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1 Introduction

In recent years, the functional formulation of Wilsons renormalization group [1] has de-

veloped from exact but rather formal relations such as the flow equations of Wegner and

Houghton [2], Polchinski [3] or Wetterich [4] into a powerful tool for practical applications.

By allowing for unconventional approximations and expansion schemes this made many

interesting and partly non-perturbative investigations of quantum and statistical field the-

ories possible. The field of applications ranges from cold atomic gases via QCD to Quantum

Gravity, for reviews see [5–19].

In the modern formulation due to Wetterich one follows how a variant of the quantum

effective action, the generating functional of the one-particle irreducible Feynman diagrams,

changes while an infrared regulator is continuously removed. This evolution is described

by an exact flow equation of one-loop form. For a suitable chosen cutoff function only

fluctuations of modes at a particular momentum scale k contribute to the flow. This

organization of the field theory with respect to the momentum scale has many advantages

both for the intuitive interpretation and for practical calculations.
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So far, the formalism has been mainly applied in Euclidean type space or space-time, i.

e. either static, classical statistical field theories where the fields depend on spatial position

only or quantum field theories in the Matsubara formalism where the time and frequencies

are imaginary. In all these cases one has the important practical advantage that propa-

gators and other correlation functions have usually at most a single isolated singularity

at vanishing frequency and momentum. (The situation is more complicated for fermionic

theories at non-zero density where singularities appear for example on the Fermi surface.)

In principle one can easily extend the formalism to Minkowski type space-times. Most

of the definitions and derivations get modified only in a trivial way. However, in praxis

a number of problems appear. Given that the invariant combinations −p2
0 + ~p2 in the

relativistic case and −p0 + ~p2/(2M) in the non-relativistic case are not positive definite,

the question arises which modes actually correspond to the infrared and which to the

ultraviolet. It is therefore not straight-forward to construct appropriate regulator functions,

in particular if space-time symmetries such as Lorentz or Galilean boost invariance should

be preserved. Also, while for Euclidean type spaces it is well understood that the flowing

action approaches the microscopic or classical action for large cutoff scales, this is in general

not necessarily the case in Minkowski type space-time.

Despite these problems, renormalization group methods have been applied to dynam-

ical problems. One example are classical, stochastic, reaction-diffusion problems [20–22].

This is facilitated by the fact that the microscopic inverse propagator is of the diffusion

type ∂t −D~∇2 or iω +D~p2 in momentum space. Thus the propagator has no pole except

for ω = ~p2 = 0 and one can work for example with a regulator that depends on spatial

momentum, only.

A functional renormalization group formalism on the Schwinger-Keldysh closed time

contour has been developed in refs. [23, 24] and [25]. The goal of [25] was the investigation

of non-thermal fixed points. Many technical problems — for example specifying a proper

regulator function in Minkowski space — could be avoided in [25] by integrating the flow

equation and using a 1/N expansion to determine scaling relations between different corre-

lation functions at a non-equilibrium fixed point. A different approach has been followed in

ref. [23, 24] to access far-from-equilibrium quantum field dynamics. The regulator function

was constructed with respect to time such that the renormalization group evolution and

the time evolution coincide.

Recently, functional renormalization has been used to investigate quantum gravity

with Lorentzian signature [26]. The infrared regulator was chosen to depend on spatial

derivatives only while the fluctuations in the time directions have been regulated by com-

pactification. A large amount of literature exists also on applications of different renormal-

ization group techniques to transport through a zero-dimensional quantum system such as

a quantum dot which is coupled to appropriate reservoirs [27–38].

Finally, real-time properties have been calculated from functional renormalization by

analytic continuation. In refs. [39] and [40], the truncated renormalization group equations

for a two-dimensional gas of non-relativistic bosons have been solved in the Matsubara

formalism with imaginary frequencies. The result for the propagator at the macroscopic

scale k = 0 has then been analytically continued to real frequencies using numerical Padé
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approximant techniques. This allowed to calculate for example spectral densities and quasi-

particle decay widths. A very similar approach has been followed in ref. [41] to calculate

spectral functions of an impurity in a Fermi sea undergoing a transition from a polaron to

a molecule.

Note that such a procedure needs generically a rather large numerical effort. The reason

is that the Padé approximant technique works only if enough (numerical) information about

the dependence of the Propagator on the imaginary Matsubara frequency is provided. In

other words, one has to calculate by some means the full frequency dependence of the

(Matsubara) propagator. The numerical effort is even larger in a self-consistent scheme

where the complete frequency-dependent propagator is used on the right hand side of flow

equations. Nevertheless, such numerical approaches have been successfully implemented in

the past, see for example ref. [42–45] for a scheme that allows to resolve both the momentum

and field dependence of the propagator. This scheme has been applied to relativistic scalar

fields at non-zero temperature in ref. [46, 47].

An alternative is a non-self-consistent scheme where a simplified form of the propagator

— approximated for example by a derivative expansion — is used on the right hand side of

flow equations. In that case the interesting and non-trivial information about the spectral

properties are only extracted from the flow equation but do not help to improve the results

for other observables, e. g. thermodynamic potentials.

In the present paper we develop an approach to the calculation of dynamic properties

from functional renormalization which deviates substantially from all others that have

been followed before. We use a linear response framework where the analytic continuation

from imaginary Matsubara frequencies to real frequencies is done on the level of the flow

equations and not on the level of the final result at the macroscopic scale k = 0. This has

a number of advantages:

(i) Since the flow equations of objects such as the propagator are usually available in an-

alytic form or as an integral expression one can do the analytic continuation by hand

and does not have to use involved numerical techniques such as Padé approximants.

(ii) The interesting and non-trivial information about the real-time properties such as

quasi-particle decay widths can be used in a self-consistent way on the right hand

side of flow equations. This allows to improve the performance of a truncation in

general so that also properties not directly connected to the propagator — for example

thermodynamic properties — can be calculated with higher accuracy.

(iii) Our formalism conserves translational symmetries as well as space-time symmetries

such as Lorentz or Galilei boost invariance. Due to a convenient choice of the infrared

regulator function it is nevertheless possible to perform the Matsubara summations

in loop expressions analytically. This leads to well behaved expressions on the right

hand side of flow equations where at most an integral over spatial momenta remains

to be done numerically.

(iv) In comparison with approaches based on the Schwinger-Keldysh closed time contour,

the approach taken here is less involved. Also, since it is based on the well understood
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formalism in Euclidean space, one can profit from available knowledge. For example,

it is known how the flowing action approaches the microscopic action for large cutoff

scales or how useful regulator functions can be constructed.

On the other side it is clear that a formalism that is based on analytic continuation is

restricted to close-to-equilibrium situations. More specific, one can only calculate what can

be accessed from linear response theory. More complicated non-linear response properties

as they dominate in far-from-equilibrium situations are beyond the scope of this setup.

This paper is organized as follows. In section 2 we recall the definition and the analytic

properties of the quantum effective action, the generating functional of the one-particle

irreducible Feynman diagrams. This is followed by a discussion of the main principles

of functional renormalization in its modern formulation for Euclidean space in section 3.

Our main results concerning the analytic continuation of flow equations are presented

in section 4. We first discuss the principle idea and propose a suitable class of infrared

regulator functions. On the example of a scalar field with O(N) symmetry we explain then

the technical details and show that the formalism works well in praxis. We solve the flow

equation within a truncation of the space of possible action functionals putting particular

emphasis on real-time properties such as propagator residues and decay widths. Finally,

we draw some conclusions in section 5. Appendix A collects some definitions of integral

functions that are used throughout section 4.

2 The quantum effective action and its analytic structure

In this brief introductory section we recall the definition of the quantum effective action or

one-particle irreducible effective action and discuss its properties, in particular its analytic

structure. This section does not contain new results but combines existing knowledge that

is usually discussed in different contexts. We use it to introduce our notation and to provide

the basement for the discussion in later sections.

2.1 The Schwinger functional

The formalism we develop in the following can be applied to all variants of quantum field

theories. In general the spectrum might contain bosonic and fermionic fields of different

spin and in various representations of internal symmetries. However, in the present paper

we are not interested in a particular model but in more conceptual issues. We concentrate

therefore on the technically simplest case of a single scalar field. The presented formula can

be generalized in a straight forward way to more complicated situations. (For fermionic

Grassmann fields one needs some care in tracing the additional minus signs.)

We are interested in the calculation of expectation values and correlation functions of

the type ∫
Dϕ O[ϕ] e−S[ϕ]. (2.1)

Here, the operator O[ϕ] may be a quite general functional of the field ϕ, for example a

product of fields at different space-time points. The action S is taken to be real (hermitean)
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as appropriate for a quantum field theory after analytic continuation from Minkowski to

Euclidean space. Usually, the action is given as an integral over a Lagrange density which

depends on the fields ϕ and its derivatives at the point x,

S =

∫
x
L(ϕ(x), ∂µϕ(x), . . . ). (2.2)

To calculate expectation values and correlation functions as in eq. (2.1), one introduces the

partition functional

Z[J ] =

∫
Dϕ e−S[ϕ]+

∫
x Jϕ. (2.3)

By taking functional derivatives, one obtains expectation values

φ(x) = 〈ϕ(x)〉 =
1

Z[J ]

δ

δJ(x)
Z[J ] (2.4)

as well as correlation functions

〈ϕ(x)ϕ(y) . . . 〉 =
1

Z[J ]

δ

δJ(x)

δ

δJ(y)
. . . Z[J ]. (2.5)

We note that these objects depend on the source field J .

Connected correlation functions can be obtained more direct from the Schwinger

functional

W [J ] = lnZ[J ], (2.6)

for example

〈ϕ(x)ϕ(y)〉c = 〈ϕ(x)ϕ(y)〉 − φ(x)φ(y) =
δ

δJ(x)

δ

δJ(y)
W [J ]. (2.7)

For free theories, where S[ϕ] is quadratic in the fields ϕ, one can usually calculate the

Schwinger functional analytically. However, for non-trivial theories with interactions, this

is not the case. If the interaction parameter is small, one can use a perturbative expansion.

Various other approximative methods such as 1/N expansion or ε-expansion exist, as well.

It is crucial that W [J ] encodes the information of all correlation functions. In terms

of perturbation theory it contains contributions from all orders in the coupling constant

as well as from all loop orders. This indicates that W [J ] is usually hard to determine in a

closed form. On the other side, a theory is basically “solved” if this can be done and many

observables follow from functional derivatives of W [J ].

For practical purposes it is often useful to work not directly with the Schwinger func-

tional W [J ] but with a close relative, the quantum effective action Γ[φ]. Its definition and

properties will be reviewed in the following subsection.

2.2 Quantum effective action

The quantum effective action is defined as the Legendre transform of the Schwinger

functional

Γ[φ] =

∫
x
Jφ−W [J ], (2.8)
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with φ the expectation value

φ(x) =
δ

δJ(x)
W [J ] = 〈ϕ(x)〉. (2.9)

Directly from its definition one obtains the field equation

δ

δφ(x)
Γ[φ] = J(x). (2.10)

Taking another derivative, one finds

(Γ(2)[φ])(x, y) =
δ2

δφ(x)δφ(y)
Γ[φ] =

δJ(y)

δφ(x)
= (W (2)[J ])−1(x, y). (2.11)

The quantum effective action is useful for several reasons. Since it is the Legendre

transform of the Schwinger functional, it contains basically the same information. This

implies that correlation functions of all orders in perturbation theory can be obtained from

functional derivatives of Γ[φ].

In perturbation theory Γ[φ] can also be defined as the generating functional of the one-

particle irreducible Feynman diagrams. While this seems to be a quite formal statement, it

has a direct practical consequence: The quantum effective action is exact at tree level. By

this we mean that if the quantum effective action Γ[φ] is known, everything that remains to

be done to calculate a physical observable such as a scattering cross section is to evaluate

tree-level Feynman diagrams with the vertices and propagators taken from the quantum

effective action Γ[φ]. This implies in particular that the quantum effective action contains

directly the physical parameters such as masses, charges, magnetic moments and so on

as they are measured in experiments. No loop diagrams need to be calculated any more.

The parameters appearing in Γ[φ] are already the renormalized ones. It is important to

emphasize at this point that the quantum effective action contains not only vertices that

are “renormalizable” in the sense of perturbative field theoretic renormalization theory. In

contrast, it contains in general all terms that are allowed by symmetries. For example, the

quantum effective action of QED will contain a term of the form∫
x
κ ψ̄iσµνψ Fµν (2.12)

with a coefficient κ that is related to the anomalous magnetic moment g−2 by κ = −e
4m(g−2).

To see that Γ[ϕ] is “exact at tree level” we note that the Schwinger functional can be

obtained from the quantum effective action by a Legendre transform

W [J ] =

∫
Jφ− Γ[φ] (2.13)

where φ on the right hand side is determined from the implicit equation J = δ
δφΓ[φ]. One

can now see in different ways that the exact connected n-point functions generated by W [J ]

can be written as tree diagrams with propagators and vertices obtained from Γ[φ].
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One possibility is a “proof by example”. Taking functional derivatives of W [J ] one

finds (we use a symbolic notation for simplicity)

W (1) =
δ

δJα
W [J ] = φα,

W
(2)
αβ =

δ

δJα

δ

δJβ
W [J ] =

δφβ
δJα

= (Γ(2))−1
αβ ,

W
(3)
αβγ = −(Γ(2))−1

αα′(Γ
(2))−1

ββ′(Γ
(2))−1

γγ′Γ
(3)
α′β′γ′ ,

W
(4)
αβγδ = . . .

(2.14)

By continuing this one finds indeed that W (n) can be written as a tree level expression

involving the propagator (Γ(2))−1 and the vertices Γ(n).

Another, more elegant way to see this [48, 49] is to consider for a moment a functional

integral where Γ[ϕ] replaces the microscopic action S[ϕ]

eWΓ[J ] =

∫
Dϕ e

− 1
g

Γ[ϕ]+ 1
g

∫
Jϕ
. (2.15)

A loop expansion for WΓ[J ] is an expansion in the parameter g with

(WΓ[J ])L loops ∼ g
L−1. (2.16)

In particular, the term of order g−1 contains only tree diagrams. One evaluates now the

functional integral in eq. (2.15) in the limit g → 0. It is then dominated by the first term

in the saddle point approximation, the stationary phase term

lim
g→0

(gWΓ[J ]) =

∫
Jϕ− Γ[ϕ], (2.17)

with ϕ determined by J = δΓ[ϕ]/δϕ. However, this is just the defintion of W [J ] in

eq. (2.13). In other words, we found that the Schwinger functional W [J ] can be obtained

from a “functional integral” as in (2.15) where the microscopic action S is replaced by Γ

and only tree diagrams are taken into account.

2.3 Perturbative loop expansion

It is clear from the considerations in the previous section that the quantum effective action

is a useful object. On the other side it is also clear that it is general not easy to calculate.

To investigate the connection between Γ[φ] and the microscopic action S[ϕ] more closely,

it is useful to consider the following implicit functional integral representantion which can

be derived directly from the definitions after a shift in the integration measure

e−Γ[φ]/~ =

∫
Dϕ e

−S[φ+ϕ]/~+ 1
~
∫ (

δ
δφ

Γ[φ]
)
ϕ
. (2.18)

We have restores here the units of ~ for a moment. One can now understand the pertur-

bative loop expansion as an expansion of the right hand side in eq. (2.18) in ~. One finds

Γ[φ] = const + S[φ] + ~
1

2
STr lnS(2)[φ] + . . . (2.19)

– 7 –



J
H
E
P
0
5
(
2
0
1
2
)
0
2
1

The ellipses stand for two loop and higher order loop expressions. Assuming that the terms

multiplying powers of ~ on the right hand side are finite, one finds Γ[φ] = S[φ] (up to an

irrelevant constant) in the classical limit ~→ 0. This is the reason why S[φ] is sometimes

called “the classical action”.

2.4 Analytic structure

So far we have restricted the discussion to Euclidean quantum field theory (“imaginary

time”). Concepts like the Schwinger functional or the quantum effective action are of course

also useful for accessing real time properties. We note at this point that the definition of

the effective action Γ[φ] can in principle be easily extended from Euclidean to Minkowski

space, at least in the vacuum for vanishing temperature. The fields ϕ of the functional

integral depend then on the real time variable t in addition to the space position ~x. The

correlation functions one calculates as expectation values of field monomials correspond to

time-ordered correlation functions in the operator picture.

However, we take here another point of view where the configuration space for the

functional integral fields ϕ and their expectation values φ is always Euclidean space. (At

non-zero temperature it is a generalized torus with circumference 1/T in the imaginary time

direction.) However, the n-point functions which can be obtained from Γ[φ] as functional

derivatives, can be analytically continued towards the real frequency axis. For example,

from the second functional derivative of Γ[φ] with respect to the fields φ one can obtain the

propagator G(p0, ~p) at the imaginary Matsubara frequencies p0 = iωn. As will be discussed

below, it follows from general principles that this function can be analytically continued

to the complete plane of complex frequencies except for possible poles and branch cut

singularities on the real axis.

A similar analytic continuation is possible for the higher order correlation functions

and in this sense the effective action in Euclidean or Matsubara space contains already all

the relevant information for the dynamics in Minkowski space. It is clear, however, that

within the approach propagated here one can only access close-to-equilibrium properties in

the spirit of linear response theory. In contrast, a more elaborate setup based for example

on the Schwinger-Keldysh formalism would be needed in a far-from-equilibrium situation.

Let us now discuss constraints on the analytic structure of n-point functions as they

arise from basic principles of quantum field theory in more detail. For simplicity we re-

strict the considerations here to the two-point function Γ(2) but we stress that at no point

we assume that the fields we consider are fundamental. Therefore, by applying similar

arguments to two-point correlations of composite fields one can in principle cover much of

the analytic structure of a general n-point function Γ(n). In a homogenous situation, the

two-point function can be written as

Γ(2)(p, p′) =
δ

δφ(−p)
δ

δφ(p′)
Γ[φ] = (2π)dδ(d)(p− p′) G−1(p) (2.20)

with G(p) being the momentum representation of the Euclidean propagator.

For a microscopic action S[ϕ] of the standard form

S[ϕ] =

∫
ddx L(ϕ, ∂µϕ), (2.21)
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one can go from the functional integral representation to an operator picture. Transla-

tions with respect to (real) time are generated by a Hamiltonian with real and positive

eigenvalues. Similarly, momentum operators with real eigenvalues generate spatial trans-

lations. The Hilbert space gets spanned by a complete set of states which can be taken

to be eigenstates of the four-momentum operator P̂µ. Using this formalism as well as

requirements from space-time symmetry, causality and unitarity, one can derive the follow-

ing Källen-Lehmann spectral representation of the propagator (for a detailed derivation

see e.g. [49])

G(p) =

∫ ∞
0

dµ2 ρ(µ2)
1

p2 + µ2
(2.22)

with real and non-negative spectral weight ρ(µ2) ≥ 0.

The representation (2.22) is valid for an Euclidean quantum field theory where p2 =

~p2 + p2
0 ≥ 0 but can also be used for the analytic continuation to Minkowski signature. In

Minkowski space one has to pay attention to the singularities at p2
0 = ~p2 + µ2 and specify

an integration contour in the complex frequency plane. Often this is done by introducing

additional infinitesimal terms iε to move the singularities slightly away from the real p0-axis

along which one integrates by convention. In the representation∫ ∞
0

dµ2 ρ(µ2)
1

2
√
~p2 + µ2

(
1

−p0 +
√
~p2 + µ2 ± iε

− 1

−p0 −
√
~p2 + µ2 ± iε

)
(2.23)

the combination −iε, +iε in the first, respectively second term corresponds to the time-

ordered propagator while the combinations −iε, −iε represents the retarded, +iε, +iε the

advanced and +iε, −iε the anti-time-ordered propagator. However, this iε-prescription

is just one way of doing the book keeping and deforming slightly the contour itself is

just as good.

We emphasize again that the derivation of the spectral representation (2.22) works

only for microscopic actions of the standard form (2.21). It is important that it is local

and that the Lagrangian depends only on the fields ϕ as well as its first derivatives ∂µϕ.

In particular, if one adds an infrared regulator term of the form

∆Sk[ϕ] =

∫
ddp

(2π)d
1

2
ϕ(−p)Rk(p)ϕ(p) (2.24)

to the microscopic action, this corresponds in general to a non-local action, or a situation

where arbitrary high derivative orders appear in the Lagrangian. It is not clear how an

operator formalism can be developed in this case. One can choose the regulator function

Rk such that it respects space-time symmetry and causality requirements but, nevertheless,

one can in general not expect that the propagator corresponding to a theory regularized

in this way admits a standard spectral representation.

A few important properties can be read off from eq. (2.22). First, for Euclidean

signature or p2 > 0 the propagator is real and positive. This reflects a general property

of Euclidean quantum effective actions closely related to Osterwalder-Schrader reflection

positivity. In contrast, close to the real frequency axis where Im p0 = 0 one can write (P
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stands for principal value)

G(p) =

∫ ∞
0

dµ2 ρ(µ2)P 1

−p2
0 + ~p2 + µ2

+ i π sign(Re p0) sign(Im p0) ρ(p2
0 − ~p2). (2.25)

This expression makes explicit that there is a branch cut on the real p0 axis where the

imaginary part of G(p) changes its sign for those combinations of frequency and momentum

where ρ(p2
0 − ~p2) > 0. Away from the real frequency axis the propagator G(p) is analytic

and, since ρ(µ2) cannot vanish for all µ2, also non-zero.

In summary, the propagator G(p) as a function of the complex frequency p0 has poles,

zero-crossings and branch-cut singularities only on the real axis. The inverse propagator

G(p)−1 has according to the above discussion all its zero-crossings, poles and branch-cut

singularities on the real frequency axis, as well.

Moreover, from the representation in eq. (2.25) one can see that close to the real

frequency axis one has

P (p) = G(p)−1 = P1(p2
0 − ~p2)− is(p0)P2(p2

0 − ~p2) (2.26)

where we have introduced the abbreviations

s(p0) = sign(Re p0) sign(Im p0), (2.27)

P1(p2
0 − ~p2) =

Re G(p)

[Re G(p)]2 + [π ρ(p2
0 − ~p2)]2

(2.28)

and P2(p2
0 − ~p2) ≥ 0 is related to ρ(p2

0 − ~p2) by

P2(p2
0 − ~p2) =

1
π ρ(p2

0 − ~p2)

[Re G(p)]2 + [π ρ(p2
0 − ~p2)]2

. (2.29)

Close to a point p2
0 − ~p2 = m2 where P1 vanishes, one can use an expansion of the form

P1 = Z(−p2
0 + ~p2 +m2) + · · ·

P2 = Zγ2 + · · ·
(2.30)

such that for γ2 = mΓ and Γ� m the propagator is of the Breit-Wigner form

G(p) =
1

Z

−p2
0 + ~p2 +m2 + i s(p0)mΓ

(−p2
0 + ~p2 +m2)2 +m2Γ2

. (2.31)

The representation (2.26) and expansions of the form (2.30) will be widely used in

this work; not only for the full inverse propagator P (p) but also for a scale-dependent

generalization thereof. Before discussing that in more detail in section 4, we recall some

important concepts and principles of the functional formulation of the renormalization

group for Euclidean space in the next section.
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3 Principles of functional RG in euclidean space

In this section we recall the main ideas and principles of functional renormalization for

Euclidean quantum field theories. The flowing action or effective average action is intro-

duced as a generalization of the quantum effective action. We discuss how it interpolates

continuously between the microscopic or classical action and the quantum effective action

while an infrared cutoff is removed. This evolution is described by an exact functional dif-

ferential equation. Equally important for practical applications are approximative methods

to solve it and we discuss the principle ideas behind these approximations towards the end

of the section.

The present section is kept rather brief and introduces only the prerequisites for a later

discussion of analytically continued flow equations in section 4. For a more detailed discus-

sion of functional renormalization in Euclidean space and applications to many concrete

problems we refer to many good review articles in the literature [5–19].

3.1 Exact flow equation

We start by modifying the partition functional and Schwinger functional introduced in (2.3)

and (2.6), respectively, according to

Zk[J ] = eWk[J ] =

∫
Dϕ e−S[ϕ]−∆Sk[ϕ]+

∫
Jϕ (3.1)

where we have added an infrared cutoff term

∆Sk[ϕ] =
1

2

∫
p
ϕ(−p)Rk(p)ϕ(p) (3.2)

to the microscopic action S[ϕ]. The function Rk(p) is real and positive for Euclidean

momentum argument p. It can be of different form in different situations and we discuss

possible choices below. As a general feature, one requires that Rk(p) serves as an infrared

cutoff as the scale k which is usually implemented by the property

lim
p→0

Rk(p) ≈ k2. (3.3)

In addition, Rk(p) should suppress fluctuations on all momentum scales for very large values

of the cutoff scale k. This requires Rk(p) to diverge for k →∞. Usually this divergence is

taken as strong as k2. Finally, the cutoff function should vanish for k → 0 for all p,

lim
k→0

Rk(p) = 0. (3.4)

It is now convenient to define a modified form of the effective action. The flowing action

or effective average action Γk[φ] is defined by subtracting from the Legendre transform

Γ̃k[φ] =

∫
Jφ−Wk[J ] (3.5)

with φ = δ
δJWk[J ] the cutoff term

Γk[φ] = Γ̃k[φ]−∆Sk[φ]. (3.6)
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Using the above definitions, one can obtain an exact functional renormalization group

equation for the flowing action Γk[φ], the Wetterich equation [4]

∂kΓk[φ] =
1

2
Tr(Γ

(2)
k [φ] +Rk)

−1∂kRk. (3.7)

We note that the right hand side has the form of a one-loop expression. Nevertheless, it

is an exact equation taking all orders of perturbation theory as well as non-perturbative

effects into account.

Other properties of Γk[φ] follow from an implicit functional integral representation

e−Γk[φ] =

∫
Dϕ e

−S[φ+ϕ]−∆Sk[ϕ]+
∫

( δ
δφ

Γk[φ])ϕ
. (3.8)

Similar to (2.18) this equation follows directly from the definitions together with a shift in

the integration measure.

For k →∞ and therefore Rk →∞ one finds that the cutoff term ∆Sk dominates the

functional integral over the fluctuating field ϕ in (3.8). It leads to a strong suppression

for large values of ϕ(−p)ϕ(p) = ϕ∗(p)ϕ(p) and a saddle point expansion becomes a good

approximation. One has therefore for very large k = Λ

ΓΛ[φ] = const + S[φ] +
1

2
Tr ln(S(2)[φ] +RΛ). (3.9)

For many applications the constant (φ-independent) part is not important.

In addition, the contribution from the one-loop term (the second term on the right hand

side of (3.9)) is suppressed by negative powers of RΛ for derivatives of (3.9) with respect

to the field φ. This implies that the flowing action effectively approaches the microscopic

action for large values of the cutoff parameter k,

lim
k→∞

Γk[φ] = S[φ]. (3.10)

To summarize, the flowing action Γk[φ] has been defined as a modified Legendre trans-

form of the Schwinger functional Wk[J ] in presence of the infrared cutoff function Rk(p).

For very large values of k it approaches the microscopic action S[φ] (up to an irrelevant

constant as well as possibly one-loop terms) and for k = 0 it equals the quantum effective

action Γ[φ]. In other words, the flowing action flows from the microscopic action S[φ] to

the quantum effective action Γ[φ].

The exact functional differential equation for the flowing action (3.7) together with

equation (3.9) can be seen as a differential formulation of the functional integral formalism.

As an alternative formulation of quantum field theory this has an advantage for some

formal questions but the most important application is for concrete practical and often

approximate calculations. We will briefly discuss such an application for Euclidean field

theory below. The emphasis is on the main principles of the approximation scheme rather

than on the numerical results. It is useful to have these principles for Euclidean space in

mind when the analytic continuation to Minkowski space is discussed thereafter.
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3.2 Derivative expansion

The example we discuss here is a classical scalar field theory with O(N) symmetry in d

spatial dimensions (usually one has d = 3 but also d = 2 or d = 1 and even a single point

with d = 0 are of experimental relevance). The microscopic action S is of the form

S =

∫
ddx

{
1

2
~∇φn~∇φn +

1

2
m2φnφn +

1

8
λ (φnφn)2

}
. (3.11)

This model can be used for example to describe the critical properties of many second

order phase transitions.

The cutoff term for the investigation of the model in eq. (3.11) has the form (with

φ∗n(~p) = φn(−~p) and
∫
p =

∫ ddp
(2π)d

)

∆Sk[φ] =

∫
p

1

2
φ∗n(~p)Rk(p)φn(~p). (3.12)

The function Rk(p) depends only on the magnitude p =
√
~p2 so that the cutoff term

is invariant under rotational symmetry. Note that it respects also other symmetries as

the internal O(N) symmetry and translation. Useful cutoff functions are for example the

exponential cutoff

Rk(p) =
Zkp

2

ep2/k2 − 1
, (3.13)

or the one proposed by Litim [50]

Rk(p) = Zk(k
2 − p2)θ(k2 − p2). (3.14)

Here Zk is the wavefunction renormalization constant and one has ZΛ = 1. As a feature

of both functions in eqs. (3.13) and (3.14) we note Rk(p = 0) = Zk2 and Rk(p) → 0

for p2/k2 → ∞. One can see these functions as a p-dependent mass term for the modes

with p2 . k2.

That Rk(p) goes to zero for large values of ~p2 has a number of practical advantages. For

a fixed value of k, the fact that Rk(p) ≈ 0 for p2 � k2 means that fluctuations of modes

with large momentum are integrated in the flowing action Γk, already. If k is lowered

further, there will be no change of the correlation functions due to fluctuations of these

modes. In praxis, this means that the momentum integrals that appear on the right hand

side of the flow equation of an object such as the effective potential have no (or only small)

contribution from momenta with p2 � k2. There is an effective UV cutoff due to the term

∂tRk(p) on the right hand side of the flow equation.

This picture can also be confirmed from the functional integral expression for the

flowing action

e−Γk[φ] =

∫
Dϕ e

−S[φ+ϕ]−
∫
p

1
2
ϕ∗n(p)Rk(p)ϕn(p)+

∫
p

δΓk[φ]

δφn(p)
ϕn(p)

. (3.15)

For a given value of k, the modes of the fluctuation field ϕn(p) with p2 � k2 are not

affected by the cutoff term. In contrast, for the modes with p2 � k2 the cutoff term leads

to an additional Gaussian suppression similar to a mass gap of size k2.
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With a cutoff function as in eq. (3.13) or (3.14), the contribution of long-ranging

modes with small values of p2 are included in a steady way in the functional integral in

eq. (3.15). These are precisely the modes that become important close to second order phase

transitions and dominate the universal critical dynamics. A cutoff function that decays

fast enough for large values of p2/k2 allows to separate the treatment of these modes from

the higher momentum modes which are not relevant for the critical phenomena.

The above described separation of cutoff scales realized by a cutoff function Rk(p)

that decays sufficiently fast for large p makes an expansion in terms of spatial momenta a

useful approximation scheme for many purposes. In position space this corresponds to a

derivative expansion. One writes

Γk[φ] =

∫
ddx

{
Uk(ρ) +

1

2
Zk(ρ)~∇φa~∇φa +

1

4
Yk(ρ)~∇ρ~∇ρ+O(∂4)

}
, (3.16)

with ρ = 1
2φaφa. The lowest level only includes the scalar potential and a standard kinetic

term. The first correction includes the ρ-dependent wave function renormalizations Zk(ρ)

and Yk(ρ). The next level involves then invariants with four derivatives and so on.

On first sight there is no reason why a derivative expansion as in eq. (3.16) should be

a good approximation. In principle both small and large momenta contribute on the right

hand side of the flow equation and even observables at small momenta could be affected

by the large momenta regime where (3.16) is expected to converge badly. To understand

why it nevertheless works rather well in praxis consider the following generalization of

the scheme

Γk[φ] =

∫
ddx

{
Uk(ρ) +

1

2
~∇φa Zk(ρ,−~∇2) ~∇φa +

1

4
~∇ρ Yk(ρ,−~∇2) ~∇ρ+ . . .

}
. (3.17)

The functions Zk and Yk depend now also on the momentum p =
√
~p2. The scheme

in (3.17) has the advantage that it allows to resolve the full momentum dependence of the

propagator. However, in praxis one usually neglects terms higher than quadratic in the

momenta. Nevertheless, derivative expansion often leads to quite good results. The reason

is the following. On the right hand side of the flow equation the cutoff insertion Rk(p) in

the propagator (Γ(2)(p) + Rk(p))
−1 suppresses the contribution of the modes with small

momenta. On the other side, the cutoff derivative ∂kRk(p) suppresses the contribution of

very large momenta provided that Rk(p) falls of sufficiently fast for large p. Effectively

mainly modes with momenta of the order k2 contribute.

On the other side, if one evaluates flow equations for objects as Zk(ρ, ~p
2), Yk(ρ, ~p

2) etc.,

one main effect of the external momentum is to provide an infrared cutoff scale of order

p2. Such an infrared cutoff scale is already provided by Rk itself and one might therefore

also work with the k-dependent but p2-independent couplings

Zk(ρ, p
2 = 0), Yk(ρ, p

2 = 0). (3.18)

This brings us back to (3.16). In other words, a properly choosen cutoff function improves

a truncation with p-independent coefficients Zk and Yk such that some of the momentum

dependence is effectively taken into account. We emphasize that it is important that the
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cutoff Rk(p) falls off sufficiently fast for large p. If this is not the case, the derivative

expansion might lead to erroneous results since the kinetic coefficients as appropriate for

small momenta and frequencies are then also used for large momenta and frequencies.

Only when the scale derivative ∂kRk(p) provides for a sufficient ultraviolet cutoff does the

derivative expansion work properly.

4 Analytic continuation of flow equations

In this section we discuss flow equations in Minkowski space. The original formulation of

the formalism as outlined in section 3 has been in Euclidean space or for imaginary times.

There are now different conceivable strategies to obtain results about real-time propagators

which will be discussed below.

Our general point of view is that the flowing action Γk[φ] is a priori defined in the

Matsubara formalism, i. e. within a functional integral setup where the configuration space

for the fields ϕ and their expectation value φ has a cyclic imaginary time direction with cir-

cumference 1/T . The correlation functions that follow from Γk[φ] as functional derivatives

can then be analytically continued from the discrete, imaginary Matsubara frequencies to

the complex frequency plane and in particular towards the real frequency axis.

For some properties of the flowing action the analytic continuation has no effect. This

is the case in particular for the effective potential which is obtained from the flowing action

by evaluating it for fields that are constant in space and time so that analytic continuation

is trivial. On the other side, for frequency- and momentum-dependent objects such as

the propagator or other correlation functions, it does make a difference. They can either

be evaluated in Euclidean space with imaginary frequency argument or — after analytic

continuation to real frequencies — in Minkowski space.

In most situations one is finally interested in macroscopic quantities for k = 0. One

way to get for example the macroscopic propagator in Minkowski space would be to solve

its flow equation with an arbitrary imaginary value q0 = iω of the frequency argument

(at finite temperature the frequency is restricted to the discrete values q0 = i2πTn in

the Matsubara formalism) and to do the analytic continuation only at the end, i.e. for

k = 0. The advantage of this procedure is that the flow equation formalism is only used in

Euclidean space where it is rather transparent and well understood. On the other side, the

analytic continuation can be very difficult in praxis since the propagator in Euclidean space

is usually available at best numerically. Methods based for example on Padé approximants

need information from many Matsubara frequencies and the numerical effort gets rather

large. Nevertheless, this approach has been successfully followed in the past and allowed

to calculate for example the spectral function of non-relativistic bosons in two spatial

dimensions [39, 40].

In this paper we propose another way to solve the problem, however. Instead of

doing the analytic continuation only after solving the flow equation or at k = 0, we will

analytically continue the flow equations themselves. Since in contrast to their solution the

flow equations are usually available in analytic form, it is not necessary to use involved

numerical techniques. As an example we investigate in particular the the flow equation for
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the propagator. For particular choices of the infrared cutoff function Rk we show how it is

possible to evaluate this object for real frequency argument and to solve the flow equations

directly in Minkowski space. No analytic continuation of the final result is then needed

any more to access the real time properties. Moreover, it will become apparent that such a

procedure also has some advantages in designing approximations. A derivative expansion

in Minkowski space can be done as a Taylor expansion around the frequency corresponding

to a pole or branch-cut singularity of the propagator. Loop expressions that appear on

the right hand side of flow equations but also on-shell properties of the effective action

itself are strongly dominated by these singular structures. One can therefore expect that

the convergence properties of such an expansion in Minkowski space are better than those

of a derivative expansion around vanishing values of the frequency as it can be done in

Euclidean space.

This section is organized as follows. In subsection 4.1 we discuss a class of regulator

functions Rk for which the analytic continuation of the flow equation to real frequencies

can be done, at least for truncations based on derivative expansion. We apply this method

subsequently to a model for scalar fields with O(N) symmetry. The truncation for this

particular system is introduced in subsection 4.2 while subsections 4.3 and 4.4 discuss

the flow equations for the effective potential and propagator, respectively. Subsection 4.5

presents some numerical results for the solution of the flow equations within the truncation.

4.1 Regulator

In this subsection we discuss the particular choice of the infrared regulator function Rk that

allows for analytic continuation of the regularized propagator (Pk +Rk)
−1 from the imag-

inary frequency axis or Euclidean space to real frequencies. The discussion will be based

on truncations where the inverse propagator is close to the real frequency axis of the form

Pk = Z
(
z(−p2

0 + ~p2) +m2 − is(p0)γ2
)
, (4.1)

where Z, z, m2 and γ2 are k-dependent, real and positive quantities.

Let us now choose a regulator function Rk(p0, ~p). It is a priori not clear what require-

ments must be fulfilled when choosing a cutoff function in Minkowski space. For example,

it is not clear what the conditions for Rk(p0, ~p) are to be a good infrared regulator nor

is it obvious what is required for it to have good regulating properties in the ultraviolet.

Actually, it is not even obvious which modes correspond to the IR or UV, respectively,

given that the combination −p2
0 + ~p2 is not positive definite.

On the other side, all these issues are well understood for Euclidean signature, see the

discussion in section 3. The approach we follow here is therefore to choose a regulator

function with all the desired properties in Euclidean space or for positive argument −p2
0 +

~p2 > 0 and to use analytic continuation to extend the calculations to Minkowski space.

For many choices of Rk such a program would be rather difficult to perform since a

function that is smooth and regular on the imaginary frequency axis may nevertheless have

poles and discontinuities in other regions of the complex frequency plane. One can even

argue that this is unavoidable if one wants Rk(p0, ~p) to be a function that decays with large
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imaginary values of p0. This in turn is of course necessary for Rk to serve as an effective

UV regulator on the right hand side of the flow equation.

To make the analytical continuation possible in praxis we choose a class of rather

simple IR regulators with algebraic decay in the UV:

Rk(p0, ~p) = Zk2 1

1 + c1

(
−p2

0+~p2

k2

)
+ c2

(
−p2

0+~p2

k2

)2
+ . . .

. (4.2)

The coefficient Zk can be chosen conveniently. Usually it is taken to agree with the wave

function renormalization constant but more generally it can be some real and positive

function of the scale parameter k with not too strong dependence on k.

The function (4.2) has all the desired properties for Euclidean arguments −p2
0+~p2 ≥ 0 if

the coefficients cj are real and positive. It is clear that the UV regulating properties become

better if some cj with large j are non-zero. On the other side, practical calculations are

simple if only a few cj with small j are non-zero. Arguably the simplest, non-trivial choice

is c1 = c > 0, c2 = c3 = · · · = 0 and we will discuss it in more detail below.1 One

should keep in mind, however, that the decay of Rk for large momenta and Matsubara

frequencies is rather mild for this choice. For the convergence properties of the widely used

derivative expansion it may be desirable to have a quicker decay, either with a higher power

or exponential in the momentum argument.

In the following we discuss the analytic structure of the regularized propagator (Pk +

Rk)
−1 as a function of a complex frequency argument p0. In principle, this depends on

the complete functional form of Pk and it is not sufficient to know the form of Pk for

example close to the real frequency axis. On the other side, at least when k is sufficiently

small one expects the relevant properties of the propagator to be dominated by the on-

shell singularities, i. e. the poles and branch cuts on the real frequency axis. Following

this rationale, we use the expression (4.1) not only close to the real frequency axis but

everywhere in the complex p0 plane, keeping in mind that the coefficients Z, m2 and γ2

should be determined at the singularity, i. e. close to the point on the real frequency axis

where the real part of Pk vanishes.

With the above choice of the regulator function it is straightforward to show that the

regularized propagator can be written as (we use m̃2 = m2/k2 and γ̃2 = γ2/k2)

(Pk +Rk)
−1 =

1

Z

(
β1

p2 + α1k2
+

β2

p2 + α2k2

)
(4.3)

with

α1/2 =
1

2

(
1

c
+
m̃2

z
− i s(p0)

γ̃2

z

)
± [A+ i s(p0)B] ,

β1/2 =
1

2z
± [C + i s(p0)D]

(4.4)

1A suitable cutoff function for non-relativistic field theories is obtained by replacing −p2
0 + ~p2 with

−p0 + ~p2/(2M) in equation (4.2).
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and

A =
1

2i

√ 1

cz
− 1

4

(
1

c
− m̃2

z
− i γ̃

2

z

)2

−

√
1

cz
− 1

4

(
1

c
− m̃2

z
+ i

γ̃2

z

)2
 ,

B =
1

2

√ 1

cz
− 1

4

(
1

c
− m̃2

z
− i γ̃

2

z

)2

+

√
1

cz
− 1

4

(
1

c
− m̃2

z
+ i

γ̃2

z

)2


C =
−A

(
1
c −

m̃2

z

)
−B γ̃2

z

4 z (A2 +B2)
,

D =
B
(

1
c −

m̃2

z

)
−A γ̃2

z

4 z (A2 +B2)
.

(4.5)

We choose the branch cut of the square root function to be along the negative real axis.

The objects A, B, C and D are then always real. Moreover, using the above definitions it

is straightforward to establish that for all values of c > 0, m̃2 ≥ 0 and γ̃2 ≥ 0 one has

1

2

(
1

c
+
m̃2

z

)
±A ≥ 0,

B ≥ 0,

γ̃2

z
−B ≤ 0.

(4.6)

The decomposition in (4.3) is very useful for practical calculations since it resembles

closely the form of a free propagator. A similar representation is actually possible for the

whole class of regulators in (4.2).

We note at this point that in contrast to the propagator P−1
k in eq. (4.1), the regular-

ized propagator (Pk + Rk)
−1 in (4.3) has singularities away from the real frequency axis.

Indeed, for γ̃2

z − B < 0 and s(p0) = 1 there are poles at p0 = ±
√
~p2 + α1k2. A spectral

representation as in eq. (2.22) is therefore not possible for (Pk + Rk)
−1. Although we do

not give a proof here we believe that this is a generic feature for cutoff functions that serve

as an effective UV regulator.

One of the most important features of the regulator function proposed here is that

one can calculate in praxis with the decomposition (4.3). Besides the pole singularities,

(Pk+Rk)
−1 has also a branch cut originating from the second term in (4.3). However, in an

approximation where one assumes that all integrals along this branch cut are dominated by

the nearby poles on the different Riemann sheets one can always perform the frequency in-

tegrals (or Matsubara summations for T > 0) analytically which is an enormous advantage

for practical calculations.

4.2 Truncation for O(N) model of scalar fields

In the remainder of this section we perform the analytical continuation for the flow equa-

tions of a concrete model, the O(N) model for a scalar field in the phase with spontaneous

symmetry breaking. The excitation spectrum consists of a massive radial mode as well as
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N−1 massless Goldstone modes. Due to the non-linear coupling, the radial mode can actu-

ally decay into two Goldstone excitations which gives rise to a non-vanishing decay width.

Since the breaking of the O(N) symmetry is spontaneous, the effective action and its k-

dependent generalization, the flowing action Γk[φ] are invariant with respect to global O(N)

symmetry transformations. It must also be invariant under translational and rotational

symmetries as well as under Lorentz transformations. Apart from these constraints it may

be a rather general functional of the field φ. However, to make a (numerical) solution of

the flow equations possible it is in any case necessary to truncate the space of possible

functionals Γk[φ].

In this paper we use a truncation based on derivative expansion in Minkowski space.

More specific, we take Γk to be of the form

Γk =

∫
t,~x

{
N∑

M=1

1

2
φ̄M P̄φ(i∂t,−i~∇) φ̄M +

1

4
ρ̄ P̄ρ(i∂t,−i~∇) ρ̄+ Ūk(ρ̄)

}
(4.7)

with ρ̄ = 1
2

∑N
M=1 φ̄

2
M . We fix some arbitrariness in this decomposition by demanding the

momentum dependent parts to vanish for p0 = ~p = 0, i.e.

P̄φ(0, 0) = P̄ρ(0, 0) = 0. (4.8)

We now make the crucial assumption that the momentum dependent propagator parts

P̄φ(p0, ~p) and P̄ρ(p0, ~p), considered as a function of a complex frequency p0, are of the same

analytic structure as the full inverse propagator in (2.26). This is certainly the case at

the macroscopic scale k = 0 since Γk=0[φ] = Γ[φ]. For non-zero k one expects in principle

deviations due to the frequency dependence of the cutoff function Rk(p0, ~p). One can see

it as an element of our truncation that these deviations are neglected, however.

In this spirit and taking constraints from Lorentz invariance into account we write the

functions P̄φ and P̄ρ as

P̄φ/ρ(p0, ~p) = Z̄φ/ρ(−p2
0 + ~p2)

[
−p2

0 + ~p2
]
− is(p0)γ̄2

φ/ρ(−p
2
0 + ~p2). (4.9)

We use again the function s(p0) defined in eq. (2.27). The functions γ̄2
φ/ρ(−p

2
0 + ~p2) are

nonzero only for negative argument.

To derive the flow equation for Ūk(ρ̄), we expand (4.7) around a background configu-

ration according to

φ̄1(t, ~x) = φ̄+ δφ̄1(t, ~x), φ̄M (t, ~x) = δφ̄M (t, ~x) (M = 2, . . . , N) (4.10)

and keep only terms that are quadratic in the “fluctuating parts” δφ̄M . This yields

(ρ̄ = 1
2 φ̄

2)

Γk,2 =

∫
~p,p0

1

2
δφ̄1(−p0,−~p)

[
P̄φ(p0, ~p) + ρ̄P̄ρ(p0, ~p) + Ū ′l (ρ̄) + 2ρ̄Ū ′′k (ρ̄)

]
δφ1(p0, ~p)

+
N∑

M=2

1

2
δφ̄M (−p0,−~p)

[
P̄φ(p0, ~p) + Ū ′k(ρ̄)

]
δφ̄M (p0, ~p)

(4.11)
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In principle one could now derive a closed set of flow equations for the set of functions

Z̄φ(−p2
0 + ~p2), Z̄ρ(−p2

0 + ~p2), γ̄2
φ(−p2

0 + ~p2), γ̄2
ρ(−p2

0 + ~p2) and Ūk(ρ̄) by using appropriate

projections of the flow equation for Γk. At the macroscopic scale k = 0, the functions

Z̄φ(−p2
0 + ~p2), Z̄ρ(−p2

0 + ~p2), γ̄2
φ(−p2

0 + ~p2) and γ̄2
ρ(−p2

0 + ~p2) would contain all the inter-

esting information of the propagator, spectral density etc. However, this procedure would

result in a set of coupled, partial integro-differential equations which is rather hard to

solve numerically.

Instead we therefore devise here a simpler approximation based on the observation

that the physical properties of a propagator are to a very large extend dominated by sin-

gularities, in particular poles or branch cuts corresponding to zero-crossings of the inverse

propagator or at least its real part. Around these singularities it is sensible to use a deriva-

tive expansion or Taylor expansion of the inverse propagator with respect to its frequency

and momentum arguments.

We observe at this point that the frequency p0 where the propagators become singular

depend on the value of the background field ρ̄. The most important properties will be

dominated by the minimum ρ̄0 of the effective potential where Ū ′(ρ̄0) = 0, however. We

therefore choose for the inverse propagator of the Goldstone modes the expansion point

p0 = ~p = 0. The imaginary part γ̄2
φ vanishes at this point and we write

P̄φ(p0, ~p) ≈ Z̄φ(0)(−p2
0 + ~p2), (4.12)

the higher orders being neglected.

The situation is different for the radial field. Since it is massive, it is sensible to choose

the expansion point as p0 = m1 and write there

P̄φ(p0, ~p) + ρ̄0P̄ρ(p0, ~p)

≈
[
Z̄φ(−m2

1) + ρ̄0Z̄ρ(−m2
1)
]

(−p2
0 + ~p2)− is(p0)

[
γ̄2
φ(−m2

1) + ρ̄0γ̄
2
ρ(−m2

1)
]
,

(4.13)

with higher order terms being neglected.

We define now the wave function renormalization as Z̄φ = Z̄φ(0), the renormalized

fields as φM =
√
Z̄φφ̄M , ρ = Z̄φρ̄, the effective potential Uk(ρ) = Ūk(ρ̄) and the anomalous

dimension as ηφ = − 1
Z̄φ
∂tZ̄φ. In addition we introduce the abbreviations Z1 and γ2

1 by

Z1 =
1

Z̄φ

(
Z̄φ(−m2

1) + ρ̄0Z̄ρ(−m2
1)
)

γ2
1 =

1

Z̄φ

(
γ̄2
φ(−m2

1) + ρ̄0γ̄
2
ρ(−m2

1)
)
.

(4.14)

An expression analogous to (4.11) but in terms of renormalized quantities can now be

written

Γk,2 =

∫
~p,p0

1

2
δφ1(−p0,−~p)

[
Z1

[
−p2

0 + ~p2
]
− is(p0)γ2

1 + U ′k(ρ) + 2ρU ′′k (ρ)
]
δφ1(p0, ~p)

+

N∑
M=2

1

2
δφM (−p0,−~p)

[
−p2

0 + ~p2 + U ′k(ρ)
]
δφM (p0, ~p)

(4.15)
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One can directly read off the (inverse) propagators for the excitation spectrum from this

expression by evaluating it for ρ = ρ0. Since U ′k(ρ0) = 0, the N − 1 Goldstone bosons are

massless and have a vanishing decay width as expected. In contrast, the radial mode φ1

has a mass m1 =
√

2ρ0U ′′k (ρ0)/Z1 and a decay width Γ1 = γ1/
√

2ρ0U ′′k (ρ0).

4.3 Flow of the effective potential

Using (4.15) it is straight-forward to derive a flow equation of Uk(ρ). To that end one

simply evaluates equation (3.7) for constant argument φ =
√

2ρ. The result is

∂tUk(ρ)
∣∣
ρ

=
∂

∂ρ̄
Uk(ρ)∂tρ̄

∣∣
ρ

+ ∂tUk(ρ)
∣∣
ρ̄

= ηφ ρ U
′
k(ρ) + ∂tUk(ρ)

∣∣
ρ̄

(4.16)

with

∂tUk(ρ)
∣∣
ρ̄

=
1

2

∫
p0=iωn,~p

{
1

Z1(~p2 − p2
0)− i s(p0)γ2

1 + U ′ + 2ρU ′′ + 1
Z̄φ
Rk

+
(N − 1)

~p2 − p2
0 + U ′ + 1

Z̄φ
Rk

}
1

Z̄φ
∂tRk.

(4.17)

In principle, the frequencies in (4.17) are summed over the discrete, imaginary values

p0 = iωn = i2πTn with
∫
p0=iωn

= T
∑

n as appropriate for the Matsubara formalism. One

should not take the expression in (4.17) literally at these imaginary frequency, however.

In fact the expansion in (4.13) was made around a point on the real frequency axis and

the function s(p0) is only defined there. In praxis one performs the Matsubara summation

in expressions like (4.17) usually using methods based on contour integrals in the complex

frequency plane. At the end one has to evaluate residues and integrals along branch cuts

on the real frequency axis (or close to it for k > 0) where the expansion in (4.13) and the

expression in (4.17) can be used.

In terms of the integral functions defined in appendix A one can write (4.17) as

∂tU(ρ)
∣∣
ρ̄

=
kd

2

[
I0

(
U ′ + 2ρU ′′

k2
,
γ2

1

k2
, Z1,

T

k
, c, d

)
+ (N − 1) I0

(
U ′

k2
, 0, 1,

T

k
, c, d

)]
. (4.18)

Up to terms that are proportional to Zρ or γ2
ρ (and therefore subleading), the deriva-

tives of (4.18) with respect to ρ yield

∂tU
′(ρ)
∣∣
ρ̄

=
kd−2

2

[(
3U ′′ + 2ρU (3)

)
I1

(
U ′ + 2ρU ′′

k2
,
γ2

1

k2
, Z1,

T

k
, c, d

)

+ (N − 1)U ′′I1

(
U ′

k2
, 0, 1,

T

k
, c, d

)] (4.19)
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and

∂tU
′′(ρ)

∣∣
ρ̄

=
kd−4

2

[
−
(

3U ′′ + 2ρU (3)
)2
I2

(
U ′ + 2ρU ′′

k2
,
γ2

1

k2
, Z1,

T

k
, c, d

)
− (N − 1)

(
U ′′
)2
I2

(
U ′

k2
, 0, 1,

T

k
, c, d

)
+ k2

(
5U (3) + 2ρU (4)

)
I1

(
U ′ + 2ρU ′′

k2
,
γ2

1

k2
, Z1,

T

k
, c, d

)
+ k2(N − 1) U (3)I1

(
U ′

k2
, 0, 1,

T

k
, c, d

)]
.

(4.20)

In principle one could attempt a solution of the flow equation (4.17) allowing for a

completely general form of Uk(ρ). Numerically one would have to solve a two-dimensional

partial differential equation for that purpose. Since we are interested in conceptual and

qualitative rather than precise quantitative results in the present paper, we restrict our-

selves to a Taylor expansion of Uk(ρ) in the form

Uk(ρ) = Uk(ρ0) +m2
k(ρ− ρ0) +

1

2
λk(ρ− ρ0)2, (4.21)

the higher orders being neglected for simplicity. In the phase with spontaneous breaking

of the O(N) symmetry, the (k-dependent) minimum ρ0,k is at positive values, ρ0,k > 0 and

the linear coefficient m2
k vanishes by definition.

In summary, our truncation consists of the k-dependent renormalized coefficients Z1,

γ2
1 , λk and ρ0,k, supplemented by the anomalous dimension η = − 1

Z̄φ
∂tZ̄φ.

The flow equation for λk is obtained by taking the derivative of ∂tUk(ρ) in eq. (4.16)

according to

∂tλk =
∂2

∂ρ2
∂tUk(ρ)

∣∣
ρ0

= 2ηφλk + ∂tU
′′
k (ρ)

∣∣
ρ̄0

(4.22)

and the last term can be taken from (4.20). In terms of the dimensionless coefficients

γ̃2
1 = γ2

1/k
2, Z1, λ̃ = λk, and ρ̃0 = ρ0,k/k

2 one has

∂tλ̃ = 2ηφλ̃+
1

2

[
− 9λ̃2 I2

(
2λ̃ρ̃0, γ̃

2
1 , Z1, 0, c, 4

)
− (N − 1)λ̃2 I2 (0, 0, 1, 0, c, 4)

]
. (4.23)

The coefficient c is a parameter of the infrared regulator function. A reasonable choice is

c ≈ 1 and the dependence of the final result on the precise value of c can be used for a

rough estimation of systematical errors connected with the truncation.

Let us now come to the flow equation for ρ0,k or ρ̃0. It is obtained from the condition

d

dt
U ′(ρ0,k) = ∂tU

′
k(ρ0,k)

∣∣
ρ0,k

+ U ′′k (ρ0,k)∂tρ0,k = 0, (4.24)

or

∂tρ0,k =− 1

λk
∂tU

′(ρ0,k)
∣∣
ρ0,k

=− ηφ ρ0,k −
1

λk
∂tU

′(ρ0,k)
∣∣
ρ̄0,k

.

(4.25)
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In the last equation we have used (4.16). For the dimensionless combination ρ̃0 = ρ0,k/k
2

this results in

∂tρ̃0 =− (2 + ηφ)ρ̃0 −
1

2

[
3I1

(
2λ̃ρ̃0, γ̃

2
1 , Z1, 0, c, 4

)
+ (N − 1)I1 (0, 0, 1, 0, c, 4)

]
. (4.26)

To solve eqs. (4.23) and (4.26) one needs to specify some initial values for λ̃ and ρ̃ at some

large value of the infrared cutoff parameter k = Λ or, equivalently, at t = ln(k/Λ) = 0.

One also needs the anomalous dimension ηφ and the coefficients Z1 and γ2
1 as a function

of t. Equations that govern these will be discussed in the subsequent section.

4.4 Flow of the propagator

Let us now discuss the (k-dependent) propagator and its flow equation within our formal-

ism. For a constant background field φ1 = φ0 =
√

2ρ0, φ2 = · · · = φN = 0, the propagator

is a diagonal matrix in momentum space as well as in the space of “internal” or O(N)

degrees of freedom labeled by the index M .

The k-dependent, renormalized propagator of the radial field φ1 is given in the trun-

cation (4.15) by

G1 =
1

Z1(−p2
0 + ~p2)− is(p0)γ2

1 + 2λkρ0,k
(4.27)

while the propagator of the Goldstone modes φ2, . . . , φN is

G2 =
1

−p2
0 + ~p2

. (4.28)

To trace the k-dependence of these objects one needs besides the flow equations for λk and

ρ0,k also the ones for the discontinuity γ2
1 and the coefficient Z1 as well as the anomalous

dimension ηφ = − 1
Z̄φ
∂tZ̄φ. To derive these flow equations we expand in the fields according

to (4.10). The term quadratic in the “fluctuating fields” δφ̄ is in general of the form

Γk,2 =

∫
p0,~p

{
1

2
δφ̄1(−p0,−~p)P̄1(p0, ~p)δφ̄1(p0, ~p) +

N∑
M=2

1

2
δφ̄M (−p0,−~p)P̄2(p0, ~p)δφ̄M (p0, ~p)

}
.

(4.29)

Due to the O(N) symmetry, the functions P̄1(p0, ~p) and P̄2(p0, ~p) can differ only for ρ > 0.

Within the truncation (4.7) their particular form is given by (4.11). We make now an

approximation where momentum- and frequency dependent parts proportional to to Zρ or

γ2
ρ are neglected in the effective vertices for the fields φ1 and φ2 on the right hand side

of the flow equation. Using standard methods it is then straight forward to derive the
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flow equations

1

Z̄φ
∂t

1

2q0

∂

∂q0
P̄1(q0, 0) =

−
[
18ρ(U ′′)2 + 24ρ2U ′′U (3) + 8ρ3(U (3))2

]
kd−6

× J
(
q0

k
,
U ′ + 2ρU ′′

k2
,
U ′ + 2ρU ′′

k2
,
γ2

1

k2
,
γ2

1

k2
, Z1, Z1,

T

k
, c, d

)
− 2(N − 1)2ρ(U ′′)2kd−6 J

(
q0

k
,
U ′

k2
,
U ′

k2
, 0, 0, 1, 1,

T

k
, c, d

)
,

1

Z̄φ
∂t

1

2q0

∂

∂q0
P̄2(q0, 0) =

− 4(N − 1) ρ(U ′′)2kd−6J

(
q0

k
,
U ′ + 2ρU ′′

k2
,
U ′

k2
,
γ2

1

k2
, 0, Z1, 1,

T

k
, c, d

)
,

1

Z̄φ
∂tDiscq0P̄1(q0, 0) =[

18ρ(U ′′)2 + 24ρ2U ′′U (3) + 8ρ3(U (3))2
]
kd−6

×K
(
q0

k
,
U ′ + 2ρU ′′

k2
,
U ′ + 2ρU ′′

k2
,
γ2

1

k2
,
γ2

1

k2
, Z1, Z1,

T

k
, c, d

)
+ 2(N − 1)2ρ(U ′′)2kd−6 K

(
q0

k
,
U ′

k2
,
U ′

k2
, 0, 0, 1, 1,

T

k
, c, d

)
,

1

Z̄φ
∂tDiscq0P̄2(q0, 0) =

4(N − 1)ρ(U ′′)2kd−6K

(
q0

k
,
U ′ + 2ρU ′′

k2
,
U ′

k2
,
γ2

1

k2
, 0, Z1, 1,

T

k
, c, d

)
.

(4.30)

We used here the integral functions J and K as defined in appendix A (also the operator

Disc is defined there). From these equations one can easily infer the anomalous dimension

ηφ = − 1
Z̄φ
∂tZ̄φ according to

ηφ =− 1

Z̄φ
∂tZ̄φ =

1

Z̄φ
∂t

1

2q0

∂

∂q0
P̄2(q0, 0)

∣∣
q0=0

=− 4(N − 1)ρ̃λ̃2 J
(

0, 2λ̃ρ̃0, 0, γ̃
2
1 , 0, Z1, 1, 0, c, 4

)
.

(4.31)

In a similar way one can obtain the flow equation for Z1 from (4.30)

∂tZ1 =ηφZ1 −
1

Z̄φ

1

2q0

∂

∂q0
P̄1(q0, 0)

∣∣
q0=m1

=ηφZ1 − 18 ρ̃0λ̃
2 J
(
q̃0, 2λ̃ρ̃0, 2λ̃ρ̃0, γ̃

2
1 , γ̃

2
1 , Z1, Z1, 0, c, 4

)
+ 2(N − 1)2 ρ̃0λ̃

2J (q̃0, 0, 0, 0, 0, 1, 1, 0, c, 4) .

(4.32)

According to the definition in (4.14) this should be evaluated as q̃0 = m1/k =
√

2λ̃ρ̃0/Z1.
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Figure 1. Flow of the interaction strength λk.

The flow equation for the discontinuity γ̃2
1 can be obtained from (4.30) as

∂tγ̃
2
1 =(ηφ − 2)γ̃2

1 +
1

Z̄φk2
∂tDiscq0P̄2(q0, 0)

∣∣
q0=m1

=(ηφ − 2)γ̃2
1

+ 18 λ̃2ρ̃0 K
(
q̃0, 2λ̃ρ̃0, 2λ̃ρ̃0, γ̃

2
1 , γ̃

2
1 , Z1, Z1, 0, c, 4

)
+ 2(N − 1)2λ̃2ρ̃0 K (q̃0, 0, 0, 0, 0, 1, 1, 0, c, 4) .

(4.33)

Again this should be evaluated at q̃0 =
√

2λ̃ρ̃0/Z1. The second term on the right hand side

of (4.33), which is due to fluctuations of the massive radial field, will not contribute to the

flow of the discontinuity since the decay of a massive particle into two particles of the same

mass is kinematically not possible. However, this is different for the last term in (4.33)

which is due to fluctuations of the Goldstone modes. A massive particle can decay into two

massless ones so that a non-zero decay width of the radial field is generated by this term.

4.5 Numerical results

Equations (4.23), (4.26), (4.31), (4.32) and (4.33) constitute a closed set of flow equations

which can be solved numerically. For doing that one also needs to specify some initial

values at the UV scale k = Λ, of course. For an illustration we choose them here to be

λ̃(Λ) = 0.6, ρ̃0(Λ) = 0.02, Z1(Λ) = 1 and γ̃2
1(Λ) = 0. (4.34)

The resulting flow behavior for the O(N) model in 3 + 1 space-time dimensions is shown

in figures 1 to 5.

In figure 1 we show the (rather weak) scale dependence of the interaction strength

λ. As expected, the dependence on k is logarithmic. Strictly speaking, the logarithmic

running implies λ(k) → 0 for k → 0 which is closely connected to the “triviality” of the
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Figure 2. Flow of the minimum of the effective potential ρ0,k.
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Figure 3. Anomalous dimension ηφ as obtained from (4.31).

theory. One can clearly separate two regimes in figure 1. For large scales k the logarithmic

running is stronger since both fluctuations of the Goldstone modes and of the radial mode

contribute. At smaller scales k the contribution of the radial mode becomes small since

it is suppressed by its non-zero mass m1 =
√

2λkρ0,k/Z1. The transition between the two

regimes takes place for m1 ≈ k.

In figure 2 we show the k-dependence of the minimum of the effective potential ρ0,k. For

large scale parameters it first decreases when k is lowered before it settles to a finite value

where it remains for k → 0. In figure 3 we show the anomalous dimension ηφ = − 1
Z̄φ
∂tZ̄φ

as a function of the scale. For large k it has an oscillating behavior before it goes to zero

for smaller k.

More interesting for the purpose of the present paper is the flow of the coefficient Z1

and the discontinuity or decay coefficient γ2
1 as shown in figure 4 and 5, respectively. We

show the solution of the flow equation evaluated at the frequency q0 = m1 as discussed in

the preceding section (solid lines) but also the corresponding result if the flow equations for
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Figure 4. Flow of the coefficient Z1 as obtained from (4.32) (solid line). We also show the resulting

behavior if the flow equation is evaluated at q0 = 0 instead (dashed line). Interestingly, one finds

Z1 → ∞ for k → 0 in the latter case whereas the result is completely regular if the flow equation

is evaluated on-shell.
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Figure 5. Flow of the discontinuity coefficient γ21 as obtained from (4.33) (solid line). We also

show the resulting behavior if the flow equation is evaluated at q0 = 0 instead (dashed line). As

expected, the discontinuity γ21 is non-zero on-shell whereas it vanishes for q0 = 0.

Z1 and γ2
1 are evaluated at vanishing frequency q0 = 0 instead (dashed lines). Interestingly,

Z1 changes only very little from Z1 = 1 to a slightly larger value if the flow equation is

evaluated at q0 = m1 but diverges for k → 0 if evaluated at q0 = 0.

As expected, the flow of γ2
1 vanishes identically when evaluated at q0 = 0 but is non-

trivial at q0 = m1. One finds that γ2
1 starts to deviate from zero at some scale k ≈ q0,

increases then strongly before it decreases again slightly and settles to some finite positive

value where it remains for k → 0. The physical origin of this discontinuity in the propa-

gator of the radial mode is that it can decay into two massless Goldstone excitations. We

emphasize that the present calculation takes this decay width in a self-consistent manner

into account.

– 27 –



J
H
E
P
0
5
(
2
0
1
2
)
0
2
1

5 Conclusions

We have discussed how functional renormalization group equations can be analytically

continued from imaginary Matsubara frequencies to the real frequency axis. For the specific

example of a relativistic scalar field with O(N) symmetry we have derived flow equations

for the propagator of the radial mode that are evaluated for real frequencies corresponding

to the on-shell energy of this massive excitation. A prominent and interesting feature is the

imaginary discontinuity of the inverse propagator which is closely connected to the particle

decay width.

An improved derivative expansion formalism allows to expand in frequencies and mo-

menta around their on-shell values in Minkowski space. The thus approximated propaga-

tors can be used in a self-consistent way in loop expressions on the right hand side of flow

equations if standard methods based on complex contour integration are used to perform

the Matsubara frequency summations. This adapted version of the derivative expansion in

Minkowski space is very close to the physical dynamics. Since the dynamical properties of

an excitation are dominated to a large extend by the singular part of its propagator one

can expect that the convergence properties are better compared to a derivative expansion

in Euclidean space.

We emphasize that our formalism fully conserves Lorentz symmetry. This is facili-

tated by a particular choice of infrared regulator function which decays algebraically both

for large spatial momenta and large imaginary frequencies. Its rather simple form al-

lows to perform all frequency summations or integrations analytically but still leads to

expressions for flow equations that are ultraviolet and infrared finite and thus need no

further regularization.

Although we have discussed here for simplicity of notation only relativistic scalar fields,

the formalism can be extended in a straight-forward way to more complicated theories

with bosonic and fermionic fields of different spin at arbitrary temperature and chemical

potential as well as to non-relativistic field theories.

The formation of bound states or other composite degrees of freedom constitutes a

particular interesting field of application. Using a recently derived exact flow equation

for composite operator fields it is possible to change between a description in terms of

fundamental and composite fields in a continuous manner during the renormalization group

evolution [51], see also [52–54]. So far, this program was limited to some extend by the

difficulty to identify for a given correlation function the part that is due to the exchange

of some composite degree of freedom. The formalism developed in the present paper will

allow to determine this part directly from the on-shell singularity for the corresponding

real frequency. This is in general not possible without the analytic continuation from

Matsubara space.

Another interesting prospect for the formalism is the calculation of transport proper-

ties. Indeed, all quantities that are accessible from linear response theory such as viscosities,

conductivities, permittivities, permeabilities etc. or the corresponding relaxation times can

now be calculated from functional renormalization. The flow equations of the static and

dynamic response functions can be determined within a given truncation. In some cases
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it may be advantageous to introduce appropriate composite degrees of freedom explicitly

into the formalism.

In summary, we believe that the analytic continuation of functional renormalization

group equations brings the formalism closer to the physical dynamics in Minkowski space,

allows to calculate more observables and could finally lead to more accurate results with

comparatively little computational effort.

A Integral functions

We define the integral functions according to

In(m̃2, γ̃2, z, T̃ , c, d) =

k2n−d(δ0n − n)

∫
p0

∫
dd−1p

(2π)d−1

1[
z(−p2

0 + ~p2) + m̃2k2 − is(p0)γ̃2k2 + 1
ZRk

]n+1
1
Z ∂tRk

(A.1)

where the frequency p0 is summed over the discrete imaginary values p0 = 2πiTn with∫
p0

= T
∑

n, T = T̃ k and t = ln(k/Λ). Since the cutoff function Rk is usually proportional

to the wavefunction renormalization constant Z, the right hand side of (A.1) includes a

term proportional to η = − 1
Z ∂tZ. In many situations one has η � 1 and this correction

can therefore often be neglected.

Note that in terms of a formal cutoff derivative ∂̃t which hits only the cutoff Rk, one

can write for n ≥ 1

In(m̃2, γ̃2, z, T̃ , c, d) = k2n−d∂̃t

∫
p0

∫
dd−1p

(2π)d−1

1[
z(−p2

0 + ~p2) + m̃2k2 − is(p0)γ̃2k2 + 1
ZRk

]n .
(A.2)

We note also the recursion relation

∂

∂m̃2
In(m̃2, γ̃2, z, T̃ , c, d) = (δ0n − n) In+1(m̃2, γ̃2, z, T̃ , c, d). (A.3)

For the flow equations of the propagator one needs also the integral functions

J(q̃0, m̃
2
1, m̃

2
2, γ̃

2
1 , γ̃

2
2 , z1, z2, T̃ , c, d) =

− k4−d∂̃t
1

2q̃0

∂

∂q̃0

∫
p0

∫
dd−1p

(2π)d−1

× 1

[z1(−p2
0 + ~p2) + m̃2

1k
2 − is(p0)γ̃2

1k
2 + 1

ZRk]

× 1

[z2 (−(p0 + q̃0k)2 + ~p2) + m̃2
2k

2 − is(p0 + q0)γ̃2
2k

2 + 1
ZRk]

(A.4)
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and

K(q̃0, m̃
2
1, m̃

2
2, γ̃

2
1 , γ̃

2
2 , z1, z2, c, d) =

k4−d∂̃t Discq̃0

∫
p0

∫
dd−1p

(2π)d−1

× 1

[z1(−p2
0 + ~p2) + m̃2

1k
2 − is(p0)γ̃2

1k
2 + 1

ZRk]

× 1

[z2 (−(p0 + q̃0k)2 + ~p2) + m̃2
2k

2 − is(p0 + q0)γ̃2
2k

2 + 1
ZRk]

(A.5)

where the operator Disc is defined (for q̃0 > 0) by

Discq̃0f(q̃0) =
i

2
[f(q̃0 + iε)− f(q̃0 − iε)] . (A.6)

For q̃0 < 0 the definition of the operator Disc contains an additional minus sign. In praxis

the integral in (A.5) has for k > 0 not only a single discontinuity on the real frequency axis

but several ones on lines that are approximately parallel to the real q0 axis. They merge

only for k → 0. Instead of tracing the complete analytic structure, we follow in this paper

an approximation scheme where the k-dependent inverse propagator is taken to have only

a single cut for real q0. The flow equation of this discontinuity is determined by summing

the different contributions in eq. (A.5). This procedure gives the correct result for k → 0

and for intermediate k it should be a reasonable approximation.

Using the regulator function given in section 4.1 and the expression for the regularized

propagator given there, one can use standard methods to perform the Matsubara frequency

summation in eqs. (A.1), (A.4) and (A.5). The integrals along branch cuts get substantially

simplified when one assumes that they are dominated by the poles that are close to them

on the different Riemann sheets and can then be done analytically. Some of the remaining

integrals over spatial momenta can be done analytically as well, others numerically.
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