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Abstract

Automatic reconstruction of metabolic pathways for an organism from genomics and transcriptomics data has
been a challenging and important problem in bioinformatics. Traditionally, known reference pathways can be
mapped into an organism-specific ones based on its genome annotation and protein homology. However, this
simple knowledge-based mapping method might produce incomplete pathways and generally cannot predict
unknown new relations and reactions. In contrast, ab initio metabolic network construction methods can predict
novel reactions and interactions, but its accuracy tends to be low leading to a lot of false positives.
Here we combine existing pathway knowledge and a new ab initio Bayesian probabilistic graphical model
together in a novel fashion to improve automatic reconstruction of metabolic networks. Specifically, we built a
knowledge database containing known, individual gene / protein interactions and metabolic reactions extracted
from existing reference pathways. Known reactions and interactions were then used as constraints for Bayesian
network learning methods to predict metabolic pathways. Using individual reactions and interactions extracted
from different pathways of many organisms to guide pathway construction is new and improves both the
coverage and accuracy of metabolic pathway construction. We applied this probabilistic knowledge-based
approach to construct the metabolic networks from yeast gene expression data and compared its results with 62
known metabolic networks in the KEGG database. The experiment showed that the method improved the
coverage of metabolic network construction over the traditional reference pathway mapping method and was
more accurate than pure ab initio methods.

Introduction
A metabolic pathway is a network of related chemical
reactions catalyzed by enzymes that collaboratively pro-
duce or degrade one or a few metabolites. Reconstruc-
tion of metabolic networks (pathways) plays an
important role in studying biological systems. Together
with other types of biological networks, metabolic path-
ways can help decipher relationships between genotype
and phenotype, and elucidate essential mechanisms
underlying cellular physiology [1].

Most known metabolic pathways stored in the pathway
databases such as the Kyoto Encyclopedia of Genes and
Genomes (KEGG) [2,3] have been manually curated from
the literature. The high-quality manual annotations of
metabolic pathways are valuable resources for studying
metabolisms, but they only account for a small portion of
pathways in most organisms. Therefore, automatic com-
putational reconstruction of metabolic pathways has been
an important problem to solve in bioinformatics and
computational biology. And a number of methods have
been developed to address the problem [4-8].
The most common approach for metabolic pathway

construction is based on mapping a group of gene and
protein sequences of an organism to known reference
pathways [9-11] according to sequence homology. The
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matched reference metabolic pathways serve as templates
to position the genes and proteins (e.g. enzymes) in order
to construct the metabolic pathways that they participate
in. This approach often can predict several highly likeable
reactions in a partially mapped pathway, while leaving
substantial unfilled gaps in the pathway because no gene
and proteins can be mapped to unfilled regions [12,13].
The other shortcoming of the approach is that it gener-
ally cannot predict new reactions that do not exist in a
reference pathway.
Ab initio methods that do not use known reference

pathways, on the other hand, aim at inferring metabolic
pathways from gene expression data or other data sources.
Most of these methods employ probabilistic inference
methods such as graphical models and Bayesian networks
[14-20] in one way or another. The ab initio methods can
draw insights directly from biological condition-dependent
data sets to construct metabolic pathways, thus have the
capability to predict new relations and reactions. However,
these methods tend to predict a lot of false positives,
resulting in very noisy predictions. The problem is particu-
larly severe when they are applied to construct large meta-
bolic pathways.
Another kind of ab initio methods represents a meta-

bolic network with ordinary differential equa-tions
(ODEs) that capture the dynamics of chemical concen-
trations in a metabolic system. The ODEs can include
feedback loops that are often difficult for other methods
to handle. Koza et al. reported a method using genetic
programming to construct ODEs [21]. A recent study
[22] applied the symbolic regression to automatically
generate ODEs. The ODE-based methods tend to be
computationally intensive, thus might not scale easily up
to large metabolic pathways.
In this work, we combine the strengths of both knowl-

edge-based methods and probabilistic graphical model-
based methods together in a novel fashion to improve
construction of metabolic pathways. The protein-protein
relationships underlying metabolic pathway networks
are inferred by probabilistic inference methods under the
constraints of knowledge extracted from existing reference
pathways in the KEGG database. The knowledge includes
individual gene products relationships and chemical reac-
tions observed in the KEGG database, which are used as
restraints to control the pathway network construction
process. That is, instead of exploring any possible relation-
ship between any two genes / proteins in consideration,
the Bayesian networks learning method only sample from
the observed relationships during the probabilistic path-
way construction process. This knowledge-constrained
inference not only drastically reduces search space, but
also improves prediction accuracy. Since almost all the
reactions in a pathway likely exist in one of many other
pathways, the knowledge-constrained sampling generally

does not compromise the coverage of pathway construc-
tion. And because individual relationships and reactions
drawn from all other pathways rather than only ones in a
reference pathway are considered in construction, the
method is able to predict new relations and reactions not
existing in a reference pathway. This new way of using
known metabolic pathway information sets our method
apart from traditional metabolic pathway mapping meth-
ods. Our experiment on constructing the metabolic path-
ways for yeast from scratch showed the performance of
the method compared favorably to or was complementary
with the pathway mapping methods.
The rest of the paper is organized as follows. The

Method section presents the method. The Results section
describes and discusses the experiments and results. The
Conclusion section summarizes the work and proposes
some future directions.

Methods
Our method integrates gene expression data of a species,
its gene product (protein) sequences, and known meta-
bolic pathways in the KEGG database to construct meta-
bolic pathways. Figure 1 shows main components used by
the method and their relationships. A metabolic network
is constructed by learning a Bayesian probabilistic network
from gene expression data, initial pathway mappings, and
all the observed individual relations and reactions in the
KEGG database.
Generally, given gene expression data and gene product

sequences (i.e. protein sequences) of an organism, the
method first maps genes into reference pathways to con-
struct initial seed pathways, and then the seed pathways
will be extended and refined by sampling more genes from
gene groups clustered according to gene expression data.
If the seed pathway contains only a few or no reactions /
relations, the method can reconstruct a completely new
pathway. The pathway construction is carried out by
Bayesian network learning methods under constraints of
existing gene-gene relations extracted from all the related
pathways in the KEGG database. The details of the
metabolic construction method are described in the sub
sections below.

Representation and construction of pathways
Our metabolic network construction method has two
main steps: (1) mapping genes to the reference pathways
to construct initial seed pathways; and (2) extending and
refining initial pathways based on gene expression data
and observed relations and reactions. The first step,
which is similar to other sequence-homology based
methods, obtains initial pathway networks by mapping
the genes against KEGG’s reference pathways.
The KEGG database [2,3] has a list of metabolic path-

ways manually curated for many organisms. Met-abolic
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pathways in KEGG are comprised of enzymes and related
chemical reactions, where enzymes denoted by Enzyme
Commission (EC) numbers are linked with KEGG
Orthology (KO) numbers. The KO numbers are a uniform
system to represent ortholog groups, which appear as
nodes on visualized metabolic pathway maps. Genes of an
organism can be mapped into KO numbers through the
gene / protein sequence mapping web service provided by
KEGG. With an assignment of genes to KO numbers, the
genes can be matched with reference pathways in KEGG
in order to construct initial organism-specific pathway
maps. Specifically, it marks up those nodes on the refer-
ence pathways that contain any of the KO num-bers
assigned to the genes. Because the initial mapping usually
only recovers a small part of pathways, our method uses
the initially mapped pathways as starting points for con-
structing more complete or even new pathways by adding
more genes and relations through the Bayesian network
structure learning in the second step.
The second step is to expand the initial pathways by

adding more relevant genes, relations and reactions. In
order to sample genes that are more likely to participate in
the same pathway, genes are first grouped into clusters
according to the similarity between their expression data.
We used an Expectation-Maximization clustering method
implemented in Weka [23] to cluster genes. The method
is based on a Gaussian mixture model and determines the
number of clusters by cross validation. The gene cluster
that contains more genes in an initial mapped pathway
than other clusters will be selected as a pivotal cluster for

the pathway. The probability of selecting genes from the
pivotal cluster is the highest. And the probability of sam-
pling a gene from other clusters is inversely proportional
to their distances to the pivot, i.e., the shorter the distance
is, more likely that genes in the cluster are selected. And
the number of genes to sample is determined by the aver-
age number of genes in the reference pathways.
Given all the genes in the current networks including

newly sampled ones, a set of knowledge constraints related
to all the genes are extracted from the KEGG database.
The knowledge set consists of two sub sets. One set
includes all possible relationships between the genes that
should be included into predicted pathways, and the other
sub set contains those which new relationships and reac-
tions can be sampled probabilistically from. Any other rela-
tionships not included of the two sub sets will be absolutely
excluded. The first subset of relations can be obtained from
the initial mapped network structures. The second subset
can be derived from all the observed relations in the KEGG
database. It contains all existing relationships in the KEGG
database between ortholog groups (represented by the KO
numbers) of the selected genes. The details about con-
structing the relation knowledgebase for all the genes of a
species are described in the next sub-section. The KO rela-
tions can be transformed into gene relations through the
mapping from genes to KO numbers. Given a gene set, a
collection of all the existing relationships among them can
be retrieved from the knowledge base.
The two sets of extracted knowledge constraints are

provided as another input besides gene expression data

Figure 1 The main components of the metabolic pathway construction method and their relationships. The central component is the
Bayesian network construction method. Starting from an initial metabolic pathway generated by mapping expressed genes to the KEGG
pathway database, it stochastically resamples metabolic networks by drawing reactions and relations based on gene expression data and the
reaction/relation knowledge base. The reaction/relation knowledge base is comprised of individual reactions and relations present in any
pathway in a pathway database like KEGG regardless of which pathway or species they come from. By using all the observed reactions and
relations as knowledge restraints to guide sampling, the method can more effectively and efficiently reconstruct metabolic pathways in three
aspects: (1) refining an initial pathway that is largely complete; (2) reconstructing a large portion of an initial pathway when it is largely
incomplete; and (3) constructing a completely de novo pathway when the initial pathway has very few or no reactions / relations.
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for Bayesian network learning methods for pathway
predictions. The purpose is to use the constraints to
restrain the search space of reactions and relations of
Bayesian probabilistic sampling. Therefore, on one hand,
our constrained probabilistic pathway construction is
different from typical ab intio sampling techniques that
explores the unconstrained pathway space composed of
all the pairwise reactions and relations, which is often
time consuming and more error-prone. On the other
hand, our method samples from all observed relations
and reactions between orthologs of genes extracted
from whole database rather than the ones extracted
from only one reference pathway as traditional pathway
mapping methods do. The relation-level knowledge
sharing across all the pathways of all the organisms is
new and enables our method to take advantage all the
existing knowledge of pathways to predict new relations
and reactions.
Given the constrained sampling space for a group of

genes, we use Bayesian Networks (BNs), a classic type of
probabilistic graphical models, to construct metabolic
pathways. Reactions and relations (e.g. enzymatic relation)
between proteins in metabolic pathways are represented
by directed edges in a Bayesian network / graph (G). Given
the gene expression data (D), the objective is to find such a
graph that achieves the highest score in the following
equation:

Score (G : D) = l
(
θ̂G : D

)
− logM

2
Dim [G]

This score is also known as the Bayesian Information
Criterion. The θ̂G is the maximum likelihood estimator

for the model given G and D. The l
(
θ̂G : D

)
is log likeli-

hood of data given the G. M is the data size (e.g., num-
ber of gene expression experiments). Dim [G] represents
the dimension of G, which equals to the number of
independent parameters in G, i.e. total number of para-
meters used to define the Gaussian distribution of each
node representing a gene’s expression value conditioned
on its parent nodes. More technical details can be found
in the book by [24]. The underlying assumption is that
the expression value of a gene obeys the linear Gaussian
probability distribution given the expression values of its
parent genes in G.
The graph search space is explored by manipulating

its structure through three types of local operations on
edges: adding, removing, and reversing. The search
strategy is based on a greedy algorithm. In each itera-
tion, it explores all possible local operations on the cur-
rent graph, and chooses the move of yielding the
highest-score to generate a new graph structure. The
process will continue until the score cannot be further
improved.

The knowledge-based sampling approach aims to
restrain the graphical structure exploration within a
small bound space out of the overall search space. The
edges appearing in an initial mapped reference network
would be kept during the process of graph structure
exploration, and a local operation will not generate an
edge that does not exist in the knowledgebase.
Constructing relation knowledgebase
The purpose of building such a knowledgebase is to
generate a realistic set of relations and reactions for
pathway predictions, which restricts the relation search
space only to observed relations in order to drastically
improve search quality and efficiency.
The knowledgebase contains a collection of relations

and reactions associated with a list of KO numbers. In
order to build such a knowledge base for a target organ-
ism, we first map its genes to KO numbers in KEGG
database, and then extract the relations and reactions
associated with the mapped KO numbers from all the
KEGG reference pathway maps.
Specifically in this work, we entered all the genes in

Saccharomyces Cerevisiae (yeast) into the KEGG auto-
matic annotation server (KAAS) [9] to map the genes to
KO numbers. During the KO number mapping process,
yeast genes and pathways in the KEGG database were
excluded from being mapped to. The KAAS’ output
included gene-to-KO assignments and a list of pathway
maps that contain any of the assigned KO numbers.
The pathway maps were presented in the format of the
KEGG Markup Language (KGML), which represent
pathway networks in terms of graph objects comprised
of KO-number-based nodes and associated relations and
reactions as edges.
Based on the KO number assignments and the

resulted reference pathway maps, a knowledgebase can
be constructed by extracting all the relations and reac-
tions pertaining to the KO numbers. Each relation /
reaction includes upstream and downstream entry
nodes, a relationship type, and possibly related chemical
compounds. Those KO-based entry nodes denote
enzymes in metabolic pathway networks, and each of
them may contain multiple KO numbers. The type
information indicates the kinds of relation or reaction,
such as protein-protein or enzyme-compound, etc. Gen-
erally, one reaction includes a pair of substrate and
product.

Results and discussion
The objective of the experiment was to evaluate the per-
formance of the knowledge-based probabilistic inference
approach for metabolic pathway construction by com-
paring its predicted yeast metabolic pathway networks
with real yeast metabolic pathways existing in KEGG
pathway database. The new approach was compared
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with the standard homology-based mapping approach.
The yeast gene expression data set used in this experi-
ment was downloaded from [25].
Experiment design
In order to evaluate the pathways predicted by the com-
putation methods, we collected a list of known yeast
metabolic pathways in the KEGG database as presum-
ably true pathways. Totally 68 pathways were found, six
of which were removed from the experiment because
the nodes in their graphical pathway maps were not
connected at all. The 62 remaining pathways served as
target (or “true”) pathways in the experiment. The sta-
tistics about the numbers of the node and edge in the
target pathways were reported in Figure 2.
In order to generate input information for predicting

the yeast metabolic pathways, the procedure de-scribed
in the Method Section was applied to obtain gene-to-
KO assignments and construct a relation knowledgebase
for the yeast genes. The gene expression data set was
preprocessed to filter out those genes with more than
20% missing values. The imputation of missing values
for the rest of the data set was carried out with a R pro-
gram by [26]. The resulted data was classified into 34
clusters by an EM-based method implemented in Weka
[23]. The gene clusters were used to guide the gene
sampling.
The yeast genes were mapped onto the reference

metabolic pathways through the gene-KO assignments.
The reference pathways share the same graphical struc-
tures with their corresponding specific yeast metabolic
pathways, except that their nodes were represented in
KO numbers. These initially mapped network structures
comprised of the mapped genes and their relations were
used as start points by the Bayesian network learning-

based methods to construct more complete pathways.
Besides the genes appearing in the initially mapped
pathway network, another set of genes was sampled
from the gene clusters. These two sets of genes were
merged together to form a pool of candidate genes to
predict metabolic pathway networks.
The knowledge constraints about relationships of the

candidate genes in the relation knowledgebase were pro-
vided for the Bayesian network structure learning
method to select relations between the genes. Given the
input genes and the knowledge constraints, we used a
Bayesian networks structure learning tool implementing
the knowledge-based method [27] to predict metabolic
pathways. We applied a score-based heuristic searching
method for learning the pathway networks. It searches
and scores for networks by altering their graphical
structures, and finds the highest scored network (see
Section 2.1 for details). The supplied input of knowledge
constraints to the learning method was assumed to facil-
itate the search by restraining it within a realistic
exploration space.
Results
The predicted pathway networks were comprised of
directly connected nodes (genes), which represent the
network structures of gene-product relationships under-
lying the metabolic pathways. The predicted results
were compared with the 62 target yeast metabolic path-
ways obtained in the KEGG database. The comparison
was conducted on relational edges presented both in
target and predicted metabolic network structures. For
example, given the underlying relation network of
KEGG’s Citrate cycle metabolism as target network
shown in Figure 3. Figure 4, Figure 5 and 6, respectively,
show the resulted networks from the mapping-based

Figure 2 Statistics for the targeted yeast pathways used in experiments. X-axis denotes the indices of the pathways ranging from 1 to 52.
Y-axis denotes the number of nodes or edges in each pathway.
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method, the probabilistic inference method without
knowledge constraints, and the one with knowledge con-
straints. The red-marked edges highlight the correct rela-
tions existing in a target network. Figure 4 shows that the
simple mapping method recovered a portion of correct
relations. Without knowledge constraints, the predicted
network in Figure 5 has only a few correctly predicted
edges and a large number of falsely predicted ones. The
probabilistic inference method with knowledge constraints
predicts more correct relation edges than the other two
methods (see Figure 6). The predicted relation network
was then processed to generate the metabolic network as
shown in Figure 7, by adding on relevant chemical com-
pounds from the knowledgebase.
A batch of the same experiments was carried out on

the 62 target yeast metabolic pathway networks in
KEGG. Figure 8 shows the recalls (i.e. the percent of

relations in a target pathway corrected predicted) of the
three methods: probabilistic pathway inference with
knowledge constraints, probabilistic pathway inference
without knowledge constraints, and the simple mapping-
based method without inference. Figure 9 reports the
precision (i.e. the percent of predicted relations that were
correct) of these methods. Since the mapping-based
method uses all of the genes to map against nodes on a
reference pathway, it does not predict any new edges, but
simply takes edges between mapped nodes. Thus, the
mapping method tends to have higher precision at the
expense of recall. Each of the two probabilistic inference-
based methods was run 100 times with randomly
sampled genes, resulting 100 predictions for each path-
way. Based on the predictions, the minimum, maximum,
median, quartile at 25 percentile, and quartile at 75 per-
centile were calculated and drawn in Figure 8 and 9.

Figure 3 A target network: the citrate cycle metabolic pathway’s underlying relation network in KEGG.

Figure 4 Resulted network of simple mapping-based method for the targeted citrate cycle metabolic pathway network.
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Figure 5 Resulted network of probabilistic pathway inference without knowledge constraints for the targeted citrate cycle metabolic
pathway network. Red edges denote correct relationships.

Figure 6 Resulted network of probabilistic pathway inference with knowledge constraints for the targeted citrate cycle metabolic
pathway network. Red edges denote correct relationships.
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The results in Figure 8 demonstrate that the probabilis-
tic inference method with knowledge constraints generally
predicts more correct relations than the simple mapping-
based method, which generally performs better than the
inference method without knowledge constraints. The
knowledge-based probabilistic inference predictions out-
performed the mapped-based method in more than 60%

of testing instances in terms of recall, while achieving
basically the equal recall in the remaining 40% cases. The
results indicate that the knowledge-based probabilistic
inference can effectively expand the initial mapped
networks by adding more correct relations 60% times. In
Figure 9, we compared the prediction precisions of
the probabilistic inference methods with or without

Figure 7 Resulted metabolic pathway after attaching chemical compounds on to the predictive pathway network in Figure 6.

Figure 8 The recall (the percentage of edges in a ground-truth graph recovered by its counterpart predicted graph) distributions for
predictions of three methods: probabilistic sampling with knowledge constraints, probabilistic sampling without knowledge
constraints, and the simple mapping-based method without sampling. One hundred runs were carried out for each of the pathway
instances.
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knowledge constraints and the mapping-based method. It
shows that incorporating knowledge constraints into the
network inference consistently improves the precision of
predictions over that without knowledge constraints. Since
the mapping-based method did not predict any new rela-
tions rather than mapped ones, its precision is higher than
the probabilistic network inference methods, which serves
as the potential upper bound of predicting new relations
beyond the homology mapping methods.

Conclusions and future work
In this work, we developed a new method combining the
probabilistic Bayesian inference with observed relations
and reactions to improve the completeness and accuracy
of metabolic network construction. The results of this
study indicate that the knowledge-based network inference
approach was effective in predicting yeast metabolic path-
ways. It can extend an initially mapped reference pathway
by selectively incorporating new relations / reactions in
the relation knowledgebase extracted from all the pathway
data in the KEGG database, which partially overcomes one
major bottleneck of the most widely used pathway map-
ping methods. Furthermore, the knowledge-based network
inference method consistently performs better than the
pure ab initio probabilistic network inference method
without exploiting the knowledge constraints in terms of
both recall and precision, suggesting constraining the ab
intio search space using relations / reactions extracted
from other pathways is an effective way to improve the de
novo prediction of a metabolic pathway. Overall, our
experiment demonstrates that combining relation-level
knowledge restraints and probabilistic graphical models-
based inference is a promising approach to computation-
ally reconstructing of metabolic networks.

It is worth noting that our current implementation of
the method did not predict compounds involved in
reactions because no compound information was pro-
vided. However, the generic compound information
can be added into predicted networks by extracting the
compounds associated with predicted enzymes from
the relation knowledgebase. Furthermore, the informa-
tion about the compounds known to participate in a
metabolic pathway (e.g., metabolomics data), if avail-
able, can also be plugged in by comparing them with
compounds normally associated with the predicted
reactions.
Our method can be extended in different ways. One

aspect is to use different methods, such as function
similarity rather than the gene expression clustering
method to sample genes. Another interesting direction
is to investigate the consistency between gene product
relationships in predicted pathways and the statistical
cause-effect relationships suggested by the Bayesian
network inference. Moreover, the Bayesian infer-
ence methods used for learning metabolic network
structures can be improved in terms of both recall and
precision. Furthermore, more relevant data sources,
such as protein-protein interaction in the protein inter-
action databases [28-30], proteomics data, metabo-
lomics data, and protein post-modification data can
be integrated with the Bayesian network learning meth-
ods to improve the accuracy of metabolic network
construction.
In addition to reconstructing metabolic pathways, the

novel way of exploiting existing knowledge at the rela-
tion level rather than the pathway level can be readily
applied to construct other types of biological networks
such as signal transduction pathways.

Figure 9 The precision (the percentage of edges in a predicted graph that exist in its ground-truth graph) distribu-tions for the
mapping-based method and the two predictive methods: probabilistic sampling with knowledge constraints, probabilistic sampling
without knowledge constraints. One hundred runs were carried out for each of the pathway instances.
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