processed
with the Illumina Infinium HumanMethylation450
BeadChip (Illumina, Inc.). Data pre-processing (signal
correction and data normalization) and QC were per-
formed using standard criteria described elsewhere
[33]. This study included those with valid DNA-M samples
and that were non-missing for atopy-status or adjustment
covariates (N = 464).

Statistical analysis (IOW) – stage 1
The randomForest package in R was used to implement
the RF algorithm [34]. The output from the RF includes
the out-of-bag error rate (OOB-ER), class-specific
misclassification rates, and VIMs. The OOB-ER is the
overall misclassification rate of the complete forest.
Class-specific misclassification rates, which are also
calculated from the out-of-bag samples, are the rates at
which the classes of the outcome variable are misclassi-
fied, in our case atopic classification and non-atopic
classification. VIMs are measures of the amount of
information a variable contributed to the classification
throughout the forest. Hapfelmeier and Ulm, whose pro-
posed feature selection method used OOB-ER or an-
other cross-validated error measure, acknowledge that
the VIM depends on the data and the underlying re-
search question [35]. We used the mean decrease Gini
(MDG) as VIM because it was shown to be more robust
to small deviations to the data when compared to the
mean decrease accuracy (MDA) [36].
Prior to implementing the recursive RF [15] described

below, we explored how prediction accuracy of the forest
was influenced by altering the parameters sampsize,
mtry, and ntree, so these could be optimally set for the
recursive RF implementation described below. The
sampsize parameter controls whether to use balanced or
imbalanced sampling to generate the training datasets;
mtry specifies the number of variables to be randomly
selected and tested at each node of each tree; and ntree
determines the number of trees to be grown in a forest.
Using the default values for mtry (√p, where p is the
number of variables available) and ntree (500), we com-
pared the OOB-ER and class-specific misclassification
rates for an imbalanced RF grown without sampsize and
a balanced RF grown with sampsize = (50,50). Specifying
sampsize = (50,50) meant that 50 observations from
those with atopy and 50 observations from those with-
out atopy were randomly selected when creating the
training set for each tree. Once we determined whether
or not to utilize the sampsize parameter, we tracked the
prediction accuracy of the RF at different combinations
of mtry (√p, 2*√p, 0.05p, 0.1p, and 0.5p) and ntree (200,
300, 400, 500, 1,000, and 2,000). Once the optimal
parameter values were selected, the recursive RF was
implemented.
The general methodology of the recursive RF for fea-

ture selection has been proposed and utilized elsewhere
[13, 15, 17, 18, 35, 37], though not with high-throughput
epigenetic data. Using this approach we aimed to reduce
the data from all CpG sites retained after pre-processing
and cleaning to a more manageable size by eliminating
variables that contributed little predictive information
for atopy. The recursive RF loop was initiated by run-
ning a RF with all CpGs included as potential predictors.
Then the variables were sorted by their VIM, the bottom
half of the CpGs with the lowest VIMs were removed,
and the RF was run again, using this subset of CpG sites
(Fig. 1). This process was repeated while tracking the RF
OOB-ER and class-specific misclassification rates at each
iteration. The process was stopped when the atopy-
specific misclassification rate increased, because we were

http://dx.doi.org/10.5258/SOTON/379389


Fig. 1 Recursive RF feature selection process. The feature selection process started with a large dataset: all CpGs that survived data cleaning and
preprocessing, and were not potentially affected by probe SNPs. The cycle in black (conducting the Random Forest, collecting evaluation measures,
assessing stop criteria, and reducing the data) repeated until the atopy-specific misclassification rate showed a marked increase, indicating that some
excluded sites were important in classifying atopic participants. Thus, once an increase in atopy-specific misclassification was observed, the cycle
stopped and sites from the previous iteration were selected for follow-up testing. OOB-ER out-of-bag error rate, RF Random Forest, VIM variable
importance measure
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most concerned with correct classification of those with
atopy. The variables from the iteration prior to the
increase in misclassification were selected for further
analyses. Each CpG site that was selected by the recur-
sive RF was annotated with information about what gene
the CpG site was within, when applicable.
The sites selected from the recursive RF were then

tested for univariate associations with atopy via logistic
regression. Given that methylation levels vary signifi-
cantly by cell type, peripheral blood samples are com-
posed of multiple different cell types, and allergic
diseases often influence the proportions of circulating
immune cell types, we considered the potential con-
founding effect of cell-type differential for each par-
ticipant. However, logistical limitations prevented the
acquisition of cell differential at the original time of
blood sample collection. Thus, we utilized the methy-
lation data to predict cell differential [38, 39], then
calculated the percent differences between the crude
and cell-type adjusted β coefficients from the logistic
regression models, to observe the impact of cell type on
the association between methylation levels and atopy.

Statistical analysis (IOW) – stage 2
Boxplots of β values stratified by atopy status were used
to ensure that the distributions of methylations levels in
the female and male samples were similar and could be
combined. Two observations (in cg12819873 and in
cg13168187) were identified as strong outliers, and re-
coded as missing. The joint sample was then used for all
stage 2 analyses in which each CpG was tested for its in-
dividual association with atopy and high IgE, adjusted
for important covariates. These tests were conducted
with logistic regression in which high IgE and atopy
were the dependent variables and M-values for CpGs
were the primary independent variables, while cell type
proportions and sex were included as covariates. CpG
sites that were significantly associated with both atopy
and high IgE at the Bonferroni corrected α were sub-
jected to set analyses, used to show the combined effect
of DNA-M on atopy [40].

Statistical analyses (BAMSE) – replication
For each site that was significantly associated with atopy
in stage 2, we conducted multiple logistic regression
models in the BAMSE cohort. Atopy status was the
dependent variable and M-values for CpGs were the in-
dependent variables, while cell type proportions, sex,
asthma treatment within the last 12 months, and batch
(bisulfite treatment date) were included as covariates
(identified as confounders in the regression model).
Successful replication was defined as having the same
direction of association and a P-value < 0.05. These
sites were submitted for functional annotation ana-
lyses in DAVID [41, 42].

Results
All IOW participants were age 18 years at the time of
epigenetic screening for DNA-M and administration of
SPTs. Of all participants that underwent epigenetic
screening, three females and two males did not receive
SPTs and thus were not assessed for atopy status. Al-
though there were some differences in the prevalence of
atopy and high IgE between the epigenetic subsample
and the full cohort, none of these differences were sta-
tistically significant. The prevalence of atopy within the
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epigenetic subsample was not significantly different
(P-value = 0.0972) between the female sample, used
in stage 1, and the male sample which was pooled
with the female sample in stage 2. However, preva-
lence of high serum IgE (≥200 kU/L) was significantly
(P-value = 0.0469) lower in the female sample (23.8 %)
than in the male sample (41.9 %). These differences in
high IgE did not affect the analytic methods because
serum IgE was only used as a secondary and alternate
biomarker of atopy to provide further confidence in
our top results (Table 1).
For stage 1 we conducted a recursive RF algorithm

with feature selection very similar to balanced iterative
RF, described in detail in the methods section [18]. Prior
to implementing the full algorithm we optimized the RF
parameters by testing multiple combinations mtry and
ntree. We selected an mtry of 0.1p, which was observed
to be effective in a similarly large scale RF analysis with
sparsity [17], and an ntree of 500 that allowed the error
rates to stabilize, but limited computational time.
The initial RF in the recursive implementation was fit-

ted with all CpG sites (p = 254,460) that survived data
cleaning, pre-processing, and removal of probes poten-
tially containing SNPs. At each step in the reduction, the
dataset was reduced by half; by the 15th iteration the
data was reduced to a total of 15 CpG sites. The OOB-
ER achieved its lowest point (overall misclassification of
8.67 %) at the 11th iteration, which included 248 CpGs
(Table 2). However, we reduced the data further to the
13th iteration, which resulted in the lowest misclassifica-
tion of atopics (14.47 %) and included 62 CpGs. From
the first iteration to the 13th, the OOB-ER improved
from 38.42 to 9.50 %, while the misclassification for
atopics and non-atopics improved from 78.95 to 14.47 %
and 19.87 to 7.22 % respectively. After the 13th iteration,
each of the misclassification rates increased, thus the
CpGs (p = 62) from this iteration were selected for stage
2 analyses.
All 62 selected CpG sites were annotated with relevant

genetic information (Table 3). We used logistic regres-
sion to describe the individual associations of all the
selected CpG sites. Only cg09570585 and cg10016610
had P-values > 0.05 (P-values = 0.06353 and 0.09771,
Table 1 Prevalence of atopy via positive skin prick tests and high se

Epigenetic subsample

Outcome variables Females Males χ2

(n = 245) (n = 122) P-

Atopy At least one positive 76 (31.4 %) 49 (40.8 %) 0.

All negative 166 (68.6 %) 71 (59.2 %)

IgE IgE ≥ 200 kU/L 24 (23.8 %) 18 (41.9 %) 0.

IgE < 200 kU/L 77 (76.2 %) 25 (58.1 %)
respectively). Prior to implementing stage 2 analyses, we
tested whether any of the selected sites may have been
selected due to confounding by cell type. Many of the
associations were altered by adjusting for proportions of
CD8+ T cells, CD4+ T cells, natural killer cells, B cells,
monocytes, and granulocytes (Table 4). Thus all further
associations were adjusted for cell type.
Prior to running the stage 2 joint analyses we com-

pared the distribution of methylation levels in the male
and female samples stratified by atopy status. The distri-
butions (Fig. 2 and Additional file 1) were similar be-
tween the two samples for most loci and thus we
proceeded with pooling the data. However, since the
distribution of methylation levels did differ by sex for
some loci, we included sex as a covariate in the stage 2
analyses.
For stage 2, we tested each of the 62 CpG sites for

their associations with atopy and high serum IgE levels
in the joint sample. Only 50 of the 62 sites were present
in both samples, because the female and male samples
were analyzed as separate batches and 12 of these sites
were removed from the male sample during data clean-
ing and pre-processing. The sites that were only present
in the female sample were still analyzed in stage 2.
Of the 62 sites, 22 had statistically significant associa-

tions with atopy (P-value range 6.5E−9 to 7.9E−4)
(Table 5). At four of these sites, higher levels of DNA-M
were associated with increased likelihood of atopy [odds
ratio (OR) range 2.66–8.08]. For the other 18 sites, lower
levels of DNA methylation were associated with higher
likelihood of atopy (OR range 0.311–0.065). We also
found that 12 sites had statistically significant associa-
tions with both atopy and high IgE (P-value range
1.1E−5 to 7.1E−4) in the IOW. Set analyses [40]
showed a mild but statistically significant joint effect of
DNA methylation on atopy at the 10 IgE-associated and
atopy-associated sites shared between men and women
(estimate 0.0016, 95 % confidence interval 0.0003–0.023).
Finally, 19 of the 22 sites (data on three sites were not

available in BAMSE) associated with atopy in IOW were
studied in an independent cohort. Of the 19 sites tested,
13 were significantly associated (P-values < 0.05) with
atopy in BAMSE and had comparable ORs (Table 5):
rum IgE among females and males

Full cohort Subsample vs full cohort

Females Males χ2

value (n = 786) (n = 750) P-value

097 159 (35.6 %) 194 (47.7 %) Females: 0.30

287 (64.4 %) 213 (52.3 %) Males: 0.22

047 66 (25.9 %) 81 (32.5 %) Females: 0.78

189 (74.1 %) 168 (67.5 %) Males: 0.31



Table 2 Misclassification rates throughout the recursive RF process

Iteration Number of
variables

OOB-ER overall
misclassification
(%)

Non-atopic
misclassification
(%)

Atopic
misclassification
(%)

1 254,460 38.43 19.87 78.95

2 127,230 35.12 17.46 73.68

3 63,615 33.05 19.27 63.15

4 31,807 27.68 10.24 65.78

5 15,903 24.38 9.03 57.89

6 7,951 16.94 4.21 44.73

7 3,975 14.87 5.42 35.52

8 1,987 11.15 4.21 26.31

9 993 11.57 4.81 26.31

10 496 9.09 5.42 17.10

11 248 8.67 5.42 15.78

12 124 9.09 5.42 17.10

13 62 9.50 7.22 14.47

14 31 11.98 9.63 17.10

15 15 15.70 13.85 19.73

OOB-ER out-of-bag error rate
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cg04983687 in zinc finger protein, FOG family member 1
(ZFPM1), cg18219873 in proteoglycan 2 (PRG2),
cg07908654 (intergenic), cg06824199 in EF-hand cal-
cium binding domain 14 (KIAA0494, also known as
EFCAB14), cg27469152 in eosinophil peroxidase (EPX),
cg27468224 (intergenic), cg13233042 in atlastin GTPase
3 (ATL3), cg13197551 in SCD6 homolog B (LSM14B,
also known as C20orf40), cg09332506 in coatomer pro-
tein complex, subunit alpha (COPA), g07970948 in zinc
finger protein 862 (ZNF862), cg25854298 in activating
signal cointegrator 1 complex subunit 1 (ASCC1), and
cg17971837 in parvalbumin (PVALB). For all 13 sites,
persons with atopy or high IgE had lower methylation
levels compared to those without atopy or with lower
IgE. All nine sites that were associated with both atopy
status and high IgE in IOW after adjusting for multiple
tests (P-value < 8.06E−4) were successfully replicated
in BAMSE, whereas the remaining four replicated
sites (cg09332506 in COPA, cg17041511 (intergenic),
cg25854298 in ASCC1, and cg17971837 in PVALB)
had nominal (P-value < 0.05) associations with high
IgE in IOW. Interestingly, almost all sites (five out of
six) that were not replicated in BAMSE did not have
even nominal associations with high IgE in IOW.
The 13 replicated sites were investigated for functional

annotation in DAVID and for individual biological
relevance via literature review. Functional annotation of
the 10 genes (ZFPM1, PRG2, KIAA0494, EPX, ATL3,
LSM14B, COPA, ZNF862, ASCC1, and PVALB) associ-
ated with the 13 replicated CpG sites (Table 6) revealed
three statistically significant annotations: polymorphism,
eosinophil, and asthma. The most interesting of these
findings involved two genes (EPX and PRG2) in the
KEGG pathway for asthma (Benjamini P-value = 0.00056)
and associated with the eosinophils annotation (Benjamini
P-value = 0.0087).

Discussion
Our methodological approach and the biological rele-
vance of our findings are noteworthy to researchers
studying epigenetic mechanisms in atopy. We selected
62 CpG sites from a starting set of 254,460, resulting in
vastly improved classification of atopics (from 78.95 to
14.47 % error) and non-atopics (from 19.87 % to 7.22 %
error) when compared to the RF on the full dataset. Of
particular note was the large proportion of CpG loci that
were statistically significant at a Bonferroni-adjusted α
for atopy (35 %) and high IgE (19 %) within the IOW
sample and the large proportion (13 of 19) of sites that
were successfully replicated in the BAMSE cohort.
Our findings are the latest in a series of recent work

that supports the application of RF for genome-wide as-
sociation studies (GWAS) and in allergic diseases. The
recursive RF process we utilized was similar to methods
proposed elsewhere [13, 15, 17, 35]. It has been used by
Menze et al. [37] and Anaissi et al. [18] but, to the best
of our knowledge, has never been implemented in epige-
nomics. Goldstein et al. presented one of the first suc-
cessful applications of RF for GWAS, demonstrating its
ability to identify genes known to be associated with the
multiple sclerosis as well as genes with previously un-
known disease associations [13]. Xu et al. successfully
identified SNPs predictive of asthma exacerbations in
children via RF [16]. These findings indicate the promis-
ing nature of the use of RF for feature selection in future
epigenome-wide studies.
The true challenge with high-throughput techniques is

in connecting the results to biological processes, which
are complex and can involve combinations of many
genes working together. We investigated the biological
roles of the ten genes associated with the 13 replicated
CpGs sites: ZFPM1, PRG2, KIAA0494, EPX, ATL3,
LSM14B, COPA, ZNF862, ASCC1, and PVALB. For each
of these genes, we performed a search of the literature
for possible roles in atopy and conducted functional an-
notation in DAVID.
Among the replicated loci, a number of their associ-

ated genes were involved in intriguing processes that
may have a role in atopy. ZFPM1 (also known as
FOG-1) is a binding factor for the transcription fac-
tor GATA-1 and has been primarily studied for its
role in the differentiation of erythroid, megakaryo-
cyte, and mast cells [43]. However the consequences
of FOG-1 expression appear to be dependent on its



Table 3 Genetic annotations for 62 sites selected by recursive Random Forest

CpG Site Chr Coordinate Associated genes Gene region CpG island

cg00854799 1 2336398 PEX10; RER1 3′UTR North Shelf

cg09249800 1 6341287 ACOT7 Body Island

cg06824199 1 47157809 KIAA0494 Body –

cg17594242 1 115654782 – – –

cg09332506 1 160309220 COPA Body North Shelf

cg01847596 2 95660093 – – North Shelf

cg07880854 2 112895559 FBLN7 TSS1500 North Shore

cg13168187 2 159523681 PKP4 Body –

cg01203365 2 217291500 SMARCAL1 Body –

cg27468224 4 55031503 – – –

cg11372831 4 57303157 PAICS; PPAT Body; TSS1500 South Shore

cg03553407 4 148863880 ARHGAP10 Body –

cg00528600 5 61699751 DIMT1L TSS200 Island

cg04085542 5 93414338 FAM172A Body; 5′UTR –

cg05560165 5 133450315 TCF7 TSS1500 Island

cg14322298 6 10585683 GCNT2 Body; TSS1500 –

cg03131171 6 37616686 MDGA1 Body North Shore

cg00155310 6 50814011 TFAP2B 3′UTR South Shore

cg02201050 7 22759083 – – –

cg02366798 7 27237154 HOXA13 3′UTR North Shore

cg09570585 7 138916241 UBN2 1stExon Island

cg05652668 7 139044807 LUC7L2 1stExon; 5′′UTR Island

cg07970948 7 149543165 ZNF862 Body –

cg24836822 7 150648840 KCNH2 Body Island

cg05104993 8 11973223 FAM66D TSS200 North Shore

cg06816054 8 27695695 PBK TSS1500 South Shore

cg04775941 8 141474793 – – Island

cg13713293 9 841636 DMRT1 TSS200 Island

cg25854298 10 73936754 ASCC1 Body –

cg03468115 10 76852752 – – –

cg23527183 10 95253833 – – North Shelf

cg08397758 10 100174853 PYROXD2 1stExon –

cg06851336 10 104678166 CNNM2 1stExon; 5′UTR Island

cg24077454 10 119134782 PDZD8 1stExon; 5′UTR Island

cg14574726 11 809735 RPLP2 TSS200 Island

cg12819873 11 57157632 PRG2 5′UTR –

cg13233042 11 63432489 ATL3 Body –

cg04162999 11 64120313 CCDC88B Body –

cg10016610 11 124735994 ROBO3 Body Island

cg07908654 13 41631052 – – North Shelf

cg09635874 13 98952518 FARP1 Body –

cg11182893 13 114842103 RASA3 Body South Shore

cg14478663 14 51643693 – – –

cg15281774 15 73661908 HCN4 TSS1500 Island
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Table 3 Genetic annotations for 62 sites selected by recursive Random Forest (Continued)

cg01777765 16 1823191 MRPS34; NME3; EME2 TSS200; TSS1500 Island

cg05048002 16 30077837 ALDOA 5'UTR Island

cg04342090 16 30670571 – – Island

cg02775369 16 56316221 GNAO1 Body –

cg01190915 16 56642761 MT2A Body South Shore

cg04983687 16 88558223 ZFPM1 Body Island

cg27202913 16 89258862 CDH15 Body Island

cg01097406 16 89675127 – – –

cg04798929 17 8287246 RPL26 TSS1500 Island

cg17549513 17 9694789 DHRS7C TSS200 –

cg07765167 17 36451845 MRPL45 TSS1500 North Shore

cg27469152 17 56282313 EPX 3′UTR –

cg17041511 17 61509620 – – North Shelf

cg12819826 19 10216676 PPAN; PPAN–P2RY11 TSS1500; TSS1500 North Shore

cg12578575 19 54135140 DPRX TSS200 –

cg11569718 19 58905979 RPS5 Body North Shore

cg13197551 20 60709957 LSM14B 3′UTR –

cg17971837 22 37215996 PVALB TSS1500 South Shelf

Abbreviations: Chr Chromosome number, CpG cytosine–phosphate–guanineIgE Immunoglobulin E, IOW Isle of Wight cohort, TSS Transcription Start Site,
UTR untranslated region
Coordinate: Location of the CpG site within each chromosome, via genome build 37
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cellular origin and the biochemical surroundings, which
can determine whether FOG-1 acts as a repressor or co-
activator of GATA-1 [43, 44]. Recently, ZFPM1 was
shown in an in vitro study to down-regulate IL-4 and
therefore facilitate TH1 differentiation [45]. Also, two dif-
ferentially methylated regions in ZFPM1 were recently
identified in association with asthma [46]. The multifa-
ceted roles of ZFPM1 in immune-cell activity and allergic
disease suggest that this is an interesting yet possibly
overlooked gene in atopy and atopic diseases.
Eosinophils are subtypes of granulocytes that are heav-

ily involved in inflammatory responses and atopic
asthma through the mechanism of airway inflammation
[47]. EPX encodes eosinophil peroxidase, a protein
expressed by eosinophils. Previous investigations found
that both serum and urine levels of EPX were elevated
in children who had positive SPTs, as well as those with
allergic diseases such as asthma, allergic rhinoconjuncti-
vitis and atopic dermatitis [48–51]. A recent epigenome-
wide study found multiple CpG sites, including one
within PRG2, which were associated with high versus
low total IgE, primarily driven by eosinophils. Interest-
ingly, this study also found that the methylation levels in
isolated eosinophils differed among asthmatics with high
total IgE, asthmatics with low total IgE, and controls,
suggesting that eosinophils from persons with allergic
hypersensitivity or asthma may have different epigen-
etic profiles compared to eosinophils from non-allergic
individuals [52]. Also, a recent genome-wide expres-
sion study of peripheral blood mononuclear cells found
that PRG2 expression was up-regulated in response to
dust-mite exposure, suggesting a possible role in the adap-
tive immune response [53].
A GWAS of atopic asthma implicated SNPs that were

in linkage disequilibrium with SNPs in COPA, though
these did not achieve genome-wide significance [54].
More recently, four deleterious variants within COPA
have been linked to an autoimmune disease character-
ized by high-titer autoantibodies, interstitial lung disease,
and inflammatory arthritis [55]. These mutations may
induce stress on the endoplasmic reticulum leading to
defective intracellular protein transport between the
golgi and the endoplasmic reticulum; such defects have
been linked to autoimmune and lung-disease. Interest-
ingly, mutant COPA also appears to drive CD4+ T-cells
toward TH17 phenotype via increased expression of IL-
1β, IL-6 and IL-23 [55]. Thus, mutant COPA does
appear to affect immune pathways which can lead to
autoimmune disease and our findings suggest that differ-
ential epigenetic regulation of COPA may play a role in
hypersensitivity, though further research is necessary to
elucidate this role.
LSM14B may be involved in mRNA translation [56, 57].

Some of the genes encode proteins that perform structural
roles in different areas of the body. ATL3 participates
in tethering, creating a tubular connective network of



Table 4 Stage 1 – Assessment of the influence of cell type on CpG selection in stage 1 analyses (n = 245)

CpG Site Crude β1 Crude P-value Adjusted β1 Adjusted P-value %Diffβ

cg00155310 2.24 0.00066 2.24 0.0011 −0.26

cg00528600 1.66 0.0038 1.68 0.0043 1.11

cg00854799 1.23 0.0062 1.25 0.0067 1.29

cg01097406 0.25 0.0050 0.27 0.0042 5.08

cg01190915 2.43 0.00020 2.61 0.00011 7.49

cg01203365 −1.25 0.0051 −1.19 0.0087 −4.59

cg01777765 −1.51 0.0030 −1.69 0.0015 11.76

cg01847596 −2.62 0.0015 −2.65 0.0019 1.49

cg02201050 2.08 0.0012 2.10 0.0017 0.87

cg02366798 0.84 0.0097 0.85 0.014 0.46

cg02775369 −1.55 0.00072 −1.53 0.0011 −1.37

cg03131171 −1.21 0.0064 −1.28 0.0049 5.47

cg03468115 1.68 0.0017 1.58 0.0052 −5.88

cg03553407 1.54 0.00037 1.50 0.00060 −2.44

cg04085542 1.00 0.00033 0.95 0.00094 −5.15

cg04162999 0.92 0.030 1.05 0.016 14.72

cg04342090 −1.55 0.0086 −1.46 0.014 −5.58

cg04775941 −1.67 0.020 −1.54 0.034 −7.5

cg04798929 2.20 0.0024 2.14 0.0034 −2.98

cg04983687 −1.18 0.000010 −1.43 0.0000017 21.45

cg05048002 −1.91 0.00074 −1.75 0.0036 −8.1

cg05104993 2.89 0.0018 3.18 0.0012 10.1

cg05560165 1.37 0.0011 1.55 0.00062 13.84

cg05652668 −1.15 0.00068 −1.27 0.00031 10.57

cg06816054 −1.37 0.0081 −1.49 0.0068 9.25

cg06824199 −2.11 0.000029 −2.45 0.000011 16.35

cg06851336 −1.78 0.00099 −1.76 0.0011 −0.86

cg07765167 −2.47 0.000065 −2.52 0.000095 1.94

cg07880854 1.21 0.014 1.43 0.0070 18.16

cg07908654 −1.67 0.000013 −1.80 0.0000099 7.96

cg07970948 −1.26 0.000027 −1.42 0.000014 12.22

cg08397758 0.84 0.043 1.90 0.0032 125.56

cg09249800 −1.14 0.000016 −1.27 0.0000094 11.06

cg09332506 −1.97 0.0000097 −2.10 0.0000078 6.38

cg09570585 0.85 0.064 0.82 0.082 −3.88

cg09635874 1.96 0.00037 1.90 0.0010 −3.11

cg10016610 −0.57 0.098 −0.63 0.085 9.8

cg11182893 1.81 0.00032 1.64 0.0015 −9.47

cg11372831 2.62 0.00018 2.63 0.00029 0.2

cg11569718 −1.54 0.011 −1.44 0.021 −6.64

cg12578575 −0.58 0.012 −0.59 0.014 1.49

cg12819826 −1.90 0.000087 −1.93 0.00029 1.67

cg12819873 −2.36 0.0000045 −2.47 0.0000051 4.97

cg13168187 1.65 0.0024 2.79 0.000043 69.09
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Table 4 Stage 1 – Assessment of the influence of cell type on CpG selection in stage 1 analyses (n = 245) (Continued)

cg13197551 −1.84 0.000062 −1.77 0.00016 −3.49

cg13233042 −1.64 0.000032 −1.74 0.000031 6.21

cg13713293 −1.43 0.00039 −1.40 0.00070 −1.67

cg14322298 −1.53 0.0031 −1.57 0.0052 2.77

cg14478663 1.81 0.00020 1.91 0.00017 5.64

cg14574726 1.75 0.0058 1.91 0.0037 9.54

cg15281774 −1.91 0.0014 −2.13 0.00076 11.37

cg17041511 −1.97 0.000021 −2.25 0.000027 14.69

cg17549513 1.62 0.0094 1.82 0.0051 12.16

cg17594242 1.72 0.000035 1.71 0.000071 −0.93

cg17971837 −3.38 0.000061 −3.64 0.000069 7.85

cg23527183 −0.83 0.0048 −0.92 0.0034 10.38

cg24077454 1.33 0.0056 1.27 0.012 −4.29

cg24836822 −1.09 0.000020 −1.17 0.000014 8.19

cg25854298 −1.40 0.000042 −1.51 0.000037 7.39

cg27202913 −0.67 0.010 −0.69 0.0094 2.01

cg27468224 −1.83 0.00013 −1.85 0.00019 1.29

cg27469152 −1.99 0.00021 −2.21 0.000094 11.21

Results of 62 logistic regressions between methylation M-values and atopy for each selected CpG. We present crude associations as well as associations adjusted
for predicted cell proportions of CD8+ T cells, CD4+ T cells, natural killer cells, B-cells, monocytes, and granulocytes. β1 represents the value of the regression coefficient for
the CpG site in that statistical model. The percent change in β-values (%Diffβ) was calculated as [(crude β1 – adjusted β1)/crude β1] and was used to evaluate whether cell
type influenced the selection of each CpG site
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membranes in the endoplasmic reticulum, which is the
site where ribosomes build proteins from DNA tran-
scripts. The functional annotation results implicated the
genes EPX and PRG2 in eosinophil activity and in the
KEGG pathway for late hypersensitive responses in
asthma. Some of the genes (KIAA0494, ATL3, LSM14B,
ASCC1, and PVALB) did not have any apparent role in im-
mune response.
These findings should be interpreted within the limita-

tions of the study. Although we provide evidence in sup-
port of associations between 13 CpG sites and atopy,
variations in methylation at these sites may not cause al-
lergic sensitization. The cross-sectional nature of this
sample prohibited us from distinguishing between which
DNA-M variations at CpG sites may have caused, been
caused by, or just been markers of sensitization. How-
ever, associations in any of these directions may yield
important insights into the development, persistence,
and consequences of allergic sensitization. Some of the
CpG sites that were selected could not be replicated and
some that were replicated were not involved in any
known biological processes related to atopy or allergy.
The unsuccessful replication could be due to false-
positive findings from the discovery analyses, or differ-
ences in how atopy was assessed between the discovery
and replication cohorts. The lack of biological roles for
these CpG sites could be explained by selected CpG sites
possibly being highly correlated with other CpG sites
that truly influence atopy status, or by CpG sites having
roles in unknown, but still important, biological path-
ways involved in atopy.
Correlated predictors may present an issue that we

were unable to address [13, 17]. If the methylation level
at a biologically important CpG site was highly corre-
lated with methylation levels at other unimportant loci,
the inclusion of those unimportant loci in a forest would
decrease the VIM of the important CpG site and may re-
sult in its exclusion during data reduction. This would
result in a statistically strong but biologically ambiguous
result. It is possible that some of our results that were
not biologically consistent with allergic disease were due
to this issue. Applying an approach similar to linkage
disequilibrium and haplotype identification from genetic
studies may improve the prediction accuracy of the for-
est and save computational time [17], but such applica-
tions have not been studied with genome-wide DNA-M
arrays at this time. Furthermore, there is no consensus
with respect to which VIM is best for large-scale data
with correlated predictors. We used MDG, which was
also utilized by Menze et al. to recursively eliminate un-
important predictors [37]. Calle and Urrea found that
MDA was unstable when there were small alterations to
the data, but that MDG was robust to such changes
[36]. However, MDG does not perform as well if the



Fig. 2 Distribution of methylation levels within the male and female samples, by atopy status. Boxplots showing the distribution of methylation levels
within the male (bright red and bright blue) and female (dark red and dark blue) samples, stratified by atopy status (red = atopic; blue = non-atopic) among
the 17 CpG sites significantly associated with atopy and present in both the male and female samples. The 30 sites that were not significant in stage 2
analyses are included in Additional file 1
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scales of the variables differ widely or if they have differ-
ent numbers of categories [36, 58], which would be an
important consideration for researchers incorporating
both DNA-M and SNP data in a single dataset. More
work needs to be done to determine which VIMs per-
form best under the typical characteristics of genome-
wide DNA-M studies: sparsity, skewed continuous
predictors, very large n and very small p, statistical inter-
actions, or correlations between predictors. Despite the
issues of correlated predictors, such variables can still
provide useful information. DNA-M loci that are merely
surrogates of actual CpGs associated with atopy can still
serve as biomarkers of disease, but do not serve to im-
prove our understanding of the etiology of atopy.
Some of the CpGs that we identified with the recursive

RF but that did not meet our replication criteria may in
fact be biologically relevant in atopy. We would not ex-
pect all biologically relevant findings to be included in
the functional annotation results of our gene list for two
reasons: first, our gene list of 10 genes is quite small
because DAVID is optimized for lists between 100 and
2,000 genes in length [41]; and second, functional anno-
tation relies on current knowledge of gene functions,
and may not correctly classify the functions of novel loci.
Also, these sites were selected with RF, which allows for
complex interactions to be identified [13]. CpGs that
were selected via RF due to unknown interaction effects
may not have had an independent association with atopy
and thus could not have survived our stage 2 analyses
with strict multiple testing adjustments to significance
levels.
Despite correcting for cell proportions (CD8+ T cells,

CD4+ T cells, natural killer cells, B cells, monocytes, and
granulocytes) in our regression analyses, the predicted
cell proportions for the low-frequency cell types, such as
T-cell subtypes, may be less accurate than those of the
higher frequency cell types and these predictions did not
distinguish eosinophils from other granulocytes. Given
the importance of T-cell subtypes (TH1, TH2, and TH17)
and eosinophils (a subset of granulocytes) in atopic



Table 5 Comparison of stage 2 (n = 367) and replication (n = 464) results

Genetic annotations* IOW: atopy statusa IOW: high IgEb BAMSE: atopy statusc

CpG Site Chr Gene name CpG location Adj. OR P-Value Adj. OR P-value Adj. OR P-value

cg04983687 16 ZFPM1 Body 0.239 6.46E−09 0.158 3.54E−05 0.269 3.17E−06

cg09249800 1 ACOT7 Body 0.239 8.52E−09 0.141 1.13E−05 – –

cg12819873 11 PRG2 5′UTR 0.065 1.38E−08 0.045 7.37E−05 0.140 2.36E−05

cg07908654 13 – – 0.145 1.14E−07 0.103 8.44E−05 0.206 2.21E−04

cg06824199 1 KIAA0494 Body 0.107 6.28E−07 0.073 1.93E−04 0.118 2.96E−06

cg27469152 17 EPX 3′UTR 0.091 1.34E−06 0.025 6.06E−05 0.099 1.00E−05

cg27468224 4 – – 0.123 1.62E−06 0.073 5.01E−04 0.262 1.89E−02

cg13233042 11 ATL3 Body 0.192 5.06E−06 0.105 1.82E−04 0.194 9.75E−05

cg13197551 20 LSM14B 3′UTR 0.160 5.67E−06 0.094 5.64E−04 0.312 1.04E−02

cg07765167 17 MRPL45 TSS1500 0.087 6.50E−06 0.043 5.96E−04 – –

cg09332506 1 COPA Body 0.123 7.77E−06 0.126 3.62E−03 0.196 8.72E−05

cg17041511 17 – – 0.143 1.27E−05 0.075 8.14E−04 0.133 4.31E−05

cg24836822 7 KCNH2 Body 0.311 1.36E−05 0.225 7.13E−04 – –

cg07970948 7 ZNF862 Body 0.243 1.38E−05 0.109 2.55E−04 0.313 1.61E−05

cg25854298 10 ASCC1 Body 0.221 3.69E−05 0.144 1.24E−03 0.149 1.21E−06

cg09635874 13 FARP1 Body 8.084 4.89E−05 2.591 2.44E−01 1.149 8.59E−01

cg04085542 5 FAM172A Body; 5′UTR 2.663 7.99E−05 1.250 5.48E−01 0.936 7.93E−01

cg03553407 4 ARHGAP10 Body 4.330 1.63E−04 2.411 1.92E−01 2.010 2.16E−01

cg12819826 19 PPAN; PPAN-P2RY11 TSS1500 0.213 2.45E−04 0.229 4.02E−02 1.788 2.87E−01

cg00854799 1 PEX10; RER1 3′UTR 4.209 2.48E−04 2.930 8.27E−02 1.464 5.18E−01

cg05652668 7 LUC7L2 1st exon; 5′UTR 0.280 3.07E−04 0.517 2.39E−01 0.820 7.35E−01

cg17971837 22 PVALB TSS1500 0.122 7.90E−04 0.102 4.11E−02 0.188 2.60E−02

Associations for methylation M-values with atopy and high IgE from the IOW epigenetic sample, as well as with atopy in the BAMSE replication sample. IOW analyses were
adjusted for predicted cell proportions of CD8+ T cells, CD4+ T cells, natural killer cells, B cells, monocytes, granulocytes, and sex. BAMSE replication analyses were adjusted
for the same predicted cell proportions, sex, batch (bisulfite treatment date), and asthma treatment
Abbreviations: Adj. OR adjusted odds ratio, BAMSE Children, Allergy, Milieu, Stockholm, Epidemiology cohort, Chr Chromosome number, CpG cytosine–phosphate–guanine,
IgE Immunoglobulin E, IOW Isle of Wight cohort, TSS Transcription Start Site, UTR untranslated region
*CpGs and their annotations highlighted in bold were the sites replicated in the BAMSE cohort
aAtopy defined as at least one positive skin prick test; significant sites determined via α = 8.06E−4 (0.05/62 tests)
bHigh IgE defined as serum IgE ≥ 200 kU/L; significant sites determined via α = 8.06E−4 (0.05/62 tests)
cAtopy defined as serum IgE antibody ≥ 0.35 kUA/L, to any allergen; significant sites determined via α = 0.05
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responses, this may have resulted in some residual con-
founding. However, given the inability to collect actual
cell differentials in this study, the predictions we used
likely accounted for the majority of cellular heterogen-
eity in our blood samples.
The lack of independence between the samples used

for RF feature selection (stage 1) and the samples used
for determinations of statistical significance (stage 2) was
another limitation, and may have led to some over-fitting
during stage 2 analyses. Also, 12 CpG sites that were se-
lected in stage 1 were not present in the male sample. Al-
though these were still evaluated in the stage 2 analyses,
the lack of full methylation data reduced the power to
identify significant findings at these 12 sites. However, the
strong replication results in the BAMSE cohort would sug-
gest that the majority of our findings were not due to ran-
dom chance or over-fit to the IOW sample.
Not all of our findings were replicated; six sites that
were tested did not successfully replicate and three sites
could not be tested because the data were unavailable.
The six non-replicated sites may represent false-
positives from our stage 2 analyses or could be due to
differences in the measurement of atopy status be-
tween the two cohorts. One limitation of the replica-
tion study was that atopy was defined as at least one
positive SPT to any allergen in the IOW; whereas
atopy was defined as specific IgE antibody ≥ 0.35 kUA/L to
any allergen in BAMSE. The associations with high
serum IgE in the IOW support that at least some of
the unsuccessful replications may have been due to
these differences in measurement. All 13 sites that
replicated in BAMSE had at least nominal associa-
tions with high serum IgE in IOW (P-values < 0.05),
whereas only one of the six sites that did not replicate



Table 6 Functional annotation for genes associated with the 13 sites that were successfully replicated

Category Term Genes P-value*

SP_PIR_KEYWORDS Polymorphism COPA, KIAA0494, EPX, ZNF862, PRG2, ASCC1, ZFPM1 0.0145

SP_PIR_KEYWORDS Eosinophil EPX, PRG2 0.0087

KEGG_PATHWAY Asthma EPX, PRG2 0.0005

UP_SEQ_FEATURE Sequence variant COPA, KIAA0494, EPX, ZNF862, PRG2, ASCC1, ZFPM1 0.1365

GOTERM_MF_FAT GO:0005509 Calcium ion binding COPA, KIAA0494, PVALB, EPX 0.1807

SP_PIR_KEYWORDS Nitration EPX, PRG2 0.1539

SP_PIR_KEYWORDS Alternative splicing LSM14B, COPA, ZNF862, ATL3, ASCC1 0.3382

GOTERM_MF_FAT GO:0046872 Metal ion binding COPA, KIAA0494, PVALB, EPX, ZNF862, ZFPM1 0.3749

GOTERM_BP_FAT GO:0048193 Golgi vesicle transport COPA, ATL3 0.8360

GOTERM_MF_FAT GO:0043169 Cation binding COPA, KIAA0494, PVALB, EPX, ZNF862, ZFPM1 0.2826

GOTERM_MF_FAT GO:0043167 Ion binding COPA, KIAA0494, PVALB, EPX, ZNF862, ZFPM1 0.2291

SP_PIR_KEYWORDS Calcium KIAA0494, PVALB, EPX 0.3469

SP_PIR_KEYWORDS Phosphoprotein LSM14B, COPA, KIAA0494, PVALB, ATL3, ZFPM1 0.2989

SP_PIR_KEYWORDS Cytoplasmic vesicle COPA, PRG2 0.5085

UP_SEQ_FEATURE Splice variant LSM14B, COPA, ZNF862, ATL3, ASCC1 0.9270

UP_SEQ_FEATURE Domain:EF-hand 1 KIAA0494, PVALB 0.8342

UP_SEQ_FEATURE Domain:EF-hand 2 KIAA0494, PVALB 0.7430

INTERPRO IPR018249: EF-HAND 2 KIAA0494, PVALB 0.9655

GOTERM_BP_FAT GO:0006350 Transcription ZNF862, ASCC1, ZFPM1 0.9478

INTERPRO IPR018247: EF-HAND 1 KIAA0494, PVALB 0.8227

Statistically significant DAVID functional annotation and pathway results are in bold
*P-values corrected for multiple testing via Benjamini–Hochberg method
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in BAMSE had an association with high serum IgE in
IOW (P-value < 0.05). These findings suggest that the
only sites that could be replicated in this study may
be involved in IgE-mediated allergic sensitization.
Also, some atopy-associated CpG sites in IOW, which
were measured at 18 years old, may not have been
able to replicate in BAMSE, measured at 8 years of
age, because methylation levels can be age dependent
[59]. It is possible that some of these six sites may
have replicated had the outcome of atopy status been
measured with the same method and at the same age
in both cohorts. Thus, although these six sites were
not considered positive findings in this study, future epi-
genetic studies that utilize SPTs to evaluate sensitization,
and evaluate sensitization in young adults close to age 18,
may consider attempting to replicate these sites. The
three sites for which data were not available in the rep-
lication cohort should also be considered for future
replication studies. The CpG site (cg09249800) in
ACOT7, which was strongly associated with both atopy
and high IgE in the IOW cohort, is particularly inter-
esting because others have identified differentially
methylated regions within this gene associated with
asthma [46]; thus, it may play a role in allergic sensitization
or allergic diseases.
Conclusions
Utilizing a two-stage design with a well-characterized
but sparsely implemented RF feature selection method
followed by logistic regression for both atopy and an
alternate marker of atopy (high IgE), we identified a
number of CpG sites associated with atopy. Most im-
portantly, 13 sites were replicated in an independent co-
hort for atopy status: cg04983687 in the body of ZFPM1,
cg12819873 in the 5′UTR of PRG2, cg07908654
(intergenic), cg06824199 in the body of KIAA0494,
cg27469152 in the 3′UTR of EPX, cg27468224 (intergenic),
cg13233042 in the body of ATL3, cg13197551 in the 3′
UTR of LSM14B, cg09332506 in the body of COPA,
cg17041511 (intergenic), cg07970948 in the body of
ZNF862, cg25854298 in the body of ASCC1, and
cg17971837 in the TSS1500 of PVALB. Three of the
22 sites associated with atopy in IOW were not available
for testing in the BAMSE cohort, so may be of interest for
follow-up in future studies of DNA-M and atopy:
cg09249800 in the body of ACOT7, cg07765167 in the
TSS1500 of MRPL45, and cg24836822 in the body of
KCNH2. These CpG sites and their associated genes could
be treated as under-studied candidates for future studies of
atopy; particularly cg04983687 in ZFPM1, cg12819873 in
PRG2, cg27469152 in EPX, and cg09332506 in COPA.



Everson et al. Genome Medicine  (2015) 7:89 Page 15 of 16
Furthermore, we showed that recursive RF data reduction
can be an effective approach for epigenome-wide DNA-M
studies, and may be considered by other investigators as it
has now been successful in multiple studies with large-
scale data.

Additional file

Additional file 1: Boxplots of the distributions of methylation levels
within the male (bright red and bright blue) and female (dark red
and dark blue) samples, stratified by atopy status (red = atopic;
blue = non-atopic) for the 33 CpGs sites present in both the male
and female samples that were not significantly associated with
atopy in stage 2 analyses. (PDF 20 kb)
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