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1 Introduction

This short article is about formulating a Simple Route from the 10-dimensional Super

Yang Mills (SYM) Fermion Supersymmetry Transformation to the full (2+1) dimensional

Bagger-Lambert-Gustavsson (BLG) theory.

The BLG Lagrangian and supersymmetry transformations [1, 2] can be thought of as

the leading order terms in an lp expansion of a non-linear M2-brane theory. This is analo-

gous to how Super Yang Mills theory represents the leading order terms of the Born-Infeld

action, which describes the dynamics of coincident D-branes. In Bagger and Lambert’s

original paper, dimensional analysis was used alongside a novel algebraic structure to write

down the most general scalar, fermion and gauge field supersymmetry transformations.

The supersymmetry algebra was shown to close on to equations of motion which were used

to infer the structure of the Lagrangian. In [3], Richmond used a similar approach to de-

termine the next-to-leading order four-derivative corrected supersymmetry transformations

and Lagrangian of the Euclidean BLG theory. Starting from the most general expressions

allowed by dimensional analysis, he was able to uniquely determine the coefficients through

the invariance of the Lagrangian and closure of the supersymmetry algebra.

An alternative approach for determining the Lorentzian BLG Lagrangian, at lower

and higher order, was presented in a series of papers [5–7] in which the authors used a

duality transformation due to de-Witt, Nicholai and Samtleben (dNS) [8–10]. The duality

is based on the idea that a gauge field is dual to a scalar in (2 + 1) dimensions and it

is therefore possible to replace the gauge field with a scalar and in so doing enhance the

SO(7) symmetry of the scalars to SO(8). In [7], this approach was applied to the α
′2

terms of the D2-brane Lagrangian in order to determine the four-derivative corrections to

the Lorentzian BLG theory. Furthermore, it was shown that all higher-order terms were

expressible in terms of three-brackets [XI , XJ , XK ]. This led the authors to conjecture

that the higher-order Lagrangian they had derived would also apply to the Euclidean BLG
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theory. This conjecture was confirmed in [11] where the authors used dimensional analysis

to write down all possible terms at four-derivative order, and then applied the Novel Higgs

mechanism to match coefficients with terms in the D2-brane Lagrangian. This confirmed

that the structure of the Lorentzian theory derived using dNS duality had exactly the same

form as the Euclidean BLG theory at four-derivative order.

Motivated by this approach, one might consider applying the dNS duality transfor-

mation directly at the level of supersymmetry transformations. In [12] the four-derivative

corrected BLG fermion supersymmetry transformation was derived by applying the dNS

duality to the α
′2 corrections of the non-abelian D2-brane theory. However, the dNS du-

ality was shown to break down when applied to the D2-brane gauge field and scalar field

supersymmetry transformations. For a more detailed discussion see [13].

In this paper we propose a new and simple route for determining the four-derivative

corrected BLG supersymmetry transformations, including quadratic fermion terms. Start-

ing from the α
′2 fermion supersymmetry transformation of ten-dimensional SYM theory,

we reduce to (2 + 1) dimensions and apply the dNS duality to the D2-brane supersymme-

try transformation. The resulting SO(8) invariant BLG fermion transformation is used to

construct the supercharge, which in turn is used to generate the scalar field and gauge field

supersymmetry transformations. The requirement that the supercharge should generate

the gauge field supersymmetry transformation constrains the Poisson-bracket structure for

the spatial components of the gauge field.

The structure of this article is as follows. In section 2, we outline our methodology and

apply it to the lowest order ten-dimensional SYM fermion transformation to derive the low-

est order BLG theory. In section 3, we apply our method to determine the four-derivative

corrected BLG supersymmetry transformations. In section 4, we apply our method to

determine, for the first time, the quadratic fermion terms in the higher order fermion su-

persymmetry transformations of BLG theory. The appendix outlines conventions, useful

identities and key formulae used in this paper.

2 The simple route

Our start point is the 10-dimensional Super Yang Mills Fermion supersymmetry transfor-

mation. A gauge field has mass dimension [A] = 1 in any dimension, and therefore in

10-dimensional SYM the coupling constant has mass dimension [gYM ] = −3, the fermion

field has mass dimension [ψ] = 3
2 and the supersymmetry parameter has mass dimension

[ǫ] = −1
2 . A little thought reveals that the fermion transformation of 10d SYM must take

the form δψ = δψ(1) + δψ(2) + δψ(3)

δψ(1) =
1

2
ΓMNFMN ǫ (2.1)

δψ(2) = α
′2(λ1Γ

MNFPQF
PQFMN ǫ

+ λ2Γ
MNFMPF

PQFQN ǫ

+ λ3Γ
MNPQRSFMNFPQFRSǫ) (2.2)

δψ(3) = α
′2(λ4ψ̄Γ

MDNψFMN ǫ+ λ5ψ̄Γ
MNPDMψFNP ǫ) (2.3)
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Start with 10 dim SYM Susy Fermion δψ

dimensionally reduce to 2+1 dim

Non-abelian D2 Brane Susy Fermion δψ

dualise YM gauge field AM to scalar

2+1 dim BLG Susy Fermion δψ

derive supercurrent, generate scalar, gauge field

2+1 dim BLG Susy Fermion,

Scalar, Gauge Field δψ, δXI , δAµ

close the algebra for fermion, gauge field

Fermion, Gauge Field E.O.M.

calculate supervariation of fermion e.o.m.

Scalar Field Equation of Motion

integrate e.o.m.

BLG Lagrangian and it’s Susy transformations

Figure 1. The Simple Route to the BLG theory - both Susy transformations and Lagrangian -

starting from knowledge of only the 10d Super Yang Mills Fermion Susy transformations.
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where M,N are the 10 dimensional Lorentz indices taking values (0, 1, 2 . . . 9), FMN is the

non-Abelian gauge field strength and ψ represents a ten dimensional complex Majorana-

Weyl spinor. The Gamma matrices satisfy the 10-dimensional Clifford algebra. Further-

more we see that the fermion transformation is comprised of three parts: δψ(1) represents

the known lowest order fermion supersymmetry transformation, δψ(2) represents the triv-

ial α
′2 correction and δψ(3) represents a quadratic fermion α

′2 correction.1 The spinors

appearing in 10 dimensional Super Yang Mills are Majorana-Weyl and satisfy

Γ(10)Ψ = Ψ (2.4)

where Γ(10) is the ten dimensional chirality matrix. Since we are ultimately interested

in applying a duality transformation to lift the D2-brane supersymmetry transformations

to M-theory it is desirable to look for an embedding of SO(1, 9) into SO(1, 10) in which

Γ(10) becomes the eleventh gamma matrix. We denote the gamma matrices of SO(1, 10) as

ΓM (M = 0, . . . , 9, 10). In eleven dimensions the spinors will be Majorana. The presence of

the M2 brane breaks the Lorentz symmetry as SO(1, 10) → SO(1, 2)×SO(8) and therefore

we can have a Weyl spinor of SO(8). Let us denote the chirality matrix of SO(8) by Γ where

Γ = Γ3...9(10) (2.5)

Half of the supersymmetry of the vacuum is broken by the presence of the M2-brane. We

choose conventions in which

Γǫ = ǫ, Γψ = −ψ (2.6)

Under dimensional reduction, the (9+1) dimensional gauge field will split into a (2+1) di-

mensional gauge field Aµ and a scalar field Xi transforming under SO(7). As is usual with

dimensional reduction, the fields are independent of the compact directions and therefore

one can set ∂i = 0.

As an illustrative exercise, we will use our knowledge of the lowest order BLG fermion

supersymmetry transformation to generate the scalar and gauge field supersymmetry trans-

formations. Our start point is the lowest order (2+1)-dimensional fermion supersymmetry

transformation written in an SO(8) invariant form2

δψ = ΓµΓIDµX
Iǫ−

1

6
ΓIJKXIJKǫ (2.7)

where XIJK is defined as

XIJK = gIY M [XJ , XK ] + gJYM [XK , XI ] + gKYM [XI , XJ ] (2.8)

with

gIY M = (0, . . . , gYM ), I = 1, 2, . . . , 8. (2.9)

1The structure of the α

′
2 corrections to 10d SYM was first investigated by Berghoeff and collaborators

in [14, 15].
2For a detailed discussion of dNS duality and its implementation at the level of supersymmetry trans-

formations please refer to [6, 7, 12, 13].
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The next step in the process is to use the fermion transformation to derive an expression

for the supercurrent. The conserved supercurrent is the Noether current associated with

global supersymmetry transformations. Noethers theorem asserts that corresponding to

every global symmetry there exists a corresponding conserved current. The usual approach

for constructing such an expression is to check the invariance of the Lagrangian under

supersymmetry transformations. As is well known, the Lagrangian need only be invariant

up to a total derivative to ensure that the Action is invariant. Importantly, the total

derivative contributes to the the conserved Noether current. However, we are assuming that

we have no knowledge of the Lagrangian and therefore must use an alternative approach

for determining the structure of the conserved supercurrent. In [16, 17] it was noted

that the supercurrent corresponding to lowest order BLG theory could be derived through

knowledge of only the BLG fermion transformation, in particular

ǭJσ = −ψ̄Γσδψ. (2.10)

Importantly we emphasise that this expression only requires knowledge of the fermion

supersymmetry transformation. In the case of lowest order BLG, constructing the super-

current results in the following expression

+ ǭJσ = −ψ̄Γσδψ = −(ψ̄ΓσΓµΓIDµX
Iǫ) +

1

6
(ψ̄ΓσΓIJKXIJKǫ). (2.11)

The validity of this expression can be tested by observing whether the corresponding su-

percharge generates the expected supersymmetry transformations. The supercharge is the

integral over the spatial worldvolume coordinates of the timelike component of the super-

current

Q =

∫

d2σJ0 (2.12)

= −

∫

d2σ

(

DνX
IΓνΓIΓ0ψ +

1

6
XIJKΓIJKΓ0ψ

)

.

Since the supercharge is the generator of supersymmetry transformations it should be pos-

sible to generate the scalar field and gauge field supersymmetry transformations explicitly.

Scalar transformation. Let us now use the expression for the supercharge to generate

the scalar field supersymmetry transformation

δXI = iǭ [Q,XI ] (2.13)

= iǭ[−

∫

d2σ
(

∂νX
J(σ)ΓνΓJΓ0ψ(σ)

)

, XI(σ′)]

= −iǭΓ0ΓJΓ0ψ(σ)

∫

d2σ[∂0X
J(σ), XI(σ′)]

= iǭΓJψ(σ)

∫

d2σδIJδ(σ − σ′)

= iǭΓIψ

which is the expected form of the BLG scalar supersymmetry transformation.
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Gauge field transformation. In contrast to the scalar field, the gauge field Poisson

Bracket is ill-defined since the gauge field is non-dynamical in (2 + 1) dimensions. The

problem can be traced to the fact that there is no momentum conjugate to the gauge field;

this can be seen explicitly at the level of the Lagrangian by looking at the structure of the

Chern-Simons term. Motivated by the requirement that the supercharge should generate

the gauge field supersymmetry transformation, we have found that by assuming3

[Ai, Aj ]P.B = ǫij (2.14)

we are able to generate the correct expression for the spatial components of the gauge field

supersymmetry transformation. We then conjecture that the same structure holds for the

time-like component of the gauge field transformation. For example, at lower order we have

δAj = iǭ [Q,Aj ]P.B

= −(iǭΓiΓ0ΓIψ)

∫

d2σ [Ai, Aj ]P.BX
I (2.15)

= −(iǭΓiΓ0ΓIψ)ǫijX
I

= −(iǭΓ12ΓiΓIψ)ǫijX
I

= +iǭΓjΓ
IXIψ (2.16)

which is the correct expression for the spatial components of the BLG gauge field supersym-

metry transformation. We then conjecture that the expression for the spatial components

can be generalised to all world-volume indices

δAµ = +iǭΓµΓ
IXIψ. (2.17)

In the next section we will show that our method can be successfully applied to determine

the higher-order corrections to the BLG supersymmetry transformations.

3 Higher order BLG supersymmetry transformations

In this section we will apply our method to the δψ(2) terms appearing in (2.2) in order to

uniquely determine the higher order BLG supersymmetry transformations. We will then

show that for the case of Euclidean BLG theory, our results match the literature [3]. Our

start point is the ten dimensional α
′2 corrected SYM Fermion transformation

δψ(2) = α
′2(λ1Γ

MNFPQF
PQFMN ǫ

+ λ2Γ
MNFMPF

PQFQN ǫ

+ λ3Γ
MNPQRSFMNFPQFRSǫ) (3.1)

The first step is to reduce this expression to (2 + 1) dimensions and then apply the dNS

duality transformation. The requirement of SO(8) invariance places constraints on the

coefficents appearing in (3.1). The full derivation of the higher order BLG Fermion trans-

formation can be found in [12] and therefore we will only include an illustrative example

3We would like to thank Professor Neil Lambert for enlightening discussions surrounding this issue.
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of how the coefficients can be fixed by looking at an ‘abelian’ truncation of the full theory.

In this case, dimensional reduction of (3.1) results in

δψ = +λ1(Γ
µνFµνF

ρσFρσ + 2ΓµνFµν∂
ρXi∂ρX

i

+ 2ΓµΓi∂µX
iF ρσFρσ + 4ΓµΓi∂µX

i∂νXj∂νX
j)ǫ

+ λ2(Γ
µνFµρF

ρσFσν − 2ΓµνFµρ∂
ρXi∂νX

i

+ 2ΓµΓiFµρF
ρσ∂σX

i − 2ΓµΓi∂µX
j∂ρXj∂ρX

i)

− Γij∂ρX
iF ρσ∂σX

j)ǫ

+ λ3(−8ΓµνρΓijk∂µX
i∂νX

j∂ρX
k)ǫ. (3.2)

Duality is implemented at higher order by making the replacement Fµν = +ǫµνλD
λX8.

We are considering the ‘abelian’ truncation in which case the covariant derivatives will be

replaced by partical derivatives. A small amount of algebra leads to the following expression

δψ = λ1(+4Γµ∂µX
8∂νX8∂νX

8 − 4Γµ∂µX
8∂ρXi∂ρX

i

− 4ΓµΓi∂µX
i∂νX

8∂νX8 + 4ΓµΓi∂µX
i∂νXj∂νX

j)ǫ

+ λ2(−2Γµ∂νX
8∂νX8∂µX

8 − 2Γµ∂νX8∂µX
i∂νX

i

+ 2Γµ∂µX
8∂νXi∂νX

i + 2ΓµΓi∂νX8∂νX
8∂µX

i

− 2ΓµΓi∂νX8∂µX
8∂νX

i − 2ΓµΓi∂µX
j∂ρXj∂ρX

i

− Γijǫρσλ∂ρX
i∂λX

8∂σX
j)ǫ

+ λ3(−8ΓµνρΓijk∂µX
i∂νX

j∂ρX
k)ǫ. (3.3)

The requirement that these terms should be expressible in an SO(8) invariant form places

constraints on the coefficients

δψ = +4λ1ΓµΓ
I∂νXJ∂µXJ∂νX

Iǫ− 2λ2ΓµΓ
I∂µXJ∂νX

J∂νXIǫ

+ (2λ2 − 8λ1)(Γµ∂νX
j∂νXj∂µX8 + ΓµΓ

j∂νX
8∂νX8∂µXj)ǫ

− 8λ3Γ
µνρΓijk∂µX

i∂νX
j∂ρX

kǫ− λ2Γ
ijǫρσλ∂ρX

i∂λX
8∂σX

jǫ. (3.4)

We see that in order for the second line to vanish we require λ2 = +4λ1. A little algebra

in the third line reveals that λ2 = +24λ3. The absolute values are dependent on the α
′2

conventions in ten-dimensional Super Yang Mills. Setting λ1 = + 1
32 , we find λ2 = +1

8 and

λ3 = + 1
192 which is in perfect agreement with the ten-dimensional supersymmetry trans-

formations derived in [18–20]. Furthermore, we are now able to write down an expression

for the truncated higher order BLG fermion transformation

δψ = l3p

(

+
1

8
ΓµΓ

I∂νX
J∂νXJ∂µXI −

1

4
ΓµΓ

I∂µXJ∂νX
J∂νXI

−
1

24
ǫµνρΓIJK∂µX

I∂νX
J∂ρX

K

)

ǫ. (3.5)

Once the coefficients are fixed, it is a simple yet tedious task to apply the dimensional

reduction and duality transformation to the ‘non-abelian’ terms and re-write them in an
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SO(8) invariant form [12]. The final answer for the l3p correction to the BLG fermion

supersymmetry transformation is4

δψ = l3p

[

+
1

8
ΓµΓ

IDνX
JDνXJDµXI −

1

4
ΓµΓ

IDµXJDνX
JDνXI

−
1

24
ǫµνρΓIJKDµX

IDνX
JDρX

K +
1

8
ΓµνΓIDµX

JDνX
KXJKI

+
1

8
ΓIJKDµX

LDµXJXILK −
1

48
ΓIJKDµX

LDµXLXIJK

+
1

48
ΓµνΓIJKLMDµX

IDνX
JXKLM +

1

8
ΓµΓ

JDµXKXKLMXLJM

+
1

32
ΓµΓ

IJKLMDµXMXIJNXKLN +
1

48
ΓµΓ

JDµXJXKLMXKLM

−
1

48
ΓµΓ

IJKLMDµXNXIJMXKLN −
1

576
ΓIJKLMNPXIJQXKLQXMNP

−
1

32
ΓIJMXIKNXKLNXLJM −

1

144
ΓIJMXKLNXKLNXIJM

]

ǫ. (3.6)

It is worth emphasising that our result is true for the most general class of three-algebra

theories. In the specific case of a Euclidean three-algbera, we recover the result calculated

by Richmond in [3]. In particular terms 9, 11 and 12 in the above expression are shown to

vanish and terms 13 and 14 are shown to combine. In the case of Euclidean three-algebra,

Richmond showed that the symmetrised trace prescription leads to a number of identities

(see [3, 4] for details). Let us consider term 11 as an example

δψ11 = ΓµΓ
IJKLMDµXNXIJMXKLN (3.7)

= ΓµΓ
IJKLMDµXN [XKJMXILN +XIKMXJLN +XIJKXMLN ]

= −3ΓµΓ
IJKLMDµXNXIJMXKLN

and therefore this term must be zero. Likewise terms 9 and 12 can be shown to vanish as

a result of the same identity. Next, we can rewrite term 13 as

−
1

32
ΓIΓJMXIKNXKLNXLJM = +

1

96
ΓIJMXKLNXKLNXIJM (3.8)

where we made use of the identity ΓMNXLMNXJKLXIJK = +1
3Γ

MNXIMNXLJKXLJK .

This term will now combine with term 14 to give

+
1

288
ΓIJMXKLNXKLNXIJM ǫ. (3.9)

Thus in the special case of a Euclidean BLG theory we find the following expression for

the four-derivative corrected fermion supersymmetry transformation

δψ = l3p

[

+
1

8
ΓµΓ

IDνX
JDνXJDµXI −

1

4
ΓµΓ

IDµXJDνX
JDνXI

−
1

24
ǫµνρΓIJKDµX

IDνX
JDρX

K +
1

8
ΓµνΓIDµX

JDνX
KXJKI

4This expression contains a few minor coefficient corrections compared to the result presented in [12].
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+
1

8
ΓIJKDµX

LDµXJXILK −
1

48
ΓIJKDµX

LDµXLXIJK

+
1

48
ΓµνΓIJKLMDµX

IDνX
JXKLM +

1

8
ΓµΓ

JDµXKXKLMXLJM

+
1

48
ΓµΓ

JDµXJXKLMXKLM +
1

288
ΓIJMXKLNXKLNXIJM

]

ǫ. (3.10)

This result is in complete agreement with the result derived by Richmond in [3]. We are

now in a position to utilise the method outlined in the previous section to determine an

expression for the higher order supercurrent. The associated supercharge can then be used

to generate the scalar field and gauge field supersymmetry transformations. By way of

example, we will now show how this works for the first term appeaing in (3.10). We first

construct the supercurrent

ǭJσ = −ψ̄Γσδψ (3.11)

= −
1

8
(ψ̄ΓσΓµΓIǫ)DνX

JDνXJDµX
I .

from which we can determine the supercharge. Next we generate the scalar supersymmetry

transformation

δXI = iǭ[Q,XI ] (3.12)

= +
1

8
(iǭ ΓµΓ0ΓJψ)

∫

d2σ [DνX
KDνXKDµX

J , XI ]

= −
1

8
(iǭ ΓJψ) DνX

KDνXK

∫

d2σ [∂0X
J , XI ]

= −
1

8
(iǭ ΓIψ) DνX

JDνXJ .

Applying this simple calculational method to the terms appearing in (3.10) leads to the

following expression for the higher order BLG scalar supersymmetry transformation

δXI = −
1

8
(iǭ ΓIψ) DνX

JDνXJ +
1

4
(iǭ ΓJψ) DνX

IDνXJ

+
1

8
(iǭ Γµν ΓIJKψ) DµX

JDνX
K −

1

4
(iǭ Γµ ΓMψ) DµX

JXIJM

−
1

24
(iǭ Γµ ΓIJKLMψ) DµX

JXKLM +
1

8
(iǭ ΓLψ) XJKIXJKL

−
1

48
(iǭ ΓIψ) XKLMXKLM . (3.13)

Again, these terms are in perfect agreement with the terms derived by Richmond in [4].

We now turn our attention to the gauge field supersymmetry transformations. Each of

the ten fermion terms appearing in (3.10) gives rise to a supercharge term which is then

used to generate the gauge field transformation. As an illustrative example, we will now

show how this works for the first term appearing in (3.10). Our starting point is the

supercharge constructed from the first term in (3.10) which can then be used to generate

the corresponding gauge field term

δAj = +
1

8
(iǭ ΓµΓ0ΓIψ)

∫

d2σ[DνX
JDνXJDµX

I , Aj ] (3.14)
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= −
1

4
(iǭΓνΓ0ΓJψ)

∫

d2σ[Ai, Aj ]D
iXIDνX

JXI

−
1

8
(iǭΓiΓ0ΓIψ)

∫

d2σ[Ai, Aj ]D
νXJDνX

JXI

= −
1

4
(iǭ ΓνΓ0ΓJψ)ǫijD

iXIDνX
JXI −

1

8
(iǭΓiΓ0ΓIψ)ǫijD

νXJDνX
JXI .

The next step is to sum over the contracted world-volume indices and to note that ǭΓ0 =

−ǭΓ12 such that we can write

δAj = +
1

4
(iǭ Γ2ΓJψǫij)D

iXID1X
JXI −

1

4
(iǭ Γ1ΓJψǫij)D

iXID2X
JXI

+
1

4
(iǭ Γ12Γ0ΓJψǫij)D

iXID0X
JXI +

1

8
(iǭΓjΓ

Iψ) DνXJDνX
JXI . (3.15)

By explicitly setting i = 1 and j = 2 the above expression can be re-written as

δAj = −
1

4
(iǭ ΓiΓ

Jψ)DiXIDjX
JXI +

1

4
(iǭ ΓjΓ

Jψ)DiXIDiX
JXI

+
1

4
(iǭ ΓjνρΓ

Jψ)DρXIDνXJXI +
1

8
(iǭΓjΓ

Iψ) DνXJDνX
JXI . (3.16)

which represents the spatial components of the desired gauge field transformation. We now

conjecture that the same relationship holds true for the time-like component of the gauge

field transformation and therefore

δAµ = −
1

4
(iǭ ΓνΓJψ)DνX

IDµX
JXI +

1

4
(iǭ ΓµΓ

Jψ)DνXIDνX
JXI

+
1

4
(iǭ ΓµνρΓ

Jψ)DρXIDνXJXI +
1

8
(iǭ ΓµΓ

Iψ)DνXJDνX
JXI . (3.17)

Applying this method to the remaining nine terms in (3.10) results in the following sim-

plified expression for the higher order BLG gauge field supersymmetry transformation

δAµ=−
1

4
(iǭ ΓνΓJψ)DνX

IDµX
JXI +

1

2
(iǭ ΓµνρΓ

Jψ)DνXJDρXIXI

−
1

8
(iǭ ΓµΓ

Iψ) DνX
JDνX

JXI −
1

4
(iǭ ΓµΓ

Jψ)DνX
IDνXJXI

+
1

4
(iǭ ΓνΓJψ) DµX

IDνX
JXI +

1

4
(iǭ ΓνΓIψ) DµX

JDνX
JXI

+
1

8
(iǭ ΓµνρΓ

IJKψ) DνXJDρXKXI +
1

4
(iǭ ΓIψ) DµX

KXJKIXJ

+
1

8
(iǭ ΓµνΓ

JLMψ) DνXJXILMXI −
1

48
(iǭ ΓµΓ

Jψ) XKLMXKLMXJ.(3.18)

These terms are in complete agreement with the gauge field supersymmetry terms derived

by Richmond. Thus we have shown, at lowest non-trivial order in Fermions, that we are

able to derive the full set of four-derivative corrected BLG supersymmetry transformations,

in perfect agreement with the literature. Following the original approach of Bagger and

Lambert, one would like to show that this algebra closes on to equations of motion. Both

the scalar field and gauge field transformations derived in this section have been shown to
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close on-shell [3]. However, closure of the fermion supersymmetry transformation requires

knowledge of the quadratic fermion terms in δψ and the cubic fermion terms in δXI and

δAµ. It is therefore imperative that the structure of the quadratic fermion corrections are

elucidated for δψ. This will then allow us to construct the corresponding supercurrent and

supercharge and generate the cubic fermion corrections to the gauge field and scalar field

transformations. This will then allow for the closure of the higher order fermion transfor-

mation which will in turn reveal the correct higher order fermion equation of motion. In

the next section we take the first step towards achieving this goal by deriving the quadratic

fermion corrections to δψ.

4 Quadratic fermion transformations

In this section we will apply our method to determine the non-trivial quadratic fermion

terms of the fermion supersymmetry transformation. Our start point is the quadratic

fermion terms appearing in the ten-dimensional Super Yang Mills Fermion supersymmetry

transformation

δψ(3) = α
′2(λ4ψ̄Γ

MDNψFMN ǫ+ λ5ψ̄Γ
MNPDMψFNP ǫ) (4.1)

Performing the dimensional reduction and applying the dNS duality transformation results

in the following expression

δψ(3) = +λ4ψ̄Γ
µνDµψDνX

8ǫ− λ4ψ̄Γ
µ[Xj , ψ]DµXjǫ

− λ4ψ̄Γ
jDµψDµXjǫ+ λ4ψ̄Γ

i[Xj , ψ]Xijǫ

− 2λ5ψ̄DµψD
µX8ǫ+ 2λ5ψ̄Γ

µνΓjDµψDνXjǫ

− λ5ψ̄Γ
µΓijDµψXijǫ+ 2λ5ψ̄ΓλΓ

i[Xi, ψ]D
λX8ǫ

+ 2λ5ψ̄Γ
µΓij [Xi, ψ]DµXjǫ+ λ5ψ̄Γ

ijk[Xi, ψ]Xjkǫ (4.2)

The next task is to re-write these terms in an SO(8) invariant form. Furthermore, we will

see that the requirement of SO(8) invariance will place a constraint on the coefficients λ4
and λ5. We begin by noticing that the first, third, fifth and sixth terms combine to form

a single SO(8) invariant term

(2λ5 − λ4)ψ̄Γ
IDµψD

µXIǫ (4.3)

where we made use of Γµν = −ΓνΓµ+ηµν and discarded terms proportional to the fermion

equation of motion ΓµDµψ which will not appear at this order of l3p. Next we look at the

second and eighth terms appearing in (4.2). A little thought reveals that these two terms,

when combined, can be expressed as

(+λ5ψ̄Γ
µΓKΓIJ [XI , XJ , ψ]DµX

K + λ5ψ̄Γ
µΓIJK [XI , XJ , ψ]DµX

K

−2λ5ψ̄Γ
µ[Xi, ψ]DµX

i − λ4ψ̄Γ
µ[Xi, ψ]DµX

i)ǫ. (4.4)

We see that SO(8) invariance requires that the last two terms cancel and therefore the

coefficients are constrained

λ4 = −2λ5. (4.5)
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The remaining terms appearing in (4.2) can also be re-written in an SO(8) invariant form.

The final result for the quadratic fermion term is

δψ = +4λ5ψ̄Γ
IDµψD

µXIǫ+ λ5ψ̄Γ
µΓKΓIJ [XI , XJ , ψ]DµX

Kǫ

+
1

3
λ5ψ̄Γ

µΓIJKDµψ[X
I , XJ , XK ]ǫ− λ5ψ̄Γ

IJK [XI , XL, ψ][XJ , XK , XL]ǫ

− λ5ψ̄Γ
I [XK , XJ , ψ][XI , XJ , XK ]ǫ. (4.6)

It is remarkable that our method has uniquely determined the quadratic fermion supersym-

metry transformation in BLG theory whilst at the same time constraining the coefficients

appearing in ten dimensional Super Yang-Mills theory. It should now, in principle, be pos-

sible use this expression to construct the corresponding supercurrent and supercharge and

generate the cubic fermion corrections to the gauge field and scalar field transformations

respectively. We hope to report on this result in a future publication.

5 Conclusions

In this short paper we have presented a new method for determining the four-derivative

corrected supersymmetry transformations of BLG theory. For the special case of Euclidean

three-algbera, we were able to reproduce the well known result of Richmond [3]. Further-

more, we were able to apply our method to determine, for the first time, the quadratic

fermion corrections to the higher order fermion supersymmetry transformation. What is

perhaps surprising about our approach is that it only depends on knowledge of the ten-

dimensional fermion supersymmetry transformation. We have also seen that the require-

ment of SO(8) invariance in (2 + 1) dimensions constrains the α′2 coefficients appearing in

the ten-dimensional Super Yang-Mills Theory.

The wealth of riches that emerge from such a modest start point are suggestive of a

deeper explanation. A few points are worth mentioning. Firstly, our method is contingent

on our ability to construct the supersymmetry current from the relation ǭJµ = −ψ̄Γµδψ. In

other words, it appears that only knowledge of the fermion supersymmetry transformation

is required. This may be related to the fact that the supersymmetry current, R-current and

energy-momentum tensor live within the same supergravity supermultiplet. Since the R-

current only depends on the fermion field it follows that the supervariation of the R-current,

and therefore the supercurrent, will also only depend on the fermion supersymmetry trans-

formation. Secondly, in order to generate the gauge field supersymmetry transformation

from the supercharge we had to assume a certain Poisson structure for the spatial coordi-

nates. It is not clear at this stage how we are to interpret this assumption and we hope to

return to this issue in a future publication. Finally, it should be possible to use the quadratic

fermion term to derive the cubic fermion corrections to the gauge field and scalar field. It

would then be possible to close the fermion supersymmetry algebra and determine the

higher order fermion equation of motion. The supervariaton of this would uniquely deter-

mine the higher order bosonic equations of motion. These could then be used to construct

a maximally supersymmetric Lagrangian. This currently represents work in progress.
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A Conventions

The supersymmetry transformation parameter ǫ and the fermion ψ of the Bagger-Lambert

theory belong to the 8s and 8c representations of the SO(8) R-symmetry and are 32-

component spinors satisfying

Γµνρǫ = +ǫµνρǫ, Γµνρψ = −ǫµνρψ. (A.1)

We assume that ǫ012 = −ǫ012 and thus it follows that

ǫµνλǫ
µρσ = −(δρνδ

σ
λ − δ

ρ
λδ

σ
ν ) (A.2)

ǫµνλǫ
µνσ = −2δσλ (A.3)

The following relations follow from the chirality constraint (A.1)

Γµνρǫ = +ǫµνρǫ (A.4)

Γµνρψ = −ǫµνρψ (A.5)

ǫµνρΓνρǫ = −2Γµǫ (A.6)

ǫµνρΓρǫ = +Γµνǫ (A.7)

ǫµνρΓνρψ = +2Γµψ (A.8)

ǫµνρΓρψ = −Γµνψ (A.9)

Our Gamma matrix conventions are as follows

{Γµ,Γν} = 2ηµν (A.10)

ǭ1Γ
a1a2...anǫ2 = (−1)n(n+1)/2 ǭ2Γ

a1a2...anǫ1 (A.11)

Γ8ǫ = +ǫ (A.12)

Γ8ψ = −ψ. (A.13)

The three-bracket XIJK appearing in the duality-transformed supersymmetry transforma-

tion is defined as

XIJK = gIY M [XJ , XK ] + gJYM [XK , XI ] + gKYM [XI , XJ ]. (A.14)

with

gIY M = (0, . . . , gYM ), I = 1, 2, . . . , 8. (A.15)

In deriving the quadratic fermion terms in section 4 we made use of the following expressions

which follow directly from (A.14) and (A.15). Note, we have suppressed factors of gYM in

what follows

ψ̄ΓIJK [XI , XL, ψ][XJ , XK , XL]ǫ → −ψ̄Γijk [Xi, ψ]Xjkǫ (A.16)
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ψ̄ΓI [XK , XJ , ψ][XI , XJ , XK ]ǫ → +2ψ̄Γi[Xj , ψ]Xijǫ (A.17)

ψ̄ΓµΓIJK [XI , XJ , ψ]DµX
Kǫ → −2ψ̄ΓµΓjk[Xj , ψ]DµX

kǫ (A.18)

ψ̄ΓµΓIJKDµψ[X
I , XJ , XK ]ǫ → −3ψ̄ΓµΓijDµψX

ijǫ (A.19)

ψ̄ΓµΓI [XI , XK , ψ]DµX
Kǫ → −ψ̄ΓµΓi[Xi, ψ]DµX

8ǫ− ψ̄Γµ[Xi, ψ]DµX
iǫ (A.20)

ψ̄ΓIDµψD
µXIǫ → −ψ̄DµψD

µX8ǫ+ ψ̄ΓiDµψD
µXiǫ (A.21)

ψ̄ΓµΓKΓIJ [XI , XJ , ψ]DµX
Kǫ → +2ψΓµΓjk[Xj , ψ]DµX

k + 2ψΓµ[Xk, ψ]DµX
kǫ

+ 2ψΓµΓj [Xj , ψ]DµX
8ǫ (A.22)
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