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Optimal Design of Noisy Transmultiplexer Systems
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An optimal design method for noisy transmultiplexer systems is presented. For a transmultiplexer system with given transmit-
ters and desired crosstalk attenuation, we address the problem of minimizing the reconstruction error while ensuring that the
crosstalk of each band is below a prescribed level. By employing the mixed H2/H∞ optimization, we will ensure that the system
with suboptimal reconstruction error is more robust and less sensitive to the changes of input signals and channel noises. Due to
the overlapping of adjacent subchannels, crosstalk between adjacent channels is expected. And the problem of crosstalk attenua-
tion is formulated as an H∞ optimization problem, solved in terms of linear matrix inequalities (LMIs). The simulation examples
demonstrate that the proposed design performs better than existing design methods.
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1. INTRODUCTION

Transmultiplexers (TMUX) were studied in the early 1970’s
by Bellanger and Daguet [1] for telephone applications, with
original intention to convert data between time division
multiplexed (TDM) format and frequency-division multi-
plexed (FDM) format. They have been successfully utilized
for multiuser communications. A multi-input multi-output
(MIMO) M-band conventional TMUX system (Figure 1)
with critical sampling (i.e., all interpolation factors equal to
band number, also called as minimally interpolated TMUX
in [2]) is well suited for simultaneous transmission of
many data signals through a single channel by using the
frequency-division multiplexing (FDM) technique. In tradi-
tional distortion-free (C(z) = 1 and r(n) = 0 in Figure 1)
TMUX system, the transmitters (the left filter bank) {Fi(z)}
traditionally cover different uniform regions of frequency. So
the signals ui(n), i = 0, 1, . . . ,M − 1, are packed into M ad-
jacent frequency bands (passbands of the filters) and added
to obtain the composite signal q(n). With the transmitters
Fi(z), i = 0, 1, . . . ,M − 1, chosen as ideal bandpass filters, we
can regard p(n) as a frequency-division multiplexed or FDM
version of the separate signals ui(n), and the receivers (the
right filter bank) {Hk(z)} decompose this signal into v̂i(n),
i = 0, 1, . . . ,M − 1, with the decimated version of v̂i(n) being
the reconstructed signal ŝi(k). So, the TMUX system can be
seen as a complete TDM→ FDM→ TDM converter which is
exactly the dual system of the subband filter bank system [3].

However, in the TMUX system, if the transmitters Fi(z)
are nonideal, the adjacent spectra will actually tend to over-
lap. Similarly, if the receivers Hi(z) are nonideal, then the
output signal of ith band ŝi(k) has contribution from the
desired signal input si(k) as well as input signals of other
bands sl(k), l �= i. The leakage of signal from one band to an-
other is known as crosstalk [4]. Such crosstalk phenomenon
is basically caused by the downsampling operations and the
fact that the transmitting filters Fi(z) are not ideal, which
is also one of the main problems in TMUX systems. There
have been many studies in the past. Intuitively, crosstalk can
be cancelled by employing nonoverlapped transmitters Fi(z),
and bandlimiting the signals si(k) to |ω| < σi with σi < π, so
that there is no overlap between signals of adjacent bands in
the FDM format. That is, there exists a guard band between
adjacent frequency bins, which ensures no crosstalk between
adjacent signals, even though the filters have nonzero transi-
tion band [5]. A larger guard band implies larger permissi-
ble transition band (hence lower cost) for the receiversHi(z).
However, the existence of guard bands results in that the
channel bandwidth is not fully utilized in the transmission
process. If transmitter filters Fi(z) are ideal with very sharp
cutoff and equal bandwidth π/M, the channel bandwidth is
fully utilized. However, such ideal filters are of course unreal-
izable, and good approximations of such filters are expensive.

Although ideal filters cannot be realized in practice,
the crosstalk in TMUX systems can still be cancelled by
incorporating proper design of separation filters, see, for
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Figure 1: TMUX model with channel and channel noise.

example, Vetterli [6]. In this approach, crosstalk is permit-
ted in TDM→ FDM converter but is cancelled at the FDM→
TDM stage. That is, even if there are no guard bands (thereby
permitting crosstalk), we can eliminate the crosstalk in a
manner analogous to aliasing cancellation in maximally dec-
imated filter banks by a careful choice of transmitters and re-
ceivers. By this approach, the filters Hi(z) and Fi(z) are more
economical than those in conventional designs. In fact, note
that under certain condition perfect symbol recovery may
be possible even with nonideal filters having overlapping re-
sponses, for instance, with the so-called biorthogonal filter
bank [7].

For noise-free TMUX system, a lot of conventional re-
searches have been devoted to exploit the perfect reconstruc-
tion property. As such, it has been studied from the point
of view of periodically time-varying (PTV) filters in [8, 9],
with the technique of the selection of PTV filters poles and
zeros. In [10], an H2 optimization approach is used to de-
sign nonuniform-band TMUX systems, resulting in Near PR
(NPR) TMUX systems. Moreover, since the quadrature mir-
ror filter (QMF) bank and the TMUX system are dual to each
other, the design of PR TMUX system can be solved by design
PR QMF system, as discussed in [5].

Unfortunately, this perfect recovery is achieved under the
assumption that channel effects including channel distor-
tion and additive channel noises are negligible. For practi-
cal distorted channels, the orthogonality between bands is
destroyed at the receiver, causing in most cases unaccept-
able performance degradation. A practical channel model is
shown in Figure 1 which consists of linear FIR filter C(z),
with order L < M (a reasonable assumption after channel
equalization), and with additive noise r(n), see [11]. The
composite signal p(n) is a distorted and noisy version of
{s0(k), s1(k), . . . , sM−1(k)}.

For this practical noisy TMUX system, in [12], Wiener
filtering approach is presented via the least-squares method
to maintain the reconstruction performance, also, Chen et
al. proposed a series of studies to deal with the signal re-
construction problem from the H2 optimal point of view
[13–15], and recently, an MMSE approach is proposed for
perfect DFT-based DMT system design [11], with the major
shortcoming that the statistical properties of input and noises
must be known. To improve it,H∞ optimization or minimax
approach is developed in [16]. Moreover, in [17], a mixed
H2/H∞ design is developed for TMUX system with additive
noise, but with much conservatism due to adopting the same

Lyapunov matrix for characterizing both theH2 andH∞ per-
formances.

In this study, we focus on a critically sampled TMUX sys-
tem. It is assumed that all users are independent, that is, si
is independent of s j for i �= j; and each band is allowed
to have different delays di for constructing its input. Both
the transmitters and receivers are assumed to be FIR filters
and channel noise r(n) is a white noise [11]. We address the
problem of minimizing the reconstruction error while en-
suring that the crosstalk is below certain level in the pres-
ence of channel noise. We will first design optimal and robust
receivers to reconstruct the input signals with the optimal
reconstruction error in the noisy channel. For the crosstalk
optimization problem, some H∞ constraints are added to
ensure the TMUX system within desired crosstalk attenu-
ation levels. Our solution is given in terms of linear ma-
trix inequalities (LMIs) which can be solved easily by con-
vex optimization [18]. As illustrated later, compared with the
existing TMUX design method via LMI technique [17], the
proposed method embodies two obvious advantages. First,
when the reconstruction performance is concerned, the pro-
posed mixedH2/H∞ optimization method provides less con-
servative results. Second, a multiobjective TMUX system is-
sue has been explored in this study, in particular, the issue on
both optimal reconstruction performance and the crosstalk
attenuation is novelly formulated and solved via LMI tech-
nique.

2. H2 OPTIMIZATION ON RECONSTRUCTION ERROR

In this section, we will establish the state-space model of the
noisy TMUX system first, then formulate itsH2 optimization
by LMIs.

Remark 1. In a practical TMUX system, most TMUX sys-
tems apply an FIR equalizer in order to shorten the effec-
tive length of the physical channel impulse response, mod-
eled as an FIR filter C(z) with order L (usually, the order L
of C(z) is smaller than the interpolation factorM [2], which
is called as the LS shortening [19]), and may be multichan-
nel case Ci(z) (i = 0, 1, . . . ,M − 1) in some TMUX sys-
tem applications. For the convenience of further discussion,
throughout the paper, we will combine each transmitting fil-
ter Fi(z) with subchannel Ci(z) together, and describe the
Ci(z)Fi(z) as new transmitting filter Fi(z), without specific
explanation.
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Figure 2: The polyphase identity.

2.1. State-space description of TMUX systems

Note that even though the decimator and expander are time-
varying building blocks, the cascaded system shown in Figure
2 is in fact time invariant from an input and output point of
view, which is the so-called property of polyphase identity
[5]. That is,

[

S
(

zM
)

P(z)
] |↓M= S(z)

[

P(z) |↓M
] = S(z)G(z), (1)

where G(z) is the 0th polyphase component of P(z) and S(z)
is the z-transform of the input s(k).

As shown in Figure 1, by the polyphase identity property,
we know that the TMUX system is an M-input M-output
LTI systems. To facilitate later analysis, here we assume the
maximum channel delays as d, the maximum length of M
transmitting filters as l f and lh for M receiving filters. Now
we analyze the system via a state-space approach.

Let v j(k), uj(k), r(k), p(k), and v̂ j(k) ( j = 0, 1, . . . ,M −
1) be the vector representations of the jth M-block of the
signals vj(n), uj(n), r(n), p(n), and v̂ j(n), respectively. For
example,

v j(k) =
[

vj(n), vj(n + 1), . . . , vj(n +M − 1)
]T ∈RM ,

n = kM.
(2)

It is clear that

v j(k) =
[

1 0 · · · 0
]T

sj(k) = αsj(k), (3)

where α = [ 1 0 ··· 0 T]. The transmitter Fj is assumed to have
the following state-space realization:

x
f
j (n + 1) = Af , jx

f
j (n) + Bf , jv j(n),

uj(n) = Cf , jx
f
j (n) +Df , jv j(n).

(4)

By lifting the input and output of the filter Fj (M-blocking)
and considering (3), we get

x
f
j (k + 1) = Af , jx

f
j (k) + B f , j s j(k),

uj(k) = C f , jx
f
j (k) +D f , j s j(k),

(5)

where

Af , j =
[

AM
f , j

]

l f ×l f , B f , j =
[

AM−1
f , j B f , j

]

l f ×1,

C f , j =

⎡

⎢

⎢

⎢

⎢

⎣

Cf , j

C f , jA f , j
...

Cf , jA
M−1
f , j

⎤

⎥

⎥

⎥

⎥

⎦

M×l f

, D f , j =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Df , j

C f , jB f , j

C f , jA f , jB f , j
...

Cf , jA
M−2
f , j B f , j

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

M×1

.

(6)

Then block all inputs s j(k) and outputs of synthesis filter
bank uj(k), that is,

s(k) = [s0(k), s1(k), . . . , sM−1(k)
]T ∈RM ,

u(k) =
[

uT0 (k),u
T
1 (k), . . . ,u

T
M−1(k)

]T ∈RM2
.

(7)

A state-space realization of the model of the transmit-
ter system from {s0(k), . . . , sM−1(k)} → {u0(k), . . . ,uM−1(k)}
can be obtained as

X f (k + 1) =A fX f (k) +B f s(k), (8)

u(k) = C fX f (k) +D f s(k), (9)

where

X f (k) =
[

x
f
0 (k), x

f
1 (k), . . . , x

f
M−1(k)

]T
,

A f = diag
{

Af ,0, . . . ,Af ,M−1
}

,

B f = diag
{

B f ,0, . . . ,B f ,M−1
}

,

C f = diag
{

C f ,0, . . . ,C f ,M−1
}

,

D f = diag
{

D f ,0, . . . ,D f ,M−1
}

(10)

with A f ∈ RMl f ×Ml f , B f ∈ RMl f ×M , C f ∈ RM2×Ml f , and
D f ∈RM2×M . So the channel input q(n) is followed by

q(k) = βu(k), (11)

where β = [IM , IM , . . . , IM] ∈RM×M2
. Together with blocked

channel noise r(k), which is assumed as a white Gaussian
noise with variance σ2r and independent of the input signal
s(k), the input of receivers is p(k) = q(k) + r(k).

Similarly, for the receivers, let the state-space realization
of the receiver Hj(z) be given by

xhj (n + 1) = Ah, jx
h
j (n) + Bh, j p(n),

v̂ j(n) = Ch, jx
h
j (n) +Dh, j p(n).

(12)

By applying the lifting technique and taking into account the
fact that the output of the jth band is

ŝ j(k) =
[

1 0 · · · 0
]

v̂ j(k) = αTv̂ j(k), (13)

where v̂ j(k) is the lifted output of v̂ j(k), considering (13), we
have

xhj (k + 1) = Ah, jx
h
k(k) + Bh, j p(k),

ŝ j(k) = Ch, jx
h
k(k) +Dh, j p(k),

(14)

where

Ah, j = AM
h, j ∈Rlh×lh ,

Bh, j =
[

AM−1
h, j Bh, j ,AM−2

h, j Bh, j , . . . ,Ah, jBh, j ,Bh, j

]

∈Rlh×M ,

Dh, j =
[

Dh, j 0 0 · · · 0
]

∈R1×M.
(15)
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Denote

ŝ(k) =
[

ŝ0(k) ŝ1(k) · · · ŝM−1(k)
]T

. (16)

Then the receiver system can be represented by the fol-
lowing blocked state-space equations:

Xh(k + 1) =AhXh(k) +Bhp(k),

ŝ(k) = ChXh(k) +Dh p(k),
(17)

where

Xh(k) =
[

xh0(k), x
h
1(k), . . . , x

h
M−1(k)

]T
,

Ah=diag
{

Ah,0, . . . ,Ah,M−1
}

, Bh =
[

B
T
h,0, . . . ,B

T
h,M−1

]T
,

Ch=diag
{

Ch,0, . . . ,Ch,M−1
}

, Dh =
[

D
T
h,0, . . . ,D

T
h,M−1

]T

(18)

with Ah ∈ RMlh×Mlh , Bh ∈ RMlh×M , Ch ∈ RM×Mlh , and
Dh ∈RM×M2

.
Let dj be the allowable delay in reconstructing the signal

s j(k), with d = max(d0,d1, . . . ,dM−1). A state-space realiza-
tion of the dj-shift δ(n− dj) is written as

xdj (k + 1) = Ad
j x

d
j (k) + Bd

j s j(k), sdj (k) = Cd
j x

d
j (k), (19)

where

Ad =
[

0 Id−1
0 0

]

∈Rd×d, Bd =

⎡

⎢

⎢

⎢

⎢

⎣

0
...
0
1

⎤

⎥

⎥

⎥

⎥

⎦

∈Rd×1,

Cd
j =

[
d−dj
︷ ︸︸ ︷

0, . . . , 0, 1,

dj−1
︷ ︸︸ ︷

0, . . . , 0

]

∈R1×d.

(20)

By combining the delay models of all the M-bands to-
gether, we have

Xd(k + 1) =AdXd(k) +Bds(k),

sd(k) = CdXd(k),
(21)

whereXd(k) = [xd0(k), x
d
1(k), . . . , x

d
M−1(k)]T , and

Ad = diag
{

Ad
0 , . . . ,A

d
M−1

} ∈RMd×Md,

Bd = diag
{

Bd
0 , . . . ,B

d
M−1

} ∈RMd×M ,

Cd = diag
{

Cd
0 , . . . ,C

d
M−1

} ∈RM×Md.

(22)

Following from (8) and (21), for a TMUX system E with
FIR transmitters and receivers, its IO relation between the
TMUX inputs and reconstruction error is given by

(E) :
X(k + 1) =AX(k) +B s̃(k),

e(k) = CX(k) +D s̃(k),
(23)

where e(k) = ŝ(k)− sd(k), the state vector

X(k) =
[

XdT X f T(k) XhT(k)
]T

,

s̃(k) =
[

sT(k) rT(k)
]T

,
(24)

and

A =
⎡

⎢

⎣

Ad 0 0
0 A f 0
0 BhβC f Ah

⎤

⎥

⎦ , B =
⎡

⎢

⎣

Bd 0
B f 0

BhβD f Bh

⎤

⎥

⎦ ,

C =
[

−Cd DhβC f Ch
]

, D =
[

DhβD f Dh
]

(25)

with A ∈ RM(d+l f +lh)×M(d+l f +lh), B ∈ RM(d+l f +lh)×2M , C ∈
RM×M(d+l f +lh), andD ∈RM×2M .

2.2. H2 optimization on reconstruction error

Given the transmitter system (22) and allowable system de-
lays, the receiver system in the form of (14) (for j = 0, 1, . . . ,
M − 1) can be designed such that the error system E in the
form of (23) is stable and its H2 norm is minimized.

Formally, as is well known, theH2 norm of E is described
by

‖E‖22 = trace
(

BTQB
)

, (26)

where Q is the observation grammian of the pair (A,C),
which is the unique solution of the Lyapunov equation

ATQA−Q +CTC = 0. (27)

Having recast the problem as above, we now use the LMI
approach [20] to solve it.

Theorem 1. The optimal receiver system for the noisy TMUX
system can be solved by the optimization:

min
S,Q,Ch,Dh

‖E‖22 = min
S,Q,Ch,Dh

trace(S) (28)

subject to

L1 =
⎡

⎢

⎣

−S BTQ DT

QB −Q 0
D 0 −I

⎤

⎥

⎦ < 0,

L2 =
⎡

⎢

⎣

−Q ATQ CT

QA −Q 0
C 0 −I

⎤

⎥

⎦ < 0,

(29)

where A, B, C, and D are defined in (25), and S = ST and
Q = QT .

The proof of the theorem readily follows from the way the
problem is formulated and applying the Schur complements
to (26) and (27).

Remark 2. It can be observed that (29) are linear in Q, S, and
receiver parameters Ch, j , Dh, j (for j = 0, 1, . . . ,M−1), which
are involved in Ch and Dh. Thus, the optimization in the
theorem is convex and the powerful LMI toolbox [18] can be
employed to obtain theH2 optimal receiver system efficiently.
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3. MIXEDH2/H∞ OPTIMIZATION ON
RECONSTRUCTION ERROR

It is well known that one of the major drawbacks of H2 op-
timization is that the statistical properties (or the models) of
the input signals and channel noises must be well known be-
forehand. To deal with general noisy TMUX system, we con-
sider a worst-case reconstruction error, such performance
can be very effectively described using H∞ related criteria.

To optimize the average (H2) reconstruction perfor-
mance while ensuring a certain level of the worst-case error
energy over all possible inputs and channel noises, the mixed
H2/H∞ optimization is to be sought.

If the error system (23) is stable, its H∞ norm is defined
as

‖E‖∞ = sup
‖s̃‖2 �=0

‖e‖2
‖s̃‖2 . (30)

Moreover, its value is bounded by a prescribed scalar γ if and
only if the following inequality holds:

⎡

⎢

⎢

⎢

⎢

⎣

−P ATP 0 CT

PA −P PB 0

0 BTP −γI DT

C 0 D −γI

⎤

⎥

⎥

⎥

⎥

⎦

< 0. (31)

Proof. Equation (31) can be easily derived by applying the
Schur complements and the well-known bounded real lem-
ma.

Then themixedH2/H∞ optimization can be solved as fol-
lows.

Theorem 2. Give a scalar γ > 0, the mixed H2 and H∞ recon-
struction problem is solvable if and only if the H∞ reconstruc-
tion problem is solvable. In this situation, the optimal mixed
H2 and H∞ receivers can be obtained by the following convex
optimization:

‖E‖22 = min
S,Q,P,Ch,Dh

trace(S) (32)

subject to LMIs (29), and (31), with S = ST , Q = QT , and
P = PT .

Remark 3. Note that in [17], a mixed H2/H∞ approach is
proposed for the design of IIR receivers for a noisy TMUX
system. The approach of [17] is generally conservative due to
the fact that the same Lyapunov matrix is adopted for both
the H2 and H∞ performances. That is, only an upper bound
on theH2 performance (suboptimal mixedH2/H∞ receivers)
is achieved. In the above, we proposed a mixed H2/H∞ de-
sign for TMUX systems via a convex optimization which al-
lows different Lyapunov matricesQ and P for theH2 andH∞
performances. The result of Theorem 2 is necessary and suf-
ficient. That is, it will lead to the optimal solution rather than
a suboptimal solution.

4. H∞ OPTIMIZATION ON CROSSTALK ATTENUATION

In this section, we will deal with the crosstalk problem by an
H∞ optimization approach. In general, there are two reasons
for the study of crosstalk attenuation by H∞ approach.

First, as stated before, one problem often encountered in
a TMUX system is crosstalk, for example, the crosstalk be-
tween multiple services transmitting through the same tele-
phone cable is the primary limitation to digital subscriber
line services [21]. Usually, special requirement on system
crosstalk performance is imposed, for example, in the British
telecommunication specifications, for a 60-channel TMUX,
at least 60 dB interchannel crosstalk attenuation is required
[8], which is a less strict requirement than crosstalk cancella-
tion, means less cost for implementation.

The second is, in TMUX system, there are many fac-
tors resulting in modeling uncertainty, which, in most cases,
may destroy the perfect crosstalk cancellation property and
cause unacceptable performance degradation [12]. So, with
H∞ optimization, crosstalk can be controlled even from the
worst-case point of view.

4.1. Problem formulation

As stated before, the leakage from one band to another is
known as the crosstalk which is the effect of other band in-
puts sl(k), l �= i, on the ith band output ŝi(k), i=0, 1, . . . ,M−1.

Apply the polyphase identity to the TMUX system in
Figure 2 and define Pi j(z) = Hi(z)C(z)Fj(z) and Gij(z) the
0th polyphase component of Pi j(z). Then, the output of the
ith band is given as

̂Si(z) = Gii(z)Si(z) +
M−1
∑

j=0, j �=i
Gi j(z)Sj(z) = ̂Sii(z) + ̂Sc,i(z),

(33)

where Si(z) is the z-transform of si(k) and ̂Sc,i(z) is due to
the inputs of other bands and is termed as crosstalk in the ith
band.

In general, the crosstalk in the ith band is composed of
(M − 1) leakages from (M − 1) input s j , j = 0, . . . , i − 1, i +
1, . . . ,M − 1. However, this can be simplified considerably
if we assume that crosstalk only appears between adjacent
channels [3], that is, for a TMUX system, Hi(z) and Fi(z)
have the same frequency support domain and Hi(z)Hj(z) ≈
0 for |i − j| > 1 (nonadjacent filters practically do not over-
lap). This means that the expression of the ith band crosstalk
distortion ŝc,i(n) for 1 ≤ i ≤ M − 2 contains two signifi-
cant terms as Fi practically overlaps only with Fi−1 and Fi+1.
For i = 0 or i = M − 1 it contains only one significant term
as F0 overlaps only with F1 and FM−1 with FM−2.

We will now derive a state-space representation for each
crosstalk by a lifting approach, it is clear that such represen-
tation is a special case of (23), by ignoring the delays and
only considering si−1(k), and si+1(k) being sources of the ith
crosstalk output.

Let Fi denote the mapping (si−1, si+1) 
→ ŝc,i in the system
of Figure 3.
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si−1(k) M
vi−1(n)

Fi−1
ui−1(n)

si+1(k)
M

vi+1(n)
Fi+1

ui+1(n) yi(n)
Hi

v̂i(n)
M

ŝc,i(k)

Figure 3: Composition of the ith crosstalk.

Denote

sc,i(k) =
[

si−1(k)
si+1(k)

]

. (34)

Following the similar derivation as above, the crosstalk of the
ith band is given by

(

Ec,i
)

:
Xc,i(k + 1) =Ac,iXc,i(k) +Bc,isc,i(k),

ŝc,i(k)=Cc,iXc,i(k) +Dc,isc,i(k), i=1, . . . ,M − 2,
(35)

where the state vectorXc,i(k) =
[

x
f T
i−1(k) x

f T
i+1(k) xhTi (k)

]T
,

and

Ac,i =

⎡

⎢

⎢

⎣

Af ,i−1 0 0

0 Af ,i+1 0

Bh,iC f ,i−1 Bh,iC f ,i+1 Ah,i

⎤

⎥

⎥

⎦

,

Bc,i =

⎡

⎢

⎢

⎣

B f ,i−1 0

0 B f ,i+1

Bh,iD f ,i−1 Bh,iD f ,i+1

⎤

⎥

⎥

⎦

,

Cc,i =
[

Dh,iC f ,i−1 Dh,iC f ,i+1 Ch,i

]

,

Dc,i = Dh,i

[

Df ,i−1 Df ,i+1

]

(36)

with Ac,i ∈ R(2l f +lh)×(2l f +lh), Bc,i ∈ R(2l f +lh)×2, Cc,i ∈
R1×(2l f +lh), andDc,i ∈R1×2.

The state-space realizations for the crosstalks in 0th and
(M − 1)th bands are

(

Ec,0
)

:X0(k + 1) =Ac,0X0(k) +Bc,0s1(k),

ŝc,0(k) = Cc,0X0(k) +Dc,0s1(k);
(

Ec,M−1
)

:XM−1(k + 1)=Ac,M−1XM−1(k)+Bc,M−1sM−2(k),
ŝc,M−1(k)=Cc,M−1XM−1(k)+Dc,M−1sM−2(k),

(37)

where the state vector is Xl(k) =
[

x
f T
l (k) xhTl (k)

]T
, l = 0,

orM − 1 and

Ac,l =
[

Af ,l 0

Bh,lC f ,l Ah,l

]

∈R(l f +lh)×(l f +lh),

Bc,l =
[

B f ,l

Bh,lD f ,l

]

∈R(l f +lh)×1,

Cc,l =
[

Dh,lC f ,l Ch,l

]

∈R1×(l f +lh), Dc,l=Dh,lD f ,l∈R.

(38)

4.2. H∞ crosstalk attenuation

In this subsection, we will formulate the crosstalk attenuation
problem as an H∞ performance problem.

Assume that each input si (for i=0, 1, . . . ,M−1) is energy
bounded, that is,

∑∞
k=0 s

2
i (k) < ∞. We define the following

signal-to-crosstalk ratio (SCR) to measure the crosstalk at-
tenuation. For the given transmitters Fi(z), i=0, 1, . . . ,M−1,
and a desirable SCR ρi, design the receivers Hi(z), i = 0,
1, . . . ,M − 1, such that for each i,

SCRi = 10 log10

∑∞
k=0 s

2
c,i(k)

∑∞
k=0 ŝ

2
c,i(k)

= 10 log10

∥

∥sc,i
∥

∥

2
2

∥

∥ŝc,i
∥

∥

2
2

≥ ρi, (39)

where sc,i(k) is defined in (34) for i = 1, 2, . . . ,M − 2, and
sc,0(k) = s1(k) and sc,M−1(k) = sM−2(k). Note that SCRi as
defined above is in fact to measure the ratio of the input
energy and output energy of Ec,i. Let γi = 10−ρi/10. It is easy
to know that (39) is equivalent to

∥

∥Ec,i
∥

∥∞ ≤ γi, (40)

where Ec,i is defined in (35) for i = 1, . . . ,M − 2 and in (37)
for i = 0 and i =M − 1.

Theorem 3. Given the transmitters Fi, i = 0, 1, . . . ,M − 1,
there exist receivers Hi(z), i = 0, 1 . . . ,M − 1, that achieve de-
sirable signal-to-crosstalk ratio (SCR) ρ for all bands if and only
if the following LMIs are satisfied:

⎡

⎢

⎢

⎢

⎣

Pi PiAc,i PiBc,i 0
(∗)T Pi 0 CT

c,i

(∗)T (∗)T I DT
c,i

(∗)T (∗)T (∗)T 10−ρi/10I

⎤

⎥

⎥

⎥

⎦

> 0 (41)

for i = 0, 1, . . . ,M − 1, simultaneously, where Ac,i, Bc,i, Cc,i,
Dc,i are the state-space matrices of Ec,i as defined in (36) and
(38).

Remark 4. Note again that (41) is linear in receiver parame-
ters and can be solved using convex optimization. With The-
orems 1 and 3, the problem of designing receivers that min-
imize the reconstruction errors while satisfying the crosstalk
attenuation constraint can be solved by the convex optimiza-
tion in (28) subject to the LMI constraint of (29) and (33).

Remark 5. Note that Chen et al. in [17] discussed a mixed
H2/H∞ design of noisy transmultiplexer system with respect
to inputs. Here, we are concerned with the optimalH2 recon-
struction of inputs subject to constraints on crosstalk atten-
uation.
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Table 1: Reconstruction performance comparison between different receiver design approaches.

Constraint
SNRr

0(dB)
SNRc(dB)

γ 10 15 20 25 30

γ = 1
By proposed method 30.7518 35.3302 39.2135 41.8637 43.2044

By method in [17] 30.7450 35.3100 39.1938 41.7722 43.0802

γ = 0.1
By proposed method 30.7476 35.3177 39.1828 41.8071 43.1274

By method in [17] 30.5784 34.9161 38.3080 40.3420 41.2496

Table 2: TMUX system SNRs and SCRs comparison for different receiver designs.

SNRc = 10 dB SNRc = 20 dB

Band�0 Band �1 Band �2 Band�0 Band �1 Band �2

PR approach
SCR 30.8980 26.1188 23.2797 30.8980 26.1188 23.2797

SNRr 6.7252 4.7539 4.1931 11.6430 9.4181 8.8873

Optimal H2 +H∞ constraint SCR 31.8695 34.1238 32.0317 33.8104 35.6299 34.6269

(ρ0 = ρ1 = ρ2 = 30dB) SNRr 7.8125 6.2832 5.8382 12.2238 10.5223 9.8985

Optimal H2 +H∞ constraint SCR 74.7892 45.9977 48.9783 76.1100 54.5022 48.627

(ρ0 = 70, ρ1 = ρ2 = 40dB) SNRr 6.1514 6.0711 5.5448 6.6835 10.1444 8.5923

5. EXAMPLES

5.1. Example 1

Now we address the TMUX reconstruction problem. The
model presented in [17] is considered, and we design the re-
ceivers by our proposed mixed H2/H∞ approach. Firstly, we
define the measurement metrics on channel noise (channel
signal-to-noise ratio, SNRc) and reconstruction performance
(reconstruction SNR on the ith band, SNRr

i ) as

SNRc = 10 log10

∑∞
k=0 p2(k)

∑∞
k=0 r2(k)

,

SNRr
i = 10 log10

∑∞
k=0 s

2
i (k)

∑∞
k=0
(

ŝi(k)− sdi (k)
)2 .

(42)

Then the results (on the first band) are listed in Table 1.
From it, it is clear that our proposed approach has a slightly
better reconstruction performances than the conservative
method presented in [17], because of adopting different Lya-
punov matrices for the H2 and H∞ performances. Moreover,
the more constraint on H∞ performance is added, the more
obvious improvement will produce.

5.2. Example 2

In this example, we will examine the crosstalk attenuation
performance of a TMUX system. We consider a 3-channel
filter bank model in [22], where a perfect reconstruction fil-
ter bank has been designed. We adopt its dual system for a
3-band PR TMUX system model.

Under the channel noise of variance σ2r = 0.09 and
σ2r = 0.9 (in this case, corresponding to the SNRc of 20 dB
and 10 dB, resp.), we design the receivers by the optimal
H2 design (Theorem 1) with an H∞ crosstalk constraint

(Theorem 3). A comparison is made with the original perfect
reconstruction (PR) TMUX system in Table 2, under differ-
ent constraints SCRs as defined in (39).

From this table, it can be seen that, firstly, the PR design is
inferior to the proposed optimal design with anH∞ crosstalk
constraint in both the reconstruction performance and the
crosstalk attenuation; secondly, our proposed H∞ constraint
can obtain any desired crosstalk attenuation requirement;
thirdly, when a stringent crosstalk attenuation is required, the
reconstruction performance could be very poor, which shows
that in some noisy TMUX system design, a trade-off between
crosstalk attenuation and reconstruction performances is to
be made.

It is worth pointing out that the overall reconstruction
performance is not very good for the example mainly due to
the significant frequency overlapping of the three transmit-
ters.

6. CONCLUSION

In this paper, we have investigated the optimal receivers de-
sign for noisy transmultiplexer systems with the goal of opti-
mizing the reconstruction error while ensuring the crosstalk
attenuation below a given level. The former is optimized by
H2 approach, while the latter is formulated and solved by
H∞ approach. The simulation results indicated that in noisy
situations, the proposed design improves the system perfor-
mance in both the reconstruction and crosstalk attenuation,
when compared with the biorthogonal transmultiplexer de-
sign approach.
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