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1 Introduction

The conformal bootstrap [1–3], originally successful in elucidating 2D conformal field the-

ories (CFTs), has recently become a powerful method to constrain the operator algebra of

unitary CFTs also in D > 2 spacetime dimensions. The origin of this development is the

observation made in [4] that the combined constraints of crossing symmetry and unitarity

on a 4-point function of scalars can be explored numerically. This method achieved an

impressive degree of success, for example, by enabling accurate determinations of the di-

mensions of low-lying operators in particular CFTs, such as the 3D Ising [5–8] and critical

O(N) vector [9, 10] models. While the original ideas of [4] have been developed in myriad

ways in subsequent works, the basic objects of study have always been 4-point functions

of scalar operators. The goal of the present paper is to extend the bootstrap toolbox to

study 4-point functions of fermionic operators in 3D CFTs.

There are many motivations for bootstrapping fermionic correlators. Fermionic oper-

ators exist in many interesting CFTs, though they do not appear in the operator product

expansion (OPE) of scalar operators. Therefore, in order to access this sector of the opera-

tor algebra, one must study correlators of fermionic operators. More generally, it is of great

interest to apply the conformal bootstrap to 4-point functions of operators with non-zero

spin. For example, studying the 4-point function of a global symmetry current would lead

to universal bounds on all CFTs that admit the corresponding symmetry, without making

any additional assumptions on their operator content. Similarly, bootstrapping the 4-point

function of the stress-tensor would allow for the most general constraints, since the stress-

tensor exists in any local CFT by definition.1 Our numerical study of fermion correlators

can be seen as a small step towards implementing the bootstrap for operators with spin,

as in the examples discussed above.

In implementing the bootstrap for correlators of fermionic operators, or of operators

with spin more generally, one faces two difficulties. The first is that the explicit form

of the conformal block decomposition for higher-spin correlators is not known in general

for D > 2 dimensional CFTs. The exception occurs in D = 3, where the conformal

blocks for external operators with integer spin can be determined by acting with certain

differential operators on the scalar blocks [17]. As we will see, a similar strategy applies for

operators with half-integer spin. The second difficulty has to do with the proliferation of

conformal invariants that can appear in higher-spin correlators. In particular, the number

of conformal invariants grows with the spin of the insertions (see, for instance, [18, 19]).

As we will explain, a 4-point function of primary operators of spin-1/2 generally depends

on 16 independent conformal invariants. Imposing parity symmetry reduces the number

of invariants to 8, and this number can be reduced further to 5 if we assume the fermions

are identical. In our numerical analysis, we will focus for simplicity on this latter case

and derive the conformal block decomposition of a 4-point function of identical fermionic

operators in a 3D CFT.

1In some supersymmetric theories correlators of symmetry currents are related to correlators of scalars.

The numerical bootstrap has been applied to such cases in [11–16].
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With the conformal blocks in hand, we then embark on a systematic study of CFTs

with a small number of relevant operators. By imposing gaps in the low-lying spectrum of

parity-even and/or parity-odd scalar operators, we use the logic originally introduced in [4]

to derive constraints on the dimensions of the first few scalar operators and on that of the

fermionic operator whose 4-point function we study. We also find a lower bound on the

coefficient CT that appears in the two-point function of the canonically-normalized stress

tensor.

From these studies we find two exciting results. Firstly, the general bound on the

dimension of the leading parity-odd scalar ∆σ possesses a severe discontinuity at a fermion

dimension of ∆ψ ∼ 1.27. This coincides with a kink in the general bound on the leading

parity-even scalar dimension ∆ε. Based on these features we conjecture the existence of

a fermionic 3D CFT containing no relevant scalar operators. While we do not know of a

Lagrangian that would give rise to such a theory, this conjectured “dead-end” CFT would

furnish a concrete example of self-organized criticality [20, 21] in 3D.

The second result is that, when we allow a second relevant parity-odd scalar in the

spectrum with dimension ∆σ′ = 2 + δ for small values of δ, the resulting allowed region

for (∆ψ,∆σ) possesses a sharp kink that appears to precisely coincide with the dimensions

in the O(N) Gross-Neveu models at large N . This is natural because in the large-N limit

one has the expansion ∆σ′ = 2 + 32/(3π2N) + . . .. By tracking this feature at larger

values of the gap we reveal information about the small-N Gross-Neveu models, including

the N = 1 theory which is expected to have N = 1 supersymmetry. In addition to this

sequence of kinks, we observe the emergence of a second discontinuity in the allowed region

at (∆ψ,∆σ) ≈ (1.078, 0.565), which we conjecture could also coincide with a 3D CFT with

fermionic operators and a large scalar gap. We believe that fully isolating these theories

will require implementing systems of mixed correlators containing fermions and scalars,

but based on the results of this study the prospects for learning more about these theories

using the conformal bootstrap looks very promising.

The rest of this paper is organized as follows. In section 2 we start by reviewing the

embedding space formalism for operators with spin and, using this formalism, derive the

conformal block decomposition of a 4-point function of identical fermions. In section 3

we set up the crossing equations and outline the strategy we will follow in our numerical

study. Next, in section 4, we present numerical results for bounds on dimensions of scalar

operators in theories with fermions that satisfy various assumptions, and also present our

lower bound on CT . We end in section 5 with a discussion of our results.

2 Embedding formalism for 3D spinors

In order to set up the 3D fermion bootstrap, we need an efficient formalism for keeping

track of the tensor structures appearing in correlators of fermionic operators. We also need

to calculate the conformal blocks appearing in the expansion of fermion 4-point functions.

Our approach will be to use an embedding formalism where the spinorial 3D conformal

group Sp(4,R) is linearly realized. Similar CFT embedding methods have been developed

in [17–19, 22–30] and various supersymmetric extensions have been developed recently
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in [31–38] and references therein. Details of our group theory conventions are given in

appendix A.

We label the 3D coordinates as xµ, with µ = 0, 1, 2, and use the Minkowski met-

ric in mostly plus signature ηµν = ηµν = diag(−1, 1, 1). The coordinates xµ transform

non-linearly under special conformal transformations. It is therefore convenient to intro-

duce a different set of coordinates that transform linearly under the action of conformal

transformations. Since the 3D conformal group is isomorphic to SO(3, 2), we can re-

late conformal transformations to Lorentz transformations in a 5D spacetime with metric

ηAB = ηAB = diag(−1, 1, 1, 1,−1), where the indices A,B run from 0 to 4. The exact

relation between the generators of conformal transformations and the SO(3, 2) generators

JAB can be taken to be

D = −J34, Pµ = J3µ + J4µ, Kµ = −J3µ + J4µ, Mµν = Jµν . (2.1)

Let us denote 5D coordinates that transform linearly under SO(3, 2) by capital letters,

XA. The way to embed the 3D coordinates xµ in 5D space is through the projective null

cone, which is defined as the space of all points XA that satisfy the condition X ·X = 0

and are identified up to a rescaling XA ∼ λXA. It will be convenient to use lightcone

coordinates X± = X4 ± X3, and thus write the 5D coordinates from now on as X =

(Xµ, X+, X−). The exact relation between xµ and XA is given by

xµ =
Xµ

X+
, X = X+(xµ, 1, x2) , (2.2)

where x2 ≡ ηµνxµxν . Note that the parameterization (2.2) obeys X ·X = 0.

2.1 Embedding of scalar fields

To find the embedding of fields in 5D spacetime we follow the approach of [26]. Consider

first a real scalar primary field φ(x). Its transformations under the conformal group are

i[Mµν , φ(x)] = (xν∂µ − xµ∂ν)φ(x) ,

i[Pµ, φ(x)] = −∂µφ(x) ,

i[Kµ, φ(x)] = (2xµxν∂ν − x2∂µ + 2∆φx
µ)φ(x) ,

i[D,φ(x)] = (xµ∂µ + ∆φ)φ(x) ,

(2.3)

where ∆φ is the dimension of φ. We can relate φ(x) to a scalar field Φ(X) defined on the

lightcone in 5D as:

Φ(X) =
1

(X+)∆φ
φ(x) , (2.4)

where x is related to X through (2.2). Explicit calculation then shows that Φ(X) is a 5D

Lorentz scalar, i.e. that it transforms under 5D Lorentz transformations as

i[JAB,Φ(X)] =

(
XB ∂

∂XA
−XA ∂

∂XB

)
Φ(X) , (2.5)

if and only if φ(x) is a primary scalar field in 3D with dimension ∆φ.
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Note that the 5D field Φ(X) defined in (2.4) is a homogeneous function of X of degree

−∆φ. This property together with 5D Lorentz invariance restricts the form of correlation

functions in embedding space. For instance, the two-point function takes the form

〈Φ(X1)Φ(X2)〉 =
cφ

X
∆φ

12

, Xij ≡ −2Xi ·Xj . (2.6)

Using (2.4), we can read off

〈φ(x1)φ(x2)〉 =
cφ

x
2∆φ

12

, xµij ≡ x
µ
i − x

µ
j , (2.7)

as expected. In a unitary theory, we must have cφ > 0. We will conventionally take cφ = 1

for scalar operators in this work.

2.2 Embedding of spinor fields

The above procedure can be applied to primary spinor fields as well. The main difference is

that such a field ψα(x) transforms in a spinor representation of the double cover of SO(2, 1),

which is isomorphic to Sp(2,R). Under the full conformal group, it transforms as

i[Mµν , ψα(x)] = (xν∂µ − xµ∂ν)ψα(x)− i(Mµν)αβψ
β(x) ,

i[Pµ, ψα(x)] = −∂µψα(x) ,

i[Kµ, ψα(x)] = (2xµxν∂ν − x2∂µ + 2∆ψx
µ)ψα(x) + 2ixν(Mνµ)αβψ

β(x) ,

i[D,ψα(x)] = (xµ∂µ + ∆ψ)ψα(x) ,

(2.8)

where Mµν = − i
4 [γµ, γν ]. Here, upper (lower) indices α, β, . . . , represent fundamental

(anti-fundamental) Sp(2,R) indices that are raised and lowered with the symplectic form

Ωαβ = Ωαβ — see appendix A for our conventions. In 3D, the smallest spinor representation

is a 2-component Majorana spinor, which is what we will focus on. If we take the 3D γ

matrices to be real, as we do in appendix A, a Majorana spinor has real components,

ψα(x)∗ = ψα(x).

In order to efficiently keep track of the 3D spinor indices, it is convenient to introduce

a set of auxiliary commuting variables sα and consider the product

ψ(x, s) ≡ sαψα(x) . (2.9)

The quantity ψ(x, s) contains the same information as the spinor fields ψα(x), because the

latter can be recovered through ψα(x) = ∂
∂sα

ψ(x, s).

Going to the embedding space, we use the double cover of SO(3, 2), which is isomor-

phic to Sp(4,R) with generators MAB = − i
4 [ΓA,ΓB]. For every 3D spinor field ψα(x), we

would like to define a 5D spinor field ΨI(X) on the lightcone (2.2), where upper (lower) in-

dices I, J , etc. denote fundamental (anti-fundamental) Sp(4,R) indices that are raised and

lowered with the symplectic form ΩIJ = ΩIJ . As in 3D, we can also introduce polarization

variables SI that help us efficiently keep track of the Sp(4,R) indices,

Ψ(X,S) ≡ SIΨI(X) . (2.10)
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If we wish, we are free to treat SI as a spurionic 5D field that transforms in the anti-

fundamental of Sp(4,R), and similarly to treat sα as a position-independent spurionic field

in 3D that transforms in the anti-fundamental of Sp(2,R) and is invariant under dilatations

(in other words, sα is a primary spinor field of vanishing dimension). If we do so, then

Ψ(X,S) and ψ(x, s) become 5D and 3D Lorentz scalars, respectively. Just as in (2.4), one

can check that the relation

Ψ(X,S) =
1

(X+)∆ψ
ψ(x, s) (2.11)

implies that Ψ(X,S) is a Lorentz scalar in 5D if and only if ψ(x, s) is a primary field in

3D with dimension ∆ψ. Since we assumed that sα transforms as a dimension-zero primary

field, then we have that Ψ(X,S) is a 5D scalar if and only if ψα is an Sp(2,R) spinor

primary field of dimension ∆ψ.

To finish the identification between the 3D and 5D spinor fields, we can take2

SI =
√
X+

(
sα

−xαβsβ

)
, xαβ ≡ xµ(γµ)αβ . (2.12)

Using the conventions of appendix A for the embedding of Sp(2,R) into Sp(4,R), one can

check explicitly that this relation implies that if SI is an Sp(4,R) anti-fundamental spinor

in 5D, then sα is an Sp(2,R) anti-fundamental spinor primary field in 3D with vanishing

dimension, as desired. Notice that SI satisfies the transversality condition

SIX
I
J = 0 , XI

J ≡ XA(ΓA)IJ , (2.13)

which is invariant under Sp(4,R) transformations and is consistent with the lightcone

condition X ·X = 0. Due to this transversality condition, the 5D spinor field ΨI is defined

on the lightcone only modulo the shifts ΨI(X) → ΨI(X) + XI
JΘJ(X), where ΘJ(X) is

an arbitrary spinor on the lightcone.

Ψ(X,S) satisfies the homogeneity property

Ψ(aX, bS) = a−∆ψ−1/2bΨ(X,S) , (2.14)

where a and b are arbitrary and independent. Homogeneity, the transversality condi-

tion (2.13), and 5D Lorentz invariance restrict the form of embedding space correlation

2Equivalently, we could have written Ψ̃(X, S̃) = S̃IΨ̃
I(X) = ψ(x, s)/(X+)∆ψ and identified

Ψ̃I(X) =
1

(X+)∆ψ−1/2

(
−xαβψβ(x)

ψα(x)

)
,

such that Ψ̃I(X) is a 5D spinor if and only if ψα(x) is a primary spinor field of dimension ∆ψ. Then Ψ̃(X)

would satisfy the transversality condition XI
JΨ̃J(X) = 0 and the polarization S̃I would only be defined

modulo shifts S̃I → S̃I + TJX
J
I . One can relate this description to the one presented in the main text by

taking SI = S̃JX
J
I and Ψ̃I(X) = XI

JΨJ(X).

With this in mind, we can relate our formalism to that of [19] for traceless symmetric tensor fields.

They define a vector ZA that satisfies transverseness Z · X = 0 and is defined up to gauge redundancy

Z → Z + λX. Such a vector can be obtained as ZA = S̃ΓAΩS. Note that the gauge redundancy of S̃

gives ZA → ZA + TXΓAΩS = ZA + XA(TΩS), which is the correct gauge redundancy for Z. Similarly

Z ·X = S̃XΩS = 0 since S is transverse.

– 6 –
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functions of Ψ(X,S). For example, the only consistent expression for the two-point func-

tion is

〈Ψ(X1, S1)Ψ(X2, S2)〉 = icψ
〈S1S2〉

X
∆ψ+ 1

2
12

, (2.15)

for some constant cψ. Here, we used the notation

〈S1X2X3 . . . Sn〉 = S1IX2
I
JX3

J
K . . .Ω

LMSnM , (2.16)

where XI
J is defined in (2.13) and ΩIJ = ΩIJ is the Sp(4,R) invariant tensor (see ap-

pendix A). Using (2.11) and (2.12) in (2.15), we obtain, as expected

〈ψα(x1)ψβ(x2)〉 = icψ
(x12)αβ

x
2∆ψ+1
12

. (2.17)

For Majorana fermions, we have cψ ∈ R, as can easily be seen by using the Majorana

condition ψα∗ = ψα and the fact that complex conjugation interchanges the order of the

Grassmann variables. (Recall that we work in a basis where the gamma matrices are real.)

In this paper, we will take cψ = 1 for all external operators.

2.3 Embedding of fields of higher spin

The above discussion generalizes to fields of higher spin in a natural way. In 3D, a spin-`

field is a totally symmetric tensor in 2` spinor indices: Oα1α2...α2`(x). It corresponds to an

embedding field OI1I2...I2`(X) that is homogeneous of degree −(∆+`) in X and also totally

symmetric in its 5D spinor indices. In index-free notation, we contract all the indices with

an auxiliary spinor s in 3D or with a transverse auxiliary spinor S in 5D:

O`(x, s) = sα1sα2 · · · sα2`
Oα1α2...α2`(x) , O`(X,S) = SI1SI2 · · ·SI2`O

I1I2...I2`(X) .

(2.18)

O`(X,S) is also homogeneous in the variable S, with degree 2`. By the same argument

that led to (2.11), we must have

O`(X,S) =
1

(X+)∆O
O`(x, s) . (2.19)

With the help of (2.12) and

Oα1α2...α2`(x) =
1

(2`)!

∂2`

∂sα1∂sα2 . . . ∂sα2`

O(x, s) , (2.20)

one can then reconstruct the correlation functions of Oα1α2...α2`(x) from the corresponding

formulas in embedding space.

As an example, the two-point function of O`(X,S) in embedding space is restricted to

take the form

〈O`(X1, S1)O`(X2, S2)〉 = i2`cO
〈S1S2〉2`

X∆O+`
12

. (2.21)

Here cO is real if O` is real. If ` is an integer, we also have cO > 0 in a unitary theory for

a real operator O`.

– 7 –
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For future reference, we record that when ` is an integer, we could have represented

the spin-` operator in terms of a rank-` traceless symmetric tensor of SO(2, 1), namely

Oµ1...µ` . This tensor is related to Oα1...α2` via

Oα1...α2`(x) = Oµ1...µ`(x)γα1α2
µ1

· · · γα2`−1α2`
µ` ,

Oµ1...µ`(x) =
(−1)`

2`
γµ1
α1α2

. . . γµ`α2`−1α2`
Oα1...α2`(x) .

(2.22)

It is straightforward to show that for spin-1 operators, the 2-point function in (2.21) can

also be written in the more familiar form

〈Oµ(x1)Oν(x2)〉 =
cO
2

Iµν(x12)

|x12|2∆O
, (2.23)

where Iµν(x) ≡ ηµν − 2xµxν/x2. The analogous expression for spin-2 operators is

〈Oµν(x1)Oρσ(x2)〉 =
cO
4

[
1

2

(
Iµρ(x12)Iνσ(x12) + Iµσ(x12)Iνρ(x12)

)
− 1

3
ηµνηρσ

]
1

|x12|2∆O
.

(2.24)

For a conserved current, take O = J with ∆J = 2 in (2.23), and for the stress tensor take

O = T with ∆T = 3 in (2.24).

2.4 Three- and four-point functions

3-point functions between two scalars and a spin-` operator of dimension ∆ are uniquely

constrained up to an overall coefficient λφ1φ2O to be of the form

〈Φ1(X1)Φ2(X2)O`(X3, S3)〉 = λφ1φ2O
〈S3X1X2S3〉`

X
∆1+∆2−∆+`

2
12 X

∆2−∆1+∆+`
2

23 X
∆1−∆2+∆+`

2
31

. (2.25)

This form follows from homogeneity of degree −∆1, −∆2, −(∆ + `) in X1, X2, and X3,

respectively, homogeneity of degree 2` in S3, transversality of S3 with respect to X3, and

Sp(4,R) invariance. In addition, it is useful to note that {X1, X2} = (2X1 ·X2)14, which,

together with Xk · Xk = 0, restricts the choice of quantities that can appear in between

〈S3(· · · )S3〉 to what is written in (2.25). Note that

〈Φ1(X1)Φ2(X2)O`(X3, S3)〉 = (−1)`〈Φ1(X2)Φ2(X1)O`(X3, S3)〉 , (2.26)

so in the case of identical operators Φ1 = Φ2, the 3-point function necessarily vanishes if

` is odd. Furthermore, for real scalar operators we have 〈Φ1(X1)Φ2(X2)O`(X3, S3)〉∗ =

〈Φ1(X1)Φ2(X2)O`(X3, S3)〉, so the structure constants λφ1φ2O appearing in (2.25) are real.

When we come to 3-point functions containing fermions, we have the new complication

that multiple tensor structures can appear. In general, we have

〈Ψ1(X1, S1)Ψ2(X2, S2)O`(X3, S3)〉 =

∑
a λ

a
ψ1ψ2O ra

X
∆1+∆2−∆−`+1

2
12 X

∆2−∆1+∆+`
2

23 X
∆1−∆2+∆+`

2
31

, (2.27)
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where the index a runs over all possible 3-point structures ra, to be given shortly. These

structures can be divided into those that are even under parity Xk → −Xk and those that

are odd. A basis for the parity-even structures is given by

r1 =
〈S1S2〉〈S3X1X2S3〉`

X`
12

, (2.28)

r2 =
〈S1S3〉〈S2S3〉〈S3X1X2S3〉`−1

X`−1
12

, (2.29)

while a basis for the parity-odd structures is given by

r3 =
〈S3X1X2S3〉`−1

X
`+ 1

2
12 X

− 1
2

23 X
− 1

2
31

[
X23〈S1S3〉〈S2X1S3〉+X13〈S2S3〉〈S1X2S3〉

]
,

r4 =
〈S3X1X2S3〉`−1

X
`+ 1

2
12 X

− 1
2

23 X
− 1

2
31

[
X23〈S1S3〉〈S2X1S3〉 −X13〈S2S3〉〈S1X2S3〉

]
.

(2.30)

The dependence on (Xi, Si) in (2.27)–(2.30) can be derived from the same reasoning as

that presented after eq. (2.25). The new ingredients here are the transversality of S1 and

S2 with respect to X1 and X2, respectively, as well as the Fierz identities

〈S1X2S3〉〈S2X1S3〉 = −〈S1S2〉〈S3X1X2S3〉+ 2〈S1S3〉〈S2S3〉X1 ·X2 ,

〈S1X3S2〉〈S3X1X2S3〉 = −2〈S1S3〉〈S2X1S3〉X2 ·X3 − 2〈S2S3〉〈S1X2S3〉X1 ·X3 ,
(2.31)

which can be used to show that 3-point structures proportional to the left-hand sides of

these equalities would be redundant.

When we restrict to the case of identical fermions Ψ1 = Ψ2 = Ψ, anti-symmetry

under 1 ↔ 2 places further restrictions on which correlators can be nonvanishing. In

particular, if ` is even then we have the constraint λ4
ψψO− = 0, while if ` is odd then

λ1
ψψO+ = λ2

ψψO+ = λ3
ψψO− = 0. (The ± here only serves as a reminder of the parity

of the operators O that contribute to each structure in (2.27).) In other words, even-spin

operators have two structures of even parity and one structure of odd parity, while odd-spin

operators have a single parity-odd structure. Further, for any spin the Grassmann nature of

fermions requires 〈Ψ(X1, S1)Ψ(X2, S2)O`(X3, S3)〉∗ = −〈Ψ(X1, S1)Ψ(X2, S2)O`(X3, S3)〉,
implying that all 3-point coefficients λaψ1ψ2O must be pure imaginary.

Let us now consider the general structure of 4-point functions. Scalar 4-point functions

are constrained by conformal symmetry to have the form

〈Φ1(X1)Φ2(X2)Φ3(X3)Φ4(X4)〉 =

(
X14

X13

)∆3−∆4
2
(
X24

X14

)∆1−∆2
2 g(u, v)

X
∆1+∆2

2
12 X

∆3+∆4
2

34

, (2.32)

where g(u, v) is an arbitrary function of the conformal cross ratios u = X12X34
X13X24

and v =
X23X14
X13X24

.

Similarly, fermion 4-point functions must take the general form

〈Ψ1(X1, S1)Ψ2(X2, S2)Ψ3(X3, S3)Ψ4(X4, S4)〉 =(
X14

X13

)∆3−∆4
2
(
X24

X14

)∆1−∆2
2

∑
I tIg

I(u, v)

X
∆1+∆2+1

2
12 X

∆3+∆4+1
2

34

,
(2.33)
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where the tI are a basis of tensor structures that can appear in the 4-point function. There

are many choices of bases, but one convenient way to organize the structures is in terms of

their properties under various exchanges of the coordinates.

In general, we find that there are 8 independent structures of even parity that may

appear. Anticipating applications to the bootstrap, we will choose 4 structures to be sym-

metric under the exchange 1 ↔ 3, and 4 to be anti-symmetric. A basis for the symmetric

structures is:

t1 =
〈S1S3〉〈S2[X1, X3]S4〉

2X1 ·X3
+
〈S2S4〉〈S1[X2, X4]S3〉

2X2 ·X4
,

t2 =
〈S1X2S3〉〈S2X1S4〉

X1 ·X2
−〈S1X4S3〉〈S2X1S4〉

X1 ·X4
−〈S1X2S3〉〈S2X3S4〉

X2 ·X3
+
〈S1X4S3〉〈S2X3S4〉

X3 ·X4
,

t3 =
〈S1X2S3〉〈S2X1S4〉

X1 ·X2
+
〈S1X4S3〉〈S2X1S4〉

X1 ·X4
−〈S1X2S3〉〈S2X3S4〉

X2 ·X3
−〈S1X4S3〉〈S2X3S4〉

X3 ·X4
,

t4 =
〈S1S3〉〈S2[X1, X3]S4〉

2X1 ·X3
−〈S2S4〉〈S1[X2, X4]S3〉

2X2 ·X4
, (2.34)

and a basis for the anti-symmetric structures is:

t5 = 〈S1S3〉〈S2S4〉 ,

t6 =
〈S1[X2, X4]S3〉〈S2[X1, X3]S4〉

4(X1 ·X3)(X2 ·X4)
,

t7 =
〈S1X2S3〉〈S2X1S4〉

X1 ·X2
+
〈S1X4S3〉〈S2X1S4〉

X1 ·X4
+
〈S1X2S3〉〈S2X3S4〉

X2 ·X3
+
〈S1X4S3〉〈S2X3S4〉

X3 ·X4
,

t8 =
〈S1X2S3〉〈S2X1S4〉

X1 ·X2
−〈S1X4S3〉〈S2X1S4〉

X1 ·X4
+
〈S1X2S3〉〈S2X3S4〉

X2 ·X3
−〈S1X4S3〉〈S2X3S4〉

X3 ·X4
.

(2.35)

When we restrict to the case that all fermions are identical, Ψ1 = Ψ2 = Ψ3 = Ψ4 = Ψ,

there are additional constraints on the allowed structures coming from exchange symme-

tries. Some of these are highly nontrivial and lead to the bootstrap conditions discussed

in the next section. However, there are also trivial constraints on the allowed tensor struc-

tures coming from exchanges that leave the cross-ratios u and v invariant: {1, 2} ↔ {3, 4},
{1, 3} ↔ {2, 4}, and {1, 2} ↔ {4, 3}. Symmetry under these exchanges then forces

g3 = g4 = g8 = 0 . (2.36)

In other words, restricting to identical fermions means that there are only 5 allowed tensor

structures.

2.5 Conformal blocks

Now we would like to understand how the 4-point functions described in the previous

section can be decomposed into conformal blocks, which sum up the contributions of all

descendants of a given primary operator appearing in the Ψ×Ψ OPE. There are many ap-

proaches to computing conformal blocks in D > 2, including direct summation [2, 39–43],

solving the Casimir differential equation [5, 44–47], pole expansions [7, 9], and evaluating
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monodromy-projected conformal integrals [27, 38, 48]. We will here adopt the latter formu-

lation, since it will allow us to express the fermion conformal blocks in terms of derivatives

of known scalar conformal blocks, similar to the approach of [17, 30].

Let us briefly review the conformal block decomposition of a four-point function of

scalars 〈φ1φ2φ3φ4〉. Performing the s-channel OPE, one can write the function g(u, v)

appearing in the scalar 4-point function (2.32) as a sum of conformal blocks:3

g(u, v) =
∑
O
λφ1φ2Oλφ3φ4Og∆,`;∆12,∆34(u, v) , (2.37)

where the sum runs only over primary operators belonging to both the φ1×φ2 and φ3×φ4

OPEs. As described in [27], the conformal block of O can be obtained from the integral

λφ1φ2Oλφ3φ4O

(
X14

X13

)∆3−∆4
2
(
X24

X14

)∆1−∆2
2 g∆,`;∆12,∆34(u, v)

X
∆1+∆2

2
12 X

∆3+∆4
2

34

=

1

NO

∫
D3X0〈Φ1(X1)Φ2(X2)O`(X0)〉〈Õ`(X0)Φ3(X3)Φ4(X4)〉

∣∣
M ,

(2.38)

where Õ` is the shadow operator of dimension 3 − ∆ whose indices are contracted with

those of O`, |M denotes a monodromy projection, and NO is a normalization factor.

Similarly, performing the s-channel OPE in the fermion 4-point function (2.33), one

can write

gI(u, v) =
∑
O

∑
a,b

λaψ1ψ2Oλ
b
ψ3ψ4O g

I;ab
∆,`;∆12,∆34

(u, v) , (2.39)

where the index I runs over 4-point structures, while a, b run over 3-point structures.

Similarly to the scalar case, the outer sum in (2.39) runs over the conformal primaries O
that belong to both the ψ1×ψ2 and ψ3×ψ4 OPEs. The inner sum in (2.39) is new in the

fermion case; it is present because, for any O, there are several OPE coefficients that need

to be specified, as in (2.27). In analogy with (2.38), the conformal blocks appearing in the

fermion 4-point function (2.33) can be expressed as

∑
a,b

λaψ1ψ2Oλ
b
ψ3ψ4O

(
X14

X13

)∆3−∆4
2
(
X24

X14

)∆1−∆2
2 tIg

I;ab
∆,`;∆12,∆34

(u, v)

X
∆1+∆2+1

2
12 X

∆3+∆4+1
2

34

=

1

ÑO

∫
D3X0〈Ψ1(X1, S1)Ψ2(X2, S2)O`(X0)〉

× 〈Õ`(X0)Ψ3(X3, S3)Ψ4(X4, S4)〉
∣∣
M ,

(2.40)

where the index I runs over 4-point function tensor structures. Thus, it is clear that if each

structure appearing in the 3-point functions 〈Ψ1Ψ2O`〉 in (2.29)–(2.30) can be written as

derivatives of the scalar 3-point functions 〈Φ1Φ2O`〉 in (2.25), then the fermion conformal

3Note that the correctness of this formula depends, crucially, on the normalization of the function

g. In terms of the coordinates r and θ introduced in [47], eq. (2.37) holds provided that g(u, v) ∼
(1)`

(1/2)`
(−1)`(4r)∆P`(cos θ) as r → 0, with φi normalized as in (2.6) and O normalized as in (2.21) with

cO = 1.
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blocks can be computed from the known scalar blocks. This is the approach that we take

in this paper.

Concretely, the parity-even structures in eq. (2.29) can be generated by applying certain

linear differential operators to 〈Φ1Φ2O`〉. In constructing these operators, we define

δ

δXk
≡ ΓA

∂

∂XA
k

, (2.41)

and note a few useful identities:

〈S1
δ

δX1
S2〉〈S3X1X2S3〉 = −2〈S2S3〉〈S1X2S3〉 , (2.42)

〈S2
δ

δX2
S1〉〈S3X1X2S3〉 = 2〈S1S3〉〈S2X1S3〉 , (2.43)

〈S1
δ

δX1

δ

δX2
S2〉〈S3X1X2S3〉 = 8〈S1S3〉〈S2S3〉 , (2.44)

〈S1
δ

δX1
S2〉(X1 ·Xk) = 〈S1XkS2〉 = −〈S2

δ

δX2
S1〉(X2 ·Xk) , (2.45)

〈S1
δ

δX1

δ

δX2
S2〉(X1 ·X2) = 5〈S1S2〉 . (2.46)

Note that in order for differential operators on Xk, Sk to be well-defined, they must

preserve the ideal generated by the relations X2
k = 0, XkSk = 0, 〈SkSk〉 = 0. This is indeed

true for the operators above, though the derivative ∂
∂XA

k

is not well-defined on its own.

It can be checked that the 3-point structures appearing in the 〈Ψ1Ψ2O`〉 3-point func-

tion function can be written in terms of the structure appearing in the 3-point function of

two scalars and a spin-` operator. Explicitly, we have

ra

X
∆1+∆2−∆−`+1

2
12 X

∆2−∆1+∆+`
2

23 X
∆1−∆2+∆+`

2
31

= Da

 〈S3X1X2S3〉`

X
∆1+∆2−∆+`

2
12 X

∆2−∆1+∆+`
2

23 X
∆1−∆2+∆+`

2
31

 ,
(2.47)

where we defined the differential operators

D1 ≡ 〈S1S2〉Π 1
2
, 1
2
,

D2 ≡ −
1

4`(∆−1)
〈S1

δ

δX1

δ

δX2
S2〉Π− 1

2
,− 1

2
+

(∆+∆1+∆2−`−4)(∆−∆1−∆2−`+1)

4`(∆−1)
D1 ,

D3 ≡
1

2(∆− 1)

[
〈S1

δ

δX1
S2〉Π− 1

2
, 1
2
− 〈S2

δ

δX2
S1〉Π 1

2
,− 1

2

]
,

D4 ≡
1

2`

[
〈S1

δ

δX1
S2〉Π− 1

2
, 1
2

+ 〈S2
δ

δX2
S1〉Π 1

2
,− 1

2

]
− ∆1 −∆2

`
D3 , (2.48)

and Πa,b applies a shift to the operator dimensions as {∆1,∆2} → {∆1 + a,∆2 + b}.
Note that D1 and D2 generate the parity-even 3-point structures, while D3 and D4

generate the parity-odd ones. In addition, the operators D1, D2, and D3 are antisymmetric

under the exchange 1 ↔ 2, while D4 is symmetric. Together with (2.26), these symmetry

properties imply that in the case of identical fermions Ψ1 = Ψ2, we obtain three-point
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functions that obey the anti-symmetry requirement in X1 and X2 provided that ` is even

when we use D1, D2, and D3 and that ` is odd when we use D4, in agreement with the

discussion following eq. (2.31).

Defining

D̃a ≡ Da
∣∣
1→3 ,2→4

, (2.49)

the fermion conformal blocks (2.40) are given in terms of the known scalar blocks (2.38)

according to the prescription:

(
X14

X13

)∆3−∆4
2
(
X24

X14

)∆1−∆2
2 tIg

I;ab
∆,`;∆12,∆34

(u, v)

X
∆1+∆2+1

2
12 X

∆3+∆4+1
2

34

=

DaD̃b

(X14

X13

)∆3−∆4
2
(
X24

X14

)∆1−∆2
2 g∆,`;∆12,∆34(u, v)

X
∆1+∆2

2
12 X

∆3+∆4
2

34

 .
(2.50)

The explicit formulas for gI;ab in terms of g are rather complicated, and we will not re-

produce them here. Writing the fermionic blocks as derivatives of scalar blocks is useful

for numerical applications. Computing derivatives of scalar blocks is straightforward, for

example we use the pole expansion derived in [7] to compute the expansion in radial co-

ordinates [47] to order ρ60. Derivatives of fermionic blocks are then obtained as a linear

transformation on derivatives of scalar blocks.

3 3D fermion bootstrap

Let us return to the 4-point function of identical Majorana fermions in a parity preserving

3D CFT. Using (2.12) in (2.33), we can write this 4-point function as

〈ψ(x1, s1)ψ(x2, s2)ψ(x3, s3)ψ(x4, s4)〉 =
1

x
2∆ψ+1
12 x

2∆ψ+1
34

∑
I

tIg
I(u, v) , (3.1)

where tI = tI(xi, si) are the 5 different tensor structures that can appear. Crossing sym-

metry under 1↔ 3 gives a constraint

v∆ψ+ 1
2

∑
I

tIg
I(u, v) = −u∆ψ+ 1

2

∑
I

tI
∣∣
1↔3

gI(v, u) , (3.2)

where the minus sign on the right-hand side comes from the Grassmann nature of fermions.

In general tI |1↔3 = MJ
I tJ is related by some matrix M , but in the previous section we

have chosen a basis of 4-point structures such that tI+ |1↔3 = tI+ and tI− |1↔3 = −tI− . In

this basis the crossing relation becomes

0 =
∑
I+

tI+
[
v∆ψ+ 1

2 gI+(u, v) + u∆ψ+ 1
2 gI+(v, u)

]
+
∑
I−

tI−
[
v∆ψ+ 1

2 gI−(u, v)− u∆ψ+ 1
2 gI−(v, u)

]
,

(3.3)
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or, isolating each tensor structure,

0 = v∆ψ+ 1
2 gI+(u, v) + u∆ψ+ 1

2 gI+(v, u) ,

0 = v∆ψ+ 1
2 gI−(u, v)− u∆ψ+ 1

2 gI−(v, u) .
(3.4)

Now, the functions gI±(u, v) have a conformal block decomposition:

gI±(u, v) =
∑

O+, ` even
a,b=1,2

λaO+λ
b
O+g

I±
ab,∆,`(u, v) +

∑
O−, ` even

(λ3
O−)2g

I±
33,∆,`(u, v)

+
∑

O−, ` odd

(λ4
O−)2g

I±
44,∆,`(u, v) ,

(3.5)

where O± has parity ±, and we have chosen a basis of parity-odd 3-point structures such

that the a = 3 structure only allows even spins and the a = 4 structure only allows odd

spins, as before. For brevity, we have written λaO instead of λaψψO, and will henceforth

continue to do so. Thus, we can write the crossing equations as

0 =
∑

O+, ` even
a,b=1,2

λaO+λ
b
O+F

I±
ab,∆,`(u, v) +

∑
O−, ` even

(λ3
O−)2F

I±
33,∆,`(u, v) +

∑
O−, ` odd

(λ4
O−)2F

I±
44,∆,`(u, v) ,

(3.6)

where F
I±
ab,∆,` ≡ v

∆ψ+ 1
2 g
I±
ab,∆,`(u, v)± u∆ψ+ 1

2 g
I±
ab,∆,`(v, u).

This is the starting point for the usual bootstrap logic. We can exclude assumptions

on the spectrum by applying a linear combination of functionals αI :

0 =
∑
I±

[ ∑
O+, ` even
a,b=1,2

λaO+λ
b
O+αI±

(
F
I±
ab,∆,`(u, v)

)

+
∑

O−, ` even

(λ3
O−)2αI±

(
F
I±
33,∆,`(u, v)

)
+

∑
O−, ` odd

(λ4
O−)2αI±

(
F
I±
44,∆,`(u, v)

)]
,

(3.7)

where we look for functionals that satisfy the constraints

−
∑

a,b=1,2

λa1λ
b
1αI±

(
F
I±
ab,0,0(u, v)

)
> 0 ,

αI±
(
F
I±
ab,∆,`(u, v)

)
� 0 , for all parity-even operators with ` even

αI±
(
F
I±
33,∆,`(u, v)

)
≥ 0 , for all parity-odd operators with ` even

αI±
(
F
I±
44,∆,`(u, v)

)
≥ 0 , for all parity-odd operators with ` odd . (3.8)

Recall that in our conventions, all λaO are pure imaginary — hence the extra sign in the

first line above compared to the usual conditions for scalars. The OPE coefficients of the

unit operator are given by λa1 = iδa1 . We search for functionals satisfying these constraints

by approximating the search as a semidefinite program and implementing it in the solver

SDPB [8]. Details of this implementation are given in appendix C.
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4 Results

We can now use the formalism derived in the previous section to derive constraints on the

space of CFTs. In particular, we consider CFTs with a Majorana fermion ψ, and focus on

scalar operators appearing in the ψ × ψ OPE. We assume a parity symmetry, so that we

can distinguish between parity-odd scalars, which we denote by σ, σ′, σ′′, . . . (in increasing

order of their dimensions), and parity-even scalars, which we denote by ε, ε′, ε′′, . . . (also in

increasing order of their dimensions).

Using the methods described in section 3, we first derive general bounds on the di-

mensions of these operators, observing sharp discontinuities that we conjecture to coincide

with a 3D CFT containing no relevant scalar operators. We then study the consequences of

imposing gaps in the scalar spectrum, making direct contact with the Gross-Neveu models

(described below) at large N . Finally we study bounds on the coefficient CT appearing in

the two-point function of the canonically-normalized stress tensor.

4.1 Examples of fermionic theories

While presenting our numerical results, it is useful to keep in mind a few simple CFTs that

have fermionic operators:

• Free theory. The theory of a free Majorana fermion ψ has Lagrangian

L = −1

2
ψ/∂ψ , (4.1)

where ψ ≡ ψT (iγ0) is the conjugate spinor. The fermionic operator ψ has dimension

∆ψ = 1. There are no parity-even scalar operators appearing in the ψ × ψ OPE.

The only parity-odd scalar appearing in ψ × ψ is ψψ, which has dimension 2. All

correlation functions in this theory can be computed via Wick contractions using the

free fermion propagator

〈ψα(x1)ψβ(x2)〉 ∝
i(x12)αβ
|x12|3

. (4.2)

• Mean Field Theory. Mean Field Theory is a generalization of the free theory that

in general does not have a local Lagrangian description. Its operators consist of

normal-ordered products of a fermionic operator ψ and its derivatives, except that

in this case all correlation functions are computed from Wick contractions using the

generalized free field propagator

〈ψα(x1)ψβ(x2)〉 ∝
i(x12)αβ

|x12|2∆ψ+1
. (4.3)

Mean Field Theory is not properly a local QFT because it doesn’t have a stress

tensor. However, it satisfies the properties of unitarity and conformal symmetry

that we study in this work. In the ψ × ψ OPE there are now parity-even scalar

operators with dimensions 2∆ψ + 1, 2∆ψ + 3, 2∆ψ + 5, . . . , and parity-odd scalars
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Z2 O(N) ∆

φ − 1 1− 32/(3π2N) + . . .

ψi + V 1 + 4/(3π2N) + . . .

ψ(iψj) − Sym2(V ) 2 + 32/(3π2N) + . . .

φ2 + 1 2 + 32/(3π2N) + . . .

φ3 − 1 3 + 64/(π2N) + . . .

φk (−)k 1 k + 16k(3k − 5)/(3π2N) + . . .

Table 1. Representations and one-loop dimensions of low-lying operators in the large-N 3D Gross-

Neveu models. V denotes the vector representation of O(N). The dimensions of ψi, and φk

were computed in [51–53] and reviewed in appendix B. The dimension of ψ(iψj) is computed in

appendix B.

with dimensions 2∆ψ, 2∆ψ + 2, 2∆ψ + 4, . . . . In the limit ∆ψ → 1, we recover a free

theory, plus additional operators proportional to /∂ψ whose OPE coefficients in the

ψ × ψ OPE vanish. As in the free theory, the 4-point function of ψ in Mean Field

Theory satisfies crossing symmetry.

• Gross-Neveu(-Yukawa) model. Another 3D CFT with fermionic operators is the

critical point of the Gross-Neveu model [49]. In the Gross-Neveu-Yukawa description,

one starts with N Majorana fermions ψi (with i = 1, . . . , N a flavor index) and a

parity-odd scalar field φ, with the Lagrangian

L = −1

2

N∑
i=1

ψi(/∂ + gφ)ψi −
1

2
∂µφ∂µφ−

1

2
m2φ2 − λφ4, (4.4)

where g and λ are coupling constants. When N is even, this theory can be studied

perturbatively in d = 4− ε dimensions (see, for example [50]). It has a critical point

that can be achieved by appropriately tuning the scalar mass m2 (a fermionic mass

term is forbidden by parity symmetry). This critical point is believed to survive

down to d = 3, where it can also be studied perturbatively in the 1/N expansion [50–

53]. Previous contact between the conformal OPE and the large-N expansion of this

model was made in [54].

In the context of this work, we consider a four-point function of the fermionic operator

ψ = ψ1. (We leave the study of global symmetries in fermionic CFTs to future work.)

The dimensions of operators in this CFT are not currently available at finite N . At

large N , the dimensions of the lowest few operators are shown in table 1 (see also

appendix B).

• The N = 1 super-Ising model. Another example of a 3D CFT with a Majorana

fermion ψ is the N = 1 supersymmetric Ising model. It is defined as the IR fixed

point of the UV Lagrangian

L = −1

2
ψ/∂ψ − 1

2
∂µφ∂µφ−

g

2
φψψ − 1

8
(gφ2 + h)2, (4.5)
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(with the parameter h tuned appropriately), which, when setting m2 = gh/2 and

λ = g2/8, is nothing but the N = 1 case of the Gross-Neveu-Yukawa model. This

Lagrangian has N = 1 SUSY and can be described in terms of a real superfield

Σ = φ+ θψ + 1
2θθF with superpotential

W = hΣ +
g

3
Σ3. (4.6)

Note that a superpotential with quadratic or quartic terms in Σ is forbidden by parity

symmetry, since Σ is parity-odd. In the IR this theory is believed to be described by

the N = 1 superconformal algebra osp(1|4).

Just like for the Gross-Neveu-Yukawa CFT, the dimensions of operators in the

N = 1 super-Ising model are not known precisely (but may be experimentally probe-

able [55]).4 They must obey, however, relations imposed by supersymmetry such as

∆ψ = ∆σ + 1/2 = ∆ε − 1/2 or ∆ε′ = ∆σ′ + 1, where σ = φ, σ′ = φ3, ε = φ2, ε′ = φ4

are the lowest few scalar operators. The relation ∆ε = ∆σ + 1 was used in [59] to

derive ∆σ ≥ 0.565. This inequality was obtained by intersecting the supersymmetric

line ∆ε = ∆σ + 1 with the bootstrap bounds derived from the crossing symmetry of

unitary Z2-invariant CFTs.

4.2 Universal dimension bounds

Let us start by computing general upper bounds on the dimensions of scalars appearing in

the ψ × ψ OPE. For the moment, we assume only conformal symmetry, parity symmetry,

and unitarity.

4.2.1 The lowest dimension parity odd scalar

In figure 1, we plot a universal upper bound on ∆σ (the lowest dimension parity-odd scalar)

as a function of ∆ψ in any unitary, parity-invariant 3D CFT. The bound starts at the point

(∆ψ,∆σ) = (1, 2), corresponding to the free theory. It then grows monotonically with ∆ψ

up to ∆ψ ≈ 1.27, at which point a sharp vertical discontinuity occurs, and the bound

jumps from ∆σ ≈ 2.9 to ∆σ ≈ 7.7. This striking jump suggests that the value ∆ψ ≈ 1.27

has special significance. We discuss possible interpretations below.

At the least, we can conclude that any CFT with a fermionic operator of dimension

∆ψ . 1.27 must have a relevant parity-odd scalar in the ψ × ψ OPE. Conversely, a CFT

with no relevant parity-odd scalars in the ψ × ψ OPE must have ∆ψ & 1.27. In addition,

we see that any CFT with a fermion of sufficiently low dimension must have a parity-odd

scalar in the ψ × ψ OPE of dimension smaller than ≈ 7.7.

4.2.2 The lowest dimension parity-even scalar

In figure 2, we show an upper bound on ∆ε (the lowest dimension parity-even scalar) in

any unitary, parity-invariant 3D CFT. The bound monotonically increases starting from

4By contrast, the N = 2 super-Ising model has the exactly known dimension ∆σ = 2/3 and contact

with the 3D N = 2 bootstrap was recently made in [56–58].
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Upper bound on lowest parity-odd scalar σ ∈ ψ × ψ

Figure 1. Upper bounds on the dimension of the lowest dimension parity-odd scalar appearing in

the ψ × ψ OPE, assuming only conformal symmetry, parity symmetry, and unitarity. The orange

region is allowed, and the white region is disallowed. The black dashed line starting at the free

theory point (∆ψ,∆σ) = (1, 2) gives the relation among dimensions specific to Mean Field Theory,

while the dashed line starting at (∆ψ,∆σ) = (1, 0.5) gives the relation among dimensions expected

for N = 1 SCFTs, assuming ψ is a superdescendant of σ. These bounds are determined using the

procedure described in section 3 (see also appendix C) by performing a binary search in ∆σ with

10−3 precision. The parameter Λ defined in appendix C is given by Λ = 23.

the point (∆ψ,∆ε) = (1, 3) up to a value of ∆ε ≈ 5.1. At this point, we encounter a change

in slope which occurs at precisely the same value of ∆ψ as the vertical jump in figure 1.

Note that the free fermion theory does not contain a parity-even scalar of dimension

3, since the only candidate ψ/∂ψ vanishes by the equations of motion. However, in Mean

Field Theory we have ∆ε = 2∆ψ + 1, and hence there exists a continuous family of unitary

solutions to crossing symmetry that approach the point (∆ψ,∆ε) = (1, 3). By continuity,

our bound cannot move below this point, and indeed it attains this optimal value to high

precision.

4.2.3 A “dead end” CFT?

The kink near (∆ψ,∆ε) ≈ (1.27, 5.1) in figure 2 is reminiscent of the kink in scalar di-

mension bounds corresponding to the 3D Ising model [5, 6]. Hence we might guess that

there exists a 3D CFT with a fermion of dimension ∆ψ ≈ 1.27 whose lowest dimension

parity-even scalar has dimension ∆ε ≈ 5.1.

The vertical jump in the parity-odd sector is also reminiscent of a feature previously

encountered in scalar dimension bounds. Specifically, figure 1 of [7] shows a sharp vertical

jump in the bound on ∆σ′ as a function of ∆σ (assuming that ∆ε saturates its upper
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Upper bound on lowest parity-even scalar ε ∈ ψ × ψ

Figure 2. Upper bound on the lowest dimension parity-even scalar appearing in the ψ×ψ OPE, as

a function of ∆ψ, assuming only conformal symmetry, parity symmetry, and unitarity. As ∆ψ → 1,

the bound goes to ∆ε = 3 and has asymptotic behavior ∆ε − 3 ∝ (∆ψ − 1)1/2. The bound has a

kink at ∆ψ = 1.27, which is the same value of ∆ψ at which the bound for parity-odd scalars had a

discontinuity, see figure 1. This bound was computed with Λ = 23.

bound) in 3d CFTs with a Z2 symmetry. That jump went from ∆σ′ ≈ 2.9 to ∆σ′ ≈ 6.8,

and occurred for 0.517 . ∆σ . 0.52 (at Λ = 11). At higher values of Λ, the ∆σ window

shrinks and gives the correct value ∆σ = 0.518151(6) in the 3D Ising model. The height of

the jump also decreases, e.g. to ∆σ′ ≈ 5.4 at Λ = 19. The correct value of ∆σ′ in the 3D

Ising model is approximately 4.5.

Reasoning by analogy, figures 1 and 2 lead us to conjecture that there exists a 3D

parity-invariant CFT with ∆ψ ≈ 1.27 and large anomalous dimensions for both the lowest

dimension parity-even and parity-odd scalars, perhaps ∆ε ≈ 5.1, and 3 < ∆σ < 7.7. Note

that this theory would be a “dead-end” CFT because it has no relevant scalar operators,

giving an example of self-organized criticality [20, 21]. In particular, it would be completely

attractive under RG flow, and hence would require no tuning to reach criticality (assuming

Lorentz-invariance is unbroken).5 We are not aware of a natural candidate Lagrangian

for this theory.6 However, the possibility that we have discovered a new “dead-end” CFT

clearly merits further study.

5Such a theory would also be interesting from the perspective of the AdS/CFT correspondence — an

AdS4 holographic dual of this theory would have no tachyonic scalars and hence all moduli would be fully

stabilized. We thank Eva Silverstein for emphasizing this point.
6Several examples of 4D dead-end CFTs were constructed in [60]. Their common feature is that they

are chiral gauge theories, where mass terms are forbidden by gauge-invariance.
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4.3 Imposing gaps: the 3D Gross-Neveu models

With the most general possible assumptions, we have made contact with the free theory, the

limit of Mean Field Theory as ∆ψ → 1, and a conjectured “dead-end” CFT. Meanwhile,

the Gross-Neveu models and N = 1 SUSY Ising model lie well inside the allowed regions

in figures 1 and 2. To see them, we must input more information.

A natural choice for the Gross-Neveu models would be to organize operators according

to their O(N) representations and use the constraints of O(N) symmetry in the crossing

equations, as in [9, 10, 61]. We leave this investigation to future work. For now, we adopt

a simpler procedure: we impose gaps in the operator spectrum and study how the bounds

change as a function of the gaps.

Specifically, we will use a lower bound ∆σ′ ≥ ∆min
σ′ as a proxy for N and try to de-

termine (∆ψ,∆σ) as a function of ∆min
σ′ . Assuming ∆σ′ saturates its lower bound, the

dependence of (∆ψ,∆σ) on ∆σ′ should be consistent with table 1 at large N . Note that

because we are considering a single component ψ = ψ1 of the O(N) vector, all representa-

tions of O(N) appear in the ψ × ψ OPE. In particular, we have σ = φ and σ′ = ψ(iψj) at

large N .

In figures 3 and 4, we plot the allowed regions of (∆ψ,∆σ) assuming ∆σ′ ≥ ∆min
σ′

for several values of ∆min
σ′ . All allowed regions are consistent with the free theory at

(∆ψ,∆σ) = (1, 2). However, the gap in ∆σ′ has the effect of carving out the allowed region

below the free theory, revealing new kinks. The positions of these kinks closely track the

large-N prediction for the Gross-Neveu models, and hence we conjecture that this family of

kinks (in the limit Λ→∞) interpolates between the 3D Gross-Neveu models. In figure 5,

we plot (∆σ′ ,∆ψ) for the kinks in figure 3, compared with the large-N prediction at 1-loop,

finding excellent agreement.

In figure 4, we also see that a new kink appears near (∆ψ,∆σ) ≈ (1.078, 0.565) when

∆min
σ′ & 2.3. This new kink is quite robust to changes in ∆min

σ′ . We discuss its possible

significance below.

4.4 Increasing ∆σ′

At large N , increasing the gap in ∆σ′ corresponds to decreasing N . We might hope that

for big enough ∆σ′ , we could obtain information about the theory with N = 1, namely the

N = 1 supersymmetric Ising model. In particular, we should identify a feature in the bound

that coincides with the line predicted by supersymmetry ∆ψ = ∆σ + 1
2 . Unfortunately,

we observe nothing particularly special happening along this line. The kink corresponding

to larger N Gross-Neveu models becomes somewhat smooth and crosses the SUSY line

when ∆σ′ is slightly smaller than 3, see the upper kink in figure 7. If this crossover point

corresponded to the N = 1 theory, we would obtain the estimate ∆ψ ≈ 1.082. However, it

is possible that using ∆σ′ as a proxy for N ceases to work at smaller N . More directly, the

operator ψ(iψj) (which we have identified with σ′) does not actually exist when N = 1, so

it would be unsurprising if the N > 1 Gross-Neveu kinks are not smoothly connected to

the N = 1 theory using ∆σ′ as a proxy for N . The precise fate of the Gross-Neveu kinks

at small N should become clear when we incorporate the constraints of global symmetry.
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Allowed (∆ψ,∆σ) assuming ∆σ′ ≥ 2.01, 2.03, 2.05, 2.07, 2.09, 2.11

Figure 3. Allowed values of the dimensions (∆ψ,∆σ), assuming ∆σ′ ≥ ∆min
σ′ for ∆min

σ′ ∈
{2.01, 2.03, 2.05, 2.07, 2.09, 2.11}, computed with Λ = 19. The regions to the right of their re-

spective curves (shaded orange) are allowed, while the regions to the left are disallowed. The black

dashed line shows the relationship between ∆ψ and ∆σ using the known 2-loop (for ∆σ) and 3-loop

(for ∆ψ) large-N results in table 1 and appendix B. The free theory at (∆ψ,∆σ) = (1, 2) is always

allowed. Below the free theory, there are kinks that closely track the dimensions of operators in

the Gross-Neveu models at large N . The vertical lines at the bottom of the first two curves ensure

consistency of the bounds with Mean Field Theory.

We also expect that the N = 1 SUSY Ising model will be easier to isolate using a system

of mixed correlators involving both ψ and σ.7 We leave both of these investigations to

future work.

However, our study of increasing ∆σ′ has revealed an interesting feature in the bound

that appears robust: the kink near (∆ψ,∆σ) ≈ (1.078, 0.565) mentioned in the previous

section. Figure 6 shows the space of allowed dimensions assuming ∆σ′ ≥ 3 (equivalently,

assuming the theory contains exactly one relevant parity-odd scalar), and this kink appears

prominently. (In fact, it remains present until ∆σ′ & 6.) The zoomed-in figure 7 makes

clear that the lower feature is not consistent with supersymmetry, while the upper feature

(mentioned above) is barely incompatible with supersymmetry for ∆σ′ ≥ 3.

Thus, we are led to conjecture the existence of a non-supersymmetric 3D parity-

invariant CFT with (∆ψ,∆σ) ≈ (1.078, 0.565) and exactly one relevant parity-odd scalar.

7An exotic possibility is that the N = 1 SUSY Ising model does not actually exist — that the RG

flow from the free N = 1 theory induced by a Σ3 superpotential spontaneously breaks SUSY. The theory

in the IR of this hypothetical flow would contain a free fermion (by Goldstone’s theorem), together with

a (possibly empty) interacting sector (perhaps a 3D Ising model). We thank Juan Maldacena and Igor

Klebanov for discussions of this point.
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Allowed (∆ψ,∆σ) assuming ∆σ′ ≥ 2.1, 2.3, 2.5, 2.7, 2.9

!Σ'#2.1 2.3 2.5 2.7 2.9

Large$N

1.00 1.05 1.10 1.15
!Ψ

0.6

0.8

1.0

1.2
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1.6

1.8

2.0
!Σ

Figure 4. Allowed values of the dimensions (∆ψ,∆σ), assuming ∆σ′ ≥ ∆min
σ′ for ∆min

σ′ ∈
{2.1, 2.3, 2.5, 2.7, 2.9}, computed with Λ = 19. The regions to the right of their respective curves

(shaded orange) are allowed, while the regions to the left are disallowed. The black dashed line

shows the relationship between ∆ψ and ∆σ at 2- and 3-loops at large-N .

Figure 3 Kinks vs. 1-loop large-N Gross-Neveu predictions

Figure 5. The positions of the kinks in figure 3 (black points), compared with the 1-loop large-N

prediction ∆σ′ = 8∆ψ−6 for the 3D Gross-Neveu models in table 1 (orange line). We also indicate

the approximate value of N corresponding to each kink.
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Allowed (∆ψ,∆σ) assuming ∆σ′ ≥ 3

Figure 6. Allowed values of (∆ψ,∆σ) assuming ∆σ′ ≥ 3, computed with Λ = 23. The orange

shaded region is allowed, while the white region is disallowed. The black dashed line shows the

SUSY relationship ∆σ = ∆ψ− 1
2 . The kink in the upper-left corner corresponds to the free fermion

theory for which (∆ψ,∆σ) = (1, 2). Figure 7 zooms in on the second feature, near (∆ψ,∆σ) ≈
(1.078, 0.565).

The proximity of this theory to the SUSY line may suggest that it is closely related to

the N = 1 SUSY Ising model. For example, suppose the N = 1 SUSY Ising model had

a parity-even scalar ε′ that was slightly relevant, ∆N=1
ε′ . 3. If ε′ is not the top compo-

nent of a scalar supermultiplet, then deforming the theory by this operator, flowing to the

IR, and tuning masses appropriately would yield a non-supersymmetric fixed-point with

dimensions very close to those of the SUSY theory. This possibility could be tested with

the bootstrap by identifying the N = 1 SUSY Ising theory, determining the dimension and

OPE coefficients of ε′, and performing conformal perturbation theory.

4.5 Central charge bounds

Having explored bounds on operator dimensions, we finally turn to the “central charge”

CT which appears in OPE coefficients of the stress tensor conformal block. We will place

a general lower bound on CT as a function of ∆ψ.

The two-point correlation function of the stress tensor is fixed by conformal invariance

to take the form (2.24) (with ∆ = 3) up to an overall coefficient. Let us write

〈Tµνcan(x1)T ρσcan(x2)〉 =
CT

(4π)2

1

x6
12

[
1

2

(
Iµρ(x12)Iνσ(x12) + Iµσ(x12)Iνρ(x12)

)
− 1

3
ηµνηρσ

]
(4.7)
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Allowed (∆ψ,∆σ) assuming ∆σ′ ≥ 3 (zoom)

Figure 7. A zoom of figure 6: allowed values of (∆ψ,∆σ) assuming ∆σ′ ≥ 3, computed with Λ = 23.

The orange shaded region is allowed, while the white region is disallowed. The black dashed line

shows the SUSY relationship ∆σ = ∆ψ − 1
2 . The feature corresponding to the Gross-Neveu models

at smaller ∆σ′ has just crossed the SUSY line near ∆ψ ≈ 1.082. We observe nothing remarkable

when this happens (and the precise dimensions (∆ψ,∆σ,∆σ′) are sensitive to Λ). Notice another

feature at (∆ψ,∆σ) ≈ (1.078, 0.565). This feature appears already for ∆σ′ ≥ 2.3 and persists all

the way to ∆σ′ & 6 at the same position in (∆ψ,∆σ) plane.

where Tµνcan denotes the canonically normalized stress tensor, which participates in the Ward

identity for translations as follows:

∂

∂xµ
〈Tµνcan(x)O1(x1) . . .On(xn)〉+

n∑
i=1

δ(x− xi)
∂

∂xνi
〈O1(x1) . . .On(xn)〉 = 0 . (4.8)

The free boson and free Majorana fermion have C free
T = 3/2.

The Ward identity (4.8) determines the OPE coefficients λaT,can in the 3-point functions

in eq. (2.27). As we show in appendix D, we have

λ1
T,can =

3i(∆ψ − 1)

8π
, λ2

T,can = − 3i

4π
. (4.9)

In our setup, however, our normalization of operators appearing in the ψ×ψ OPE depends

only on ∆ and ` and is otherwise independent of the details of the CFT we study. In

particular, we can use the normalization of the blocks explained in footnote 3, which is

equivalent to requiring that the 2-point function of the stress tensor (parity-even operator

with ∆ = 3 and ` = 2) is normalized as in (2.21) or (2.24) with cO = 1. Comparing (2.24)

with (4.7), we find

Tµν =
2π√
CT

Tµνcan , (4.10)
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and consequently

λ1
T = λ1

T,can

2π√
CT

, λ2
T = λ2

T,can

2π√
CT

. (4.11)

We can put a lower bound on CT as follows. In the sum rule (3.7), we isolate the

contribution of the parity-even spin-2 operator with ∆ = 3:

λaTλ
b
TF

I±
ab,3,2(u, v) = −

∑
a,b=1,2

λa1λ
b
1F

I±
ab,0,0(u, v)−

∑
O+, ` even
a,b=1,2

λaO+λ
b
O+F

I±
ab,∆,`(u, v)

−
∑

O−, ` even

(λ3
O−)2F

I±
33,∆,`(u, v)−

∑
O−, ` odd

(λ4
O−)2F

I±
44,∆,`(u, v) , (4.12)

where the summation over parity-even operators now excludes the stress energy tensor

and the identity operator, whose contributions we wrote separately. We now search for a

functional α such that:

−
∑

a,b=1,2

λaT,canλ
b
T,canαI±

(
F
I±
ab,3,2(u, v)

)
= 1 ,

αI±
(
F
I±
ab,∆,`(u, v)

)
� 0 , ∀∆ ≥ ∆`, ` even ,

αI±
(
F
I±
33,∆,`(u, v)

)
≥ 0 , ∀∆ ≥ ∆`, ` even ,

αI±
(
F
I±
44,∆,`(u, v)

)
≥ 0 , ∀∆ ≥ ∆`, ` odd . (4.13)

Here, ∆` is the lower bound on the dimension of a spin-` operator, set by unitarity.

Eqs. (4.12) and (4.11) then imply:

(2π)2

CT
≤ −αI±

[
F
I±
11,0,0(u, v)

]
, (4.14)

where we have used λa1 = iδa1 . Finding a functional α obeying (4.13) places a lower

bound on CT . To make the bound as strong as possible, we search for an α satisfying

the relations (4.13) that minimizes −αI± [F
I±
11,0,0(u, v)]. This is slightly different from our

procedure for setting bounds on dimensions, where it was enough just to find a functional

satisfying certain constraints. Nevertheless, the additional task of finding a functional

whose action on a given vector is minimal can again be efficiently performed using SDPB.

Our central charge lower bound as a function of ∆ψ is shown in figure 8. We normalize

CT by dividing by its value in the free fermion theory, C free
T = 3/2. The bound has

similar features to analogous bounds on CT coming from scalar 4-point functions in four

dimensional CFTs [62–64]. As the fermion dimension approaches its free theory value,

∆ψ → 1, the bound on CT also approaches its free theory value. For larger values of

∆ψ the bound becomes stronger, reaching a maximum. In this case, the position of the

maximum does not coincide with the features observed in the bounds for ∆σ and ∆ε, and

does not seem to play an important role as it did in the studies of 3D Ising model. At even

greater values of ∆ψ the bound goes to zero. After that point, the SDP problem described

by (4.13) is infeasible, i.e. it is not possible to find an α satisfying the constraints in (4.13).

Thus, we obtain no bound on CT for those values of ∆ψ, beyond the obvious CT ≥ 0.
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Lower bound on CT

Figure 8. Lower bound on the central charge CT of a unitary CFT containing a fermion with

dimension ∆ψ. As ∆ψ → 1, the bound approaches the free theory value of CT . The bound goes to

zero at ∆ψ = 1.47. For larger values of ∆ψ the SDP is infeasible and therefore does not produce

any bound. This bound was computed with Λ = 23.

5 Discussion

In this work, we set up the 3D fermion bootstrap and explored its numerical implications.

We first developed an embedding space formalism suitable for describing fermionic cor-

relators. We found that conformal blocks for identical spin-1/2 operators are given by

the action of certain differential operators on conformal blocks for scalars. Using these

operators, together with differential operators that relate integer spin correlators to scalar

blocks [17], one can further determine the conformal blocks for any 4-point function in 3D.

On the numerical side, we have foremost shown that the bootstrap can extract rigorous

constraints from four-point functions of non-scalar operators. We have obtained general

bounds on dimensions of low-lying operators in 3D CFTs with fermions and a small number

of relevant scalars. We also obtained general bounds on the central charge CT . Our results

not only provide rigorous constraints on the operator spectrum of CFTs with fermionic

operators, but also show numerous features reminiscent of those found when applying the

bootstrap to four-point functions of scalar operators.

One interesting feature revealed by the fermionic bootstrap is the kink in the parity-

even bound in figure 2, coinciding with the apparent decoupling of the leading parity-odd

scalar in figure 1. We do not yet know the correct interpretation of this feature, but it

is intriguing that it may point to the existence of a 3D fermionic CFT with no relevant

scalar operators. If such a theory is responsible for the kink in figure 2, it would contain
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a primary spinor operator ψ of dimension ∆ψ ≈ 1.27, and the lowest parity-even scalar

appearing in the ψ × ψ OPE would have dimension ∆ε ≈ 5.1. The possibility that these

features reveal a “dead-end” 3D CFT that gives an example of self-organized criticality

merits further study.

Other interesting features occur when we impose a gap to the second relevant parity-

odd scalar. By varying its dimension between 2 and 3, we observe a sequence of kinks

in the (∆ψ,∆σ) plane shown in figures 3 and 4. When the gap is very close to 2, their

locations match beautifully onto the dimensions in the Gross-Neveu models at large N ,

seen clearly in figure 5. At larger values of the gap, we expect that the kink locations

make precise predictions in small-N Gross-Neveu models. We also observe the appearance

of a new discontinuity in the allowed region at (∆ψ,∆σ) ≈ (1.078, 0.565), which is robust

against making the second parity-odd scalar irrelevant.

In order to better understand if these discontinuities correspond to specific CFTs or

SCFTs, one could pursue three immediate steps:8

• One could hope to extend the relation between fermionic conformal blocks and scalar

conformal blocks to fractional dimensions. By numerically studying the fermionic

crossing-equations in different dimensions, one could compare the evolution of the

discontinuities to the results from a perturbative ε-expansion (similar to [57, 65]).

• It is straightforward to extend our analysis to constrain fermionic theories with an

O(N) global symmetry. As N is varied, we can track the evolution of the bounds

on operators in each O(N) representation and again compare with results from the

large-N expansion for the Gross-Neveu models. Such a comparison could help confirm

that the kinks in figure 4 correspond to the fixed-points of the Gross-Neveu model

with a small number of flavors and in particular determine which kinks in our family

correspond to integer values of N .

• Finally, in order to better understand whether theories live at these discontinuities

it would be fruitful to extend our analysis to mixed four-point functions containing

both a fermionic operator ψ and a scalar operator φ. This will allow us to impose

gaps in the fermionic spectrum, opening up the possibility to obtain isolated islands

in the space of operator dimensions, as was seen for scalar correlators in [7, 10].

We anticipate that this analysis will be particularly useful for isolating the N = 1

super-Ising model. E.g., these mixed correlators would allow us to determine the

fermionic spectrum in the OPE φ×ψ, enabling us to probe the existence of a conserved

supercurrent in the spectrum.

We hope to report on these further investigations in future work.

8Given that the same steps would have confirmed that the 3D Ising model populates a “corner” in the

allowed space of dimensions, even without knowing any critical exponents a priori, we can be hopeful that

the same will happen for the N = 1 super-Ising model.
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A Group theory for 3D spinors

The 3D Lorentz group SO(2, 1) has a double cover which is SL(2,R) ' Sp(2,R) ' SU(1, 1).

For us the Sp(2,R) formulation is convenient. It is clear that the smallest irreducible

representation is a fundamental of Sp(2,R), which has two real components. This describes

a Majorana fermion in 2+1 dimensions.

The Lorentz algebra is

[Mµν ,Mρσ] = i(ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ) . (A.1)

In the case of SO(2, 1), we take the signature to be ηµν = diag(−1, 1, 1) and we have 3

generators J = 1
2εabM

ab = M12, Ka = M0
a, where a, b ∈ {1, 2}.

In the fundamental representation these generators can be written as

J =

0 0 0

0 0 −i
0 i 0

 , K1 =

 0 0 −i
0 0 0

−i 0 0

 , K2 =

0 i 0

i 0 0

0 0 0

 , (A.2)

which satisfy the algebra

[J,K1] = iK2 , [J,K2] = −iK1 , [K1,K2] = −iJ , (A.3)

and preserve the metric ηM + MT η = 0. Here J performs a spatial rotation and Ka

perform boosts. As usual, the rotation generators are Hermitian while the boost generators

are anti-Hermitian.
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The fundamental generators of Sp(2,R) (acting on ψα) satisfy the same algebra and

can be written as:

J =
1

2

(
0 i

−i 0

)
, K1 =

1

2

(
−i 0

0 i

)
, K2 =

1

2

(
0 i

i 0

)
, (A.4)

which preserve a symplectic tensor ΩMµν + (Mµν)TΩ = 0, where Ωαβ = Ωαβ =
(

0 1
−1 0

)
.

The (equivalent) anti-fundamental representation (acting on ψα = Ωαβψ
β) transforms

with generators J = ΩJΩ−1 = J , Ka = ΩKaΩ
−1 = −Ka.

The explicit mapping between SO(2, 1) and Sp(2,R) is accomplished via a Clifford

algebra:

γµγν + γνγµ = 2ηµν , (A.5)

where we can use the explicit real representation

γ0 =

(
0 1

−1 0

)
, γ1 =

(
0 1

1 0

)
, γ2 =

(
1 0

0 −1

)
. (A.6)

The Sp(2,R) fundamental generators are obtained from

(Mµν)αβ = − i
4

(
[γµ, γν ]

)α
β . (A.7)

Note that in our conventions, the index structure on the γµ matrices defined in (A.6) is

(γµ)αβ . Indices are lowered by multiplying with Ωαβ from the left, and raised by multiplying

with Ωαβ from the right (e.g., γµαβ ≡ Ωαγ(γµ)γβ and (γµ)αβ ≡ (γµ)αγΩγβ).

The 3D Lorentzian conformal group SO(3, 2) has a double cover which is Sp(4,R).

We would like to identify which Sp(2,R) subgroup corresponds to the Lorentz rotations

described above. We will write the metric as ηAB = diag(−1, 1, 1, 1,−1), where the first

3 components correspond to SO(2, 1) indices. Then the SO(3, 2) generators MAB which

correspond to physical Lorentz rotations and boosts are simply Mµν for µ, ν = 0, 1, 2.

The mapping between SO(3, 2) and Sp(4,R) is again realized via a Clifford algebra:

ΓAΓB + ΓBΓA = 2ηAB, (A.8)

and spinors transform in a representation of SO(3, 2) with generators

(MAB)IJ = − i
4

[ΓA,ΓB]IJ . (A.9)

We can construct a real basis for the (ΓA)IJ matrices explicitly as

Γ0 =


0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0

 , Γ1 =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 , Γ2 =


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1



Γ3 =


0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0

 , Γ4 =


0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

 . (A.10)
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The generators (MAB)IJ in the spinor representation satisfy the Sp(4,R) symplectic con-

straint ΩMAB + (MAB)TΩ = 0 with the invariant tensor

ΩIJ = ΩIJ =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 . (A.11)

Then in this basis the rotation and boost matrices are block diagonal and are given by:

J =
1

2


0 i 0 0

−i 0 0 0

0 0 0 i

0 0 −i 0

 , K1 =
1

2


−i 0 0 0

0 i 0 0

0 0 i 0

0 0 0 −i

 , K2 =
1

2


0 i 0 0

i 0 0 0

0 0 0 −i
0 0 −i 0

 . (A.12)

In other words, the upper two components of a Sp(4,R) spinor transform like an Sp(2,R)

fundamental, and the lower two components transform like an Sp(2,R) anti-fundamental:

Ψ =

(
ψα

ξβ

)
. (A.13)

B Gross-Neveu-Yukawa model at large N

In this appendix, we collect known results on the dimensions of low-lying operators in the

Gross-Neveu-Yukawa model at its conformal fixed point. The Lagrangian of the Gross-

Neveu-Yukawa model was given in (4.4). At the CFT point, one tunes the mass for the

scalar field φ to zero, and one can ignore the quartic scalar interaction as well as the kinetic

term for φ. After rescaling φ, the Lagrangian takes the form

L = −1

2

N∑
i=1

[
ψiγ

µ∂µψi − iφψiψi
]
. (B.1)

Recall that the Majorana condition in Lorentzian signature is ψ = ψT (iγ0). In our con-

ventions, γ0 = iσ2, so ψ = −ψTσ2.

B.1 Dimensions of ψ, φ, and φ2

The dimensions of ψ, φ, and φ2 have been computed in [51–53] at largeN . Let us summarize

some of these results. The dimension of the fermion operator ψi is known up to order 1/N3:

∆ψ = 1 +
4

3π2N
+

896

27π4N2
+

32
(
− 668 + 141π2 + 324π2 log 2− 3402ζ(3)

)
243π6N3

+O(1/N4) .

(B.2)

The dimension of φ is

∆φ = 1− 32

3π2N
+

32(304− 27π2)

27π4N2
+O(1/N3) . (B.3)

The dimension of φ2 is

∆φ2 = 2 +
32

3π2N
− 64(632 + 27π2)

27π4N2
+O(1/N3) . (B.4)
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B.2 Dimension of φk

To order 1/N , the dimension of the operator φk can be deduced from the results presented

above. Indeed, at leading order in 1/N , the dimension of φk equals k. At order 1/N , there

are only two Feynman diagrams contributing, one scaling as k and one as k(k − 1)/2. We

must therefore have

∆φk = k +
ak + bk2

N
+O(1/N2) , (B.5)

for some constants a and b. Comparing with (B.3)–(B.4), we have

∆φk = k +
16k(3k − 5)

3π2N
+O(1/N2) . (B.6)

For k = 3, for instance, (B.6) gives

∆φ3 = 3 +
64

π2N
+O(1/N2) . (B.7)

B.3 Dimension of ψ(iψj)

We are also interested in the dimension of the O(N) symmetric traceless operator ψ(iψj),

which appears not to have been calculated in the literature. At leading order in N , this

operator has dimension 2. In the rest of this section, we present the first 1/N correction

to this result, with the combined answer being

∆ψ(iψj)
= 2 +

32

3π2

1

N
+O(1/N2) . (B.8)

B.3.1 Setup

To derive (B.8), we find it convenient to work in Euclidean signature. The Euclidean

Lagrangian is the same as (B.1), with the only difference that we should use Euclidean-

signature gamma matrices, which can be taken to be γ0 = σ2, γ1 = σ1, γ2 = σ3. The

Majorana condition in Euclidean signature is still ψ = −ψTσ2.

At N =∞, the two-point function of ψ is:

〈ψαi (x)ψβj (0)〉∞ = δij
i(γµiσ2)αβxµ

4π |x|3
. (B.9)

In momentum space, this is

〈ψαi (p)ψβj (−p)〉∞ = δij
(γµiσ2)αβpµ

p2
. (B.10)

The effective action for φ obtained after integrating out the fermions is

1

2

∫
d3x

∫
d3y φ(x)φ(y)Πφ(x, y) , (B.11)

with

Πφ(x, y) =
1

4

N∑
i,j=1

〈ψiψi(x)ψjψj(y)〉∞ . (B.12)
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Since ψψ = −ψTσ2ψ = iεαβψ
αψβ , we have

Πφ(x, y) = −1

4
εαβεγδ〈ψiαψ

β
i (x)ψγj ψ

δ
j (y)〉∞ = − N

(4π)2 |x− y|4
. (B.13)

In momentum space,

Πφ(p) =
N |p|

16
, (B.14)

because ∫
d3xeipx

1

x4
= −π2 |p| . (B.15)

To leading order in N we can thus use the propagator for ψ:

Gαβij (p) = 〈ψαi (p)ψβj (−p)〉 = δij
(γµiσ2)αβpµ

p2
. (B.16)

The propagator for φ is D(p) = 1/Π(p), or

D(p) = 〈φ(p)φ(−p)〉 =
16

N |p|
. (B.17)

B.3.2 Anomalous dimension of ψ(iψj)

To compute the anomalous dimension of ψ(iψj), let us consider the particular case O(x) =

iεαβψ
α
1ψ

β
2 (x). The dimension of O is

∆O = 2∆ψ + ηvertex , (B.18)

where, in terms of Feynman diagrams, ηvertex can be extracted as the coefficient of the

logarithmic divergence of the vertex correction diagram. Keeping track of all the numerical

factors and using the propagators (B.16) and (B.17), we have

ηvertex log Λ + . . . =
1

2

∫
d3q

(2π)3

tr[γµγν ]qµqν

q4

16

N |q|
=

8 log Λ

π2N
+ . . . , (B.19)

from which we extract ηvertex = 8/(π2N). Using (B.18) and (B.2), we obtain

∆O = 2 +

(
8

3π2
+

8

π2

)
1

N
+O(1/N2) , (B.20)

yielding (B.8).

C Implementation in SDPB

In this appendix we provide a description of the numerical implementation of the fermionic

bootstrap using SDPB [8]. In order to implement a semi-definite program we limit the space

of functionals αI± over which we search over in section 3, to those taking the form,

αI± [f ] =
∑
n≤m,
m+n≤Λ

aI±mn∂
m
z ∂

n
z f(z, z)

∣∣∣∣
z=z= 1

2

, (C.1)
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with u = zz and v = (1 − z)(1 − z) and have evaluated the function f at the crossing

symmetric point z = z = 1/2.

Applying these functionals to our crossing equation amounts to finding the (z, z) deriva-

tives of functions gI± appearing in the definition of the conformal block (2.40). These

functions have singularities as z → z, the most divergent of them going as (z − z)−5. The

singularities come from our choice of basis {tI}; the full conformal block is perfectly regu-

lar at z = z. To avoid dealing with the divergences, we multiply the crossing equation by

(z − z)5 before applying the functional α.

In order to determine the derivatives of the conformal blocks gI± for the fermionic

four point functions, we have used a Mathematica script to apply the operators Da to the

rational approximation of the scalar conformal blocks presented in [9]. Thus, the derivatives

of the fermionic conformal blocks g
I±
∆,` can be written as

∂mz ∂
n
z ĝ

I±
∆,`(z, z)

∣∣
z=z=1/2

≈ χ`(∆)p
(m,n),I±

` (∆) , (C.2)

where p
(m,n),I±

` (∆) are polynomials in ∆ and χ`(∆) is a positive function for all values of

∆ above the unitarity bound. The hat in ĝ should remind us that we actually multiplied

functions g by (z − z)5. Consequently, at the crossing symmetric point we can write

∂mz ∂
n
z F̂

I±
ab,∆,`(z, z)

∣∣
z=z=1/2

≈ χ`(∆)P
(m,n),I±

ab,` (∆) , (C.3)

where P
(m,n),I±

ab,` (∆) for a, b ∈ {1, 2} or (a, b) = (3, 3), (a, b) = (4, 4), are linear combinations

of the polynomials p
(m,n),I±
` determined in Mathematica using (2.48) and the rational ap-

proximation of the scalar conformal blocks. Using this approximation, we can rewrite (3.8)

and (4.13) in the form of a polynomial matrix program solvable using SDPB [8],

Find aI±mn such that:

−
∑

a,b=1,2

λaO0
λbO0

Yab,`0(∆0) = 1 ,

Yab,`(∆) � 0 for all parity-even operators with ` even ,

Y33,`(∆) ≥ 0 for all parity-odd operators with ` even ,

Y44,`(∆) ≥ 0 for all parity-odd operators with ` odd , (C.4)

where the Yab,` are polynomials defined as

Yab,` =
∑

m,n,I±

aI±mnP
(m,n),I±

ab,` (C.5)

for a, b ∈ {1, 2} or (a, b) = (3, 3), (a, b) = (4, 4). In our applications we take the operator

O0 on which we normalize to be either the identity operator or the stress-energy tensor.

Note that because of the multiplication of crossing equation by (z − z)5, some of the

constraints in (C.4) are identically zero, or their linear combinations are identically zero,

i.e. the set of constraints is not linearly independent. This can cause instabilities in SDPB,

making it run indefinitely. We want to remove such “flat directions” and give only linearly
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Λ 19 23

κ 20 24

spins S19 S23

precision 640 960

findPrimalFeasible True True

findDualFeasible True True

detectPrimalFeasibleJump True True

detectDualFeasibleJump True True

dualityGapThreshold 10−25 10−40

primalErrorThreshold 10−25 10−100

dualErrorThreshold 10−25 10−40

initialMatrixScalePrimal (ΩP) 1020 1040

initialMatrixScaleDual (ΩD) 1020 1040

feasibleCenteringParameter (βfeasible) 0.1 0.1

infeasibleCenteringParameter (βinfeasible) 0.3 0.3

stepLengthReduction (γ) 0.7 0.7

choleskyStabilizeThreshold (θ) 10−40 10−40

maxComplementarity 10100 10130

Table 2. Parameters for the computations in this work. Only SDPB parameters that af-

fect the numerics (as opposed to parameters like maxThreads and maxRuntime) are included.

The sets of spins used are S19 = {0, 1, 2, . . . , 25} ∪ {29, 30, 33, 34, 37, 38, 41, 42, 45, 46, 49, 50} and

S23 = {0, 1, 2, . . . , 25} ∪ {29, 30, 33, 34, 37, 38, 41, 42, 45, 46, 49, 50, 59, 60}.

independent constraints to SDPB. This can be done numerically. We can view the set of

constraints (C.4) as a matrix with rows labeling the constraints and columns labeling the

components of a functional, a
I±
mn. We then only need to find the linearly independent rows

of the matrix. That can be done for example in Mathematica using the built-in RowReduce

function. Notice that this step needs to be done only once for a given Λ.

The full description of implementing the polynomial matrix program required to find

a
I±
mn can be found in the SDPB manual [8]. We have used a Mathematica script to manipulate

the fermionic conformal blocks to obtain the matrix input for SDPB. In order to obtain

numerically accurate results we have used the parameters presented in table 2 in our SDPB

implementation. For Λ = 19 generating the input file required by SDPB takes about 30

minutes (on a single core), while solving each semi-definite program takes 25 minutes

(allowed points) or 100 minutes (disallowed points) on an 8 core machine. For Λ = 23

generating the input file required by SDPB takes about 90 minutes while solving each semi-

definite program takes 3 hours (allowed points) or 14 hours (disallowed points) on an 8

core machine.

D Conformal Ward identities

In this appendix we study the implications of the Ward identity given in eq. (4.8) for

correlators containing fermions. One can multiply (4.8) by a conformal Killing vector ξν
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satisfying ∂(µξν) ∝ ηµν . In a conformal field theory, the fact that the stress tensor Tµν is

symmetric and traceless implies

∂

∂xµ
〈ξν(x)Tµν(x)O1(x1) . . .On(xn)〉+

n∑
i=1

δ(x− xi)ξν(xi)
∂

∂xνi
〈O1(x1) . . .On(xn)〉 = 0 .

(D.1)

Taking x1 = 0, O1 = O, and integrating in x over a small enough sphere of radius ε

centered at the origin, one can extract the integrated OPE

ε2
∫
S2

d2n̂ nµξν(x)Tµν(x)O(0) = i[Qξ,O](0) , (D.2)

where in deriving the expression we also used Stokes’ theorem and Qξ is the conserved

charge whose associated conserved current is Jµ(x) = ξν(x)Tµν(x). Specializing to Lorentz

transformations, translations, special conformal transformations, and dilatations, we sim-

ply replace ξν(x)Tµν(x) with

(Mνρ)µ(x) = xρTµν − xνTµρ ,
(Pν)µ(x) = −Tµν ,
(Kν)µ(x) = 2xνx

ρTµρ − x2Tµν ,

Dµ(x) = xνTµν ,

(D.3)

in (D.2), and Qξ with Mµρ, Pν , Kν , and D, respectively.

We are interested in calculating the OPE coefficient between the stress tensor and a

spinor primary field ψ. Using (2.8), eq. (D.2) becomes

ε2
∫
S2

d2n̂ n̂µ(Mνρ)µ(εn̂)ψ(0) = −1

2
γνρψ(0) ,

ε2
∫
S2

d2n̂ n̂µ(Pν)µ(εn̂)ψ(0) = −∂νψ(0) ,

ε2
∫
S2

d2n̂ n̂µ(Kν)µ(εn̂)ψ(0) = 0 ,

ε2
∫
S2

d2n̂ n̂µDµ(εn̂)ψ(0) = ∆ψψ(0) .

(D.4)

The general form of the OPE Tµν×ψ is restricted by the tracelessness and conservation

of Tµν to take the form

Tµν(x)ψ(0) = a
ηµνx

2 − 3xµxν

|x|5
ψ(0) + b

xµx
ργρν + xνx

ργρµ

|x|5
ψ(0) + · · · , (D.5)

for some constants a and b. Using the definitions (D.3), we have

xµ(Mνρ)µ(x)ψ(0) = b
xρx

σγσν − xνxσγσρ
|x|3

ψ(0) +O(x0) ,

xµ(Pν)µ(x)ψ(0) = a
2xν

|x|3
ψ(0)− bx

σγσν

|x|3
ψ(0) +O(x−1) ,

xµ(Kν)µ(x)ψ(0) = −a2xν
|x|

ψ(0)− bx
σγσν
|x|

ψ(0) +O(x) ,

xµDµ(x)ψ(0) = −a 2

|x|
ψ(0) +O(x0) ,

(D.6)
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and so

ε2
∫
S2

d2n̂ n̂µ(Mνρ)µ(εn̂)ψ(0) = −8πb

3
γνρψ(0) +O(ε) ,

ε2
∫
S2

d2n̂ n̂µ(Pν)µ(εn̂)ψ(0) = O(ε0) ,

ε2
∫
S2

d2n̂ n̂µ(Kν)µ(εn̂)ψ(0) = O(ε2) ,

ε2
∫
S2

d2n̂ n̂µDµ(εn̂)ψ(0) = −8πaψ(0) +O(ε) .

(D.7)

Comparing (D.7) with (D.4), we identify

a = −
∆ψ

8π
, b =

3

16π
. (D.8)

The final form of the T × ψ OPE is

Tµν(x)ψ(0) = −
∆ψ

8π

ηµνx
2 − 3xµxν

|x|5
ψ(0) +

3

16π

xµx
ργρν + xνx

ργρµ

|x|5
ψ(0) + · · · . (D.9)

Let us now compare this expression with what we expect from the 3-point func-

tion (2.27). For a parity-even operator, we have

〈ψβ(x1)ψγ(x2)Oα1...α2`(x3)〉 =

λ1
O
xβγ12 (x31x12x23)(α1α2 · · · (x31x12x23)α2`−1α2`)

|x12|2∆ψ−∆+`+1 |x23|∆+` |x31|∆+`

+ λ2
O

(x13)β(α1(x23)|γ|α2(x31x12x23)α3α4 · · · (x31x12x23)α2`−1α2`)

|x12|2∆ψ−∆+`−1 |x23|∆+` |x31|∆+`
,

(D.10)

where as usual xαβ = xµ(γµΩ)αβ . From the x3 → x1 limit of the 3-pt function we can

deduce the O × ψ OPE. In this limit, the 3-pt function is

〈ψβ(x1)ψγ(x2)Oα1...α2`(x3)〉 ≈ λ1
O(−1)`

xβγ12 (x31)(α1α2 · · · (x31)α2`−1α2`)

|x12|2∆ψ+1 |x31|∆+`

+ λ2
O(−1)`

(x31)β(α1(x21)|γ|k2(x31)α3α4 · · · (x31)α2`−1α2`)

|x12|2∆ψ+1 |x31|∆+`
.

(D.11)

Using the normalization where 〈ψα(x)ψβ(0)〉 = ixαβ/ |x|2∆ψ+1, the OPE contribution of ψ

then is

Oα1...α2`(x3)ψβ(x1) ∼ i(−1)`+1λ1
O

(x31)(α1α2 · · · (x31)α2`−1α2`)

|x31|∆+`
ψβ(x1)

+ i(−1)`λ2
O

(x31)β(α1 · · · (x31)α2`−2α2`−1

|x31|∆+`
ψα2`)(x1) ,

(D.12)

because this contribution reproduces the 3-pt function in the OPE limit.
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Let us now specialize to the case where O2 = T is the canonically normalized stress

tensor. Eq. (D.12) is in this limit

Tα1α2α3α4(x)ψβ(0) ∼ −iλ1
T

1

|x|5
x(α1α2xα3α4)ψβ(0) + iλ2

T

1

|x|5
xβ(α1xα2α3ψα4)(0) . (D.13)

Using (2.22) we can represent the stress tensor as a rank-2 Lorentz tensor:

Tµν(x)ψβ(0) ∼
1

4
(Ωγµ)α1α2(Ωγν)α3α4

[
− iλ1

T

1

|x|5
x(α1α2xα3α4)ψβ(0) + iλ2

T

1

|x|5
xβ(α1xα2α3ψα4)(0)

]
.

(D.14)

For the first term, we can use

xσxρ(iσ2γµ)α1α2(iσ2γν)α3α4(γσiσ2)(α1α2(γρiσ2)α3α4)

=
1

3
xσxρ

[
tr(γµγσ) tr(γνγρ) + 2 tr(γµγσγνγρ)

]
=

1

3

[
4xµxν − 4x2ηµν + 8xµxν

]
= −4

3
(ηµνx

2 − 3xµxν) .

(D.15)

For the second term, we have

xσxρ(iσ2γµ)k1k2(iσ2γν)k3k4(γσiσ2)i(k1(γρiσ2)k2k3ψk4)

=
1

6
xσxρ

(
2γσγµγργνψ + 2γσγνγργµψ + tr(γργµ)γσγνψ + tr(γργν)γσγµψ

)i
=

1

6
xσxρ

(
− 2ηρσγµγνψ + 4ηµργσγνψ + 2ηµργσγνψ + (µ↔ ν)

)i
=

1

6

[
− 4x2ηµνψ + 6(xµx

σγσν + xνx
σγσµ)ψ + 12xµxνψ

]i
=

[
− 2

3
(x2ηµν − 3xµxν)ψ + (xµx

σγσν + xνx
σγσµ)ψ

]i
.

(D.16)

So:

Tµν(x)ψ(0) ∼ i

6
(2λ1

T−λ2
ψψT )

ηµνx
2 − 3xµxν

|x|5
ψ(0)+

i

4
λ2
T

xµx
ργρν + xνx

ργρµ

|x|5
ψ(0) . (D.17)

We can compare (D.5) to (D.17) to obtain

λ1
T =

3i(∆ψ − 1)

8π
, λ2

T = − 3i

4π
. (D.18)
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