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1 Introduction

This short article is about formulating a Simple Route from the 10-dimensional Super
Yang Mills (SYM) Fermion Supersymmetry Transformation to the full (24 1) dimensional
Bagger-Lambert-Gustavsson (BLG) theory.

The BLG Lagrangian and supersymmetry transformations [1, 2] can be thought of as
the leading order terms in an [, expansion of a non-linear M2-brane theory. This is analo-
gous to how Super Yang Mills theory represents the leading order terms of the Born-Infeld
action, which describes the dynamics of coincident D-branes. In Bagger and Lambert’s
original paper, dimensional analysis was used alongside a novel algebraic structure to write
down the most general scalar, fermion and gauge field supersymmetry transformations.
The supersymmetry algebra was shown to close on to equations of motion which were used
to infer the structure of the Lagrangian. In [3], Richmond used a similar approach to de-
termine the next-to-leading order four-derivative corrected supersymmetry transformations
and Lagrangian of the Euclidean BLG theory. Starting from the most general expressions
allowed by dimensional analysis, he was able to uniquely determine the coefficients through
the invariance of the Lagrangian and closure of the supersymmetry algebra.

An alternative approach for determining the Lorentzian BLG Lagrangian, at lower
and higher order, was presented in a series of papers [5-7] in which the authors used a
duality transformation due to de-Witt, Nicholai and Samtleben (dNS) [8-10]. The duality
is based on the idea that a gauge field is dual to a scalar in (2 4+ 1) dimensions and it
is therefore possible to replace the gauge field with a scalar and in so doing enhance the
SO(7) symmetry of the scalars to SO(8). In [7], this approach was applied to the o2
terms of the D2-brane Lagrangian in order to determine the four-derivative corrections to
the Lorentzian BLG theory. Furthermore, it was shown that all higher-order terms were
expressible in terms of three-brackets [X!, X/ XX]. This led the authors to conjecture
that the higher-order Lagrangian they had derived would also apply to the Euclidean BLG



theory. This conjecture was confirmed in [11] where the authors used dimensional analysis
to write down all possible terms at four-derivative order, and then applied the Novel Higgs
mechanism to match coefficients with terms in the D2-brane Lagrangian. This confirmed
that the structure of the Lorentzian theory derived using dNS duality had exactly the same
form as the Euclidean BLG theory at four-derivative order.

Motivated by this approach, one might consider applying the dNS duality transfor-
mation directly at the level of supersymmetry transformations. In [12] the four-derivative
corrected BLG fermion supersymmetry transformation was derived by applying the dNS
duality to the a'2 corrections of the non-abelian D2-brane theory. However, the dNS du-
ality was shown to break down when applied to the D2-brane gauge field and scalar field
supersymmetry transformations. For a more detailed discussion see [13].

In this paper we propose a new and simple route for determining the four-derivative
corrected BLG supersymmetry transformations, including quadratic fermion terms. Start-
ing from the a'2 fermion supersymmetry transformation of ten-dimensional SYM theory,
we reduce to (24 1) dimensions and apply the dNS duality to the D2-brane supersymme-
try transformation. The resulting SO(8) invariant BLG fermion transformation is used to
construct the supercharge, which in turn is used to generate the scalar field and gauge field
supersymmetry transformations. The requirement that the supercharge should generate
the gauge field supersymmetry transformation constrains the Poisson-bracket structure for
the spatial components of the gauge field.

The structure of this article is as follows. In section 2, we outline our methodology and
apply it to the lowest order ten-dimensional SYM fermion transformation to derive the low-
est order BLG theory. In section 3, we apply our method to determine the four-derivative
corrected BLG supersymmetry transformations. In section 4, we apply our method to
determine, for the first time, the quadratic fermion terms in the higher order fermion su-
persymmetry transformations of BLG theory. The appendix outlines conventions, useful
identities and key formulae used in this paper.

2 The simple route

Our start point is the 10-dimensional Super Yang Mills Fermion supersymmetry transfor-
mation. A gauge field has mass dimension [A] = 1 in any dimension, and therefore in
10-dimensional SYM the coupling constant has mass dimension [gy 3] = —3, the fermion
field has mass dimension [¢)] = % and the supersymmetry parameter has mass dimension
[] = —3. A little thought reveals that the fermion transformation of 10d SYM must take

the form 09 = §1p(1) + 01(a) + 6¥(s)

1
(5¢(1) == §FMNFMN6 (21)

Sy = a2 (MIMNFpoFPOFy ye
+ MMV By p FPRF ve
+ N DMNPRES oy Fpg Frse)
Sz = a*MPIM DNy Fyve + ATV Dy Fype)



‘ Start with 10 dim SYM Susy Fermion 1) ’

T
!

Y

T
!

¥

‘ Non-abelian D2 Brane Susy Fermion 41 ’

T
!

¥

Y
‘ 241 dim BLG Susy Fermion §v ’

T
!

¥
@rrem, generate scalar, gauge field

T
!

Y
241 dim BLG Susy Fermion,
Scalar, Gauge Field v, 6 X1, §A*

Figure 1. The Simple Route to the BLG theory - both Susy transformations and Lagrangian -
starting from knowledge of only the 10d Super Yang Mills Fermion Susy transformations.



where M, N are the 10 dimensional Lorentz indices taking values (0,1,2...9), FMV is the
non-Abelian gauge field strength and 1 represents a ten dimensional complex Majorana-
Weyl spinor. The Gamma matrices satisfy the 10-dimensional Clifford algebra. Further-
more we see that the fermion transformation is comprised of three parts: d1(1) represents
the known lowest order fermion supersymmetry transformation, 4 o) represents the triv-

2 1

. ’ . . . !/ . .
ial o2 correction and 01 (3) represents a quadratic fermion « “ correction.” The spinors

appearing in 10 dimensional Super Yang Mills are Majorana-Weyl and satisfy
iy = g (2.4)

where T(10) is the ten dimensional chirality matrix. Since we are ultimately interested
in applying a duality transformation to lift the D2-brane supersymmetry transformations
to M-theory it is desirable to look for an embedding of SO(1,9) into SO(1,10) in which
I'(10) hecomes the eleventh gamma matrix. We denote the gamma matrices of SO(1,10) as
M (M =0,...,9,10). In eleven dimensions the spinors will be Majorana. The presence of
the M2 brane breaks the Lorentz symmetry as SO(1,10) — SO(1,2) x SO(8) and therefore
we can have a Weyl spinor of SO(8). Let us denote the chirality matrix of SO(8) by I" where

[ — '3--9(10) (2.5)

Half of the supersymmetry of the vacuum is broken by the presence of the M2-brane. We
choose conventions in which

Fe =, ' =—v (2.6)

Under dimensional reduction, the (9+ 1) dimensional gauge field will split into a (2+1) di-
mensional gauge field 4,, and a scalar field X* transforming under SO(7). As is usual with
dimensional reduction, the fields are independent of the compact directions and therefore
one can set 9; = 0.

As an illustrative exercise, we will use our knowledge of the lowest order BLG fermion
supersymmetry transformation to generate the scalar and gauge field supersymmetry trans-
formations. Our start point is the lowest order (2+1)-dimensional fermion supersymmetry
transformation written in an SO(8) invariant form?

o =TrTID, X Te — éFIJKXIJKE (2.7)
where XT/K is defined as
X = gl (X7 XT 4 g ag X X+ g (X, X (2:8)
with
Gor=0,...,9ym), I=12,...,8. (2.9)

IThe structure of the a2 corrections to 10d SYM was first investigated by Berghoeff and collaborators
in [14, 15].

For a detailed discussion of ANS duality and its implementation at the level of supersymmetry trans-
formations please refer to [6, 7, 12, 13].



The next step in the process is to use the fermion transformation to derive an expression
for the supercurrent. The conserved supercurrent is the Noether current associated with
global supersymmetry transformations. Noethers theorem asserts that corresponding to
every global symmetry there exists a corresponding conserved current. The usual approach
for constructing such an expression is to check the invariance of the Lagrangian under
supersymmetry transformations. As is well known, the Lagrangian need only be invariant
up to a total derivative to ensure that the Action is invariant. Importantly, the total
derivative contributes to the the conserved Noether current. However, we are assuming that
we have no knowledge of the Lagrangian and therefore must use an alternative approach
for determining the structure of the conserved supercurrent. In [16, 17] it was noted
that the supercurrent corresponding to lowest order BLG theory could be derived through
knowledge of only the BLG fermion transformation, in particular

N A L ) (2.10)

Importantly we emphasise that this expression only requires knowledge of the fermion
supersymmetry transformation. In the case of lowest order BLG, constructing the super-
current results in the following expression

_ _ 1 -
+&J7 = I8¢ = —(YTTHT! D, X e) + g(wrar”KXI JKE). (2.11)

The validity of this expression can be tested by observing whether the corresponding su-
percharge generates the expected supersymmetry transformations. The supercharge is the
integral over the spatial worldvolume coordinates of the timelike component of the super-
current

Q= /d2aJ0 (2.12)
= _/d20 (DVXIF’TIF% + éX”KF”KFOw> :

Since the supercharge is the generator of supersymmetry transformations it should be pos-
sible to generate the scalar field and gauge field supersymmetry transformations explicitly.

Scalar transformation. Let us now use the expression for the supercharge to generate
the scalar field supersymmetry transformation

57 = ie [Q.X] (2.13)
= ig[— / d*o (0, X7 ()T T%(0)) , X' ()]
= —iel T/ T% (o) / d*o[00X 7 (0), X" (0")]
= el (o) / 26" 5(0 — o)
= ielly

which is the expected form of the BLG scalar supersymmetry transformation.



Gauge field transformation. In contrast to the scalar field, the gauge field Poisson
Bracket is ill-defined since the gauge field is non-dynamical in (2 4+ 1) dimensions. The
problem can be traced to the fact that there is no momentum conjugate to the gauge field;
this can be seen explicitly at the level of the Lagrangian by looking at the structure of the
Chern-Simons term. Motivated by the requirement that the supercharge should generate
the gauge field supersymmetry transformation, we have found that by assuming?

[Ai, AjlpB = €5 (2.14)

we are able to generate the correct expression for the spatial components of the gauge field
supersymmetry transformation. We then conjecture that the same structure holds for the
time-like component of the gauge field transformation. For example, at lower order we have

5./4]' = 7€ [Q,Aj]p.B

= —(iel"TOr ) / d*o [Ai, Ajlpp X! (2.15)
= — (el TOT ) e;; X!
= — (el T T ) e X!
= +iel, T X1y (2.16)

which is the correct expression for the spatial components of the BLG gauge field supersym-
metry transformation. We then conjecture that the expression for the spatial components
can be generalised to all world-volume indices

6A, = +iel T X1y, (2.17)

In the next section we will show that our method can be successfully applied to determine
the higher-order corrections to the BLG supersymmetry transformations.

3 Higher order BLG supersymmetry transformations

In this section we will apply our method to the 12y terms appearing in (2.2) in order to
uniquely determine the higher order BLG supersymmetry transformations. We will then
show that for the case of Euclidean BLG theory, our results match the literature [3]. Our
start point is the ten dimensional a'? corrected SYM Fermion transformation

Sy = a2(MIMNFpoFPOFyye
+ MMV Ey p FPRE Ne
+ MIVMNPRRS By Fpg Free) (3.1)

The first step is to reduce this expression to (2 4+ 1) dimensions and then apply the dNS
duality transformation. The requirement of SO(8) invariance places constraints on the
coefficents appearing in (3.1). The full derivation of the higher order BLG Fermion trans-
formation can be found in [12] and therefore we will only include an illustrative example

3We would like to thank Professor Neil Lambert for enlightening discussions surrounding this issue.



of how the coefficients can be fixed by looking at an ‘abelian’ truncation of the full theory.
In this case, dimensional reduction of (3.1) results in

6y = +M (" F,, FP7F,y + 2" F,,0° X'0,X"
+ 2TPT" 0, X " FP7 Fpp + ATHT0, X "'0" X790, X7)e
+ X (T F,,F*° F,,, — 2T F,,0° X" 0, X"
+ 2" F,,F7 0, X" — 2TT"0, X797 X7 0,X")
—TY9,X"Fr0,X7)e
+ A3 (—8T*PTkRY, X109, X709, X" )e. (3.2)

Duality is implemented at higher order by making the replacement F), = +eu,,>\D’\X 8,
We are considering the ‘abelian’ truncation in which case the covariant derivatives will be
replaced by partical derivatives. A small amount of algebra leads to the following expression

§Y = A (+47%0,X%9" X809, X® — 4T+9,X50° X'9,X"
—4ATPT9, X0, X30" X® + 41170, X" 0" X7 0, X7 )e
+ Ao (—2I%9, X%9" X®0, X® — 2I'"9" X®9, X0, X"
+ 2049, X%9" X'9, X" + 2I'"T" 0" X®9, X%0, X"
— 2TMT9 X%, X80, X" — 2T*T0, X7 9P X7 9,X "
—T9er729, X 0\ X530, X7 )e
+ A3 (—=8T#PTkRY, X9, X719, X" )e. (3.3)

The requirement that these terms should be expressible in an SO(8) invariant form places
constraints on the coefficients

6y = +4MT, 0" X701 X7 0, X e — 20T, T10" X7 0, X7 0" X e
+ (2A2 — 8\)(T,0, X0V X9 X® 4+ T, 170, X309 X0 X7 )e
— 8\ THPTR Y, X109, X0, X e — AT P20, X103 X80, X . (3.4)

We see that in order for the second line to vanish we require Ao = +4X;. A little algebra
in the third line reveals that Ay = +24\3. The absolute values are dependent on the o2
conventions in ten-dimensional Super Yang Mills. Setting A\; = +3%, we find Ay = +% and
A3 = +ﬁ which is in perfect agreement with the ten-dimensional supersymmetry trans-
formations derived in [18-20]. Furthermore, we are now able to write down an expression
for the truncated higher order BLG fermion transformation

1 1
op =13 ( + él“#I‘I@l,XJa”XJ&“XI — 1rﬂrfauxb’ d, X’ o X!
1

- ﬂe‘“’pFI Ko, x10,X70,x* > €. (3.5)

Once the coefficients are fixed, it is a simple yet tedious task to apply the dimensional
reduction and duality transformation to the ‘non-abelian’ terms and re-write them in an



SO(8) invariant form [12]. The final answer

supersymmetry transformation is?t

1
o= 13| + gl“uF[DVXJD”XJD“XI

1 vpmIlJK 1 J K
e KD, XD, X7 D, X

for the lg correction to the BLG fermion

1

r,r'prx’p,x’ prx!

1
+ gFWF[D#XJDZ,XKXJKI

24
+ %FIJKD#XLDHXJXILK _ ZZFIJKD#XLDHXLXIJK
1 1
+ &FWFUKLMDMXIDVXJXKLM + gFMFJD,uXKXKLMXLJM
1 1
+ @PMFIJKLMD;LXMXIJNXKLN + @PMFJD;;XJXKLMXKLM
_ il“ IJKLM pux N x1JM xy KLN 1 [IJKLMNP x1JQ y KLQ x MNP
48 " 576
_ 3%FIJMXIKNXKLNXLJJ\/I _ E14FIJMXKLNXKLNXIJM c. (3.6)

It is worth emphasising that our result is true for the most general class of three-algebra
theories. In the specific case of a Euclidean three-algbera, we recover the result calculated
by Richmond in [3]. In particular terms 9, 11 and 12 in the above expression are shown to
vanish and terms 13 and 14 are shown to combine. In the case of Euclidean three-algebra,
Richmond showed that the symmetrised trace prescription leads to a number of identities
(see [3, 4] for details). Let us consider term 11 as an example

5w11 — FMFIJKLMD,U,XNXIJMXKLN

_ FMFIJKLMDMXN[XKJMXILN _|_XIKMXJLN +XIJKXMLN]

(3.7)

_31—\NFIJKLMD,LLXNXIJMXKLN

and therefore this term must be zero. Likewise terms 9 and 12 can be shown to vanish as
a result of the same identity. Next, we can rewrite term 13 as

_ LFIFJMXIKNXKLNXLJM _ +iFIJMXKLNXKLNX]JM
32 96

where we made use of the identity T'MN X IMN x JKL x TJK _ —|—%FMNXIMNXLJKXLJK.

This term will now combine with term 14 to give

(3.8)

+ %FIJMXKLNXKLNXIJMG.

Thus in the special case of a Euclidean BLG theory we find the following expression for

(3.9)

the four-derivative corrected fermion supersymmetry transformation

1
4rur1 DX’ D, X7 DY X!

s 1
op = 13 +§F“F1DVXJD”XJD“XI

1 vpmIJK 1 J K
e KD, XD, X7 D, X

1
- — -r#r!'p,x’ D, xKx/KI
24 T3 H v

4This expression contains a few minor coefficient corrections compared to the result presented in [12].



+1FIJKD#XLDMXJXILK _iFIJKD#XLDuXLXIJK
8 48
+ %FMVFIJKLMD!LXIDVXJXKLM + éFuFJDMXKXKLMXLJM
+ %FMFJD#XJXKLMXKLM + %P]JMXKLNXKLNXIJM €. (310)

This result is in complete agreement with the result derived by Richmond in [3]. We are
now in a position to utilise the method outlined in the previous section to determine an
expression for the higher order supercurrent. The associated supercharge can then be used
to generate the scalar field and gauge field supersymmetry transformations. By way of
example, we will now show how this works for the first term appeaing in (3.10). We first
construct the supercurrent

eJ7 = —I76% (3.11)

1 - o v
= —g@r r“11e)D, X’ D" X’ D, X"

from which we can determine the supercharge. Next we generate the scalar supersymmetry
transformation
oXT =ieQ, X1 (3.12)
1
= +g (e THTOT 7)) / d*o [D,X*D"X"5D,x7 X'

1

= -3 (ieT7y) DVXKD”XK/d20 [0 X7, X7]
1

= —= (ieT'y) D, XDV X",
8

Applying this simple calculational method to the terms appearing in (3.10) leads to the
following expression for the higher order BLG scalar supersymmetry transformation

1 1
sx! — -3 (ie T1y) D, X D" X7 + i (ieT7y) D, X DX/

1 1
+g (€T r'"%yy D, X’ D, x* — 4 e r™™qy) D, X7 x 1M
_ i (E IR FIJKLMw) DHXJXKLM +é (Zg I‘\Lw) XJKIXJKL

1
— 45 i€ Tlyp) X KLM x KLM, (3.13)

Again, these terms are in perfect agreement with the terms derived by Richmond in [4].
We now turn our attention to the gauge field supersymmetry transformations. Each of
the ten fermion terms appearing in (3.10) gives rise to a supercharge term which is then
used to generate the gauge field transformation. As an illustrative example, we will now
show how this works for the first term appearing in (3.10). Our starting point is the
supercharge constructed from the first term in (3.10) which can then be used to generate
the corresponding gauge field term

T v
0A; = +§(1€ F#FOFI¢)/d2U[DVXJD XJDMXIaAj] (3.14)



1 ,
— _Z(z’gr”ror%) / d*o[A;, A;)D'X'D, X7 x!
1 )
— g(iEFTOI’Ii/J) / d*o[A;, A;)D" XD, X7 X!
1 : 1
= — (e T°T74)e;; D' X D, X7 X1 — g(z‘grlrorf )ei; D" X7 D, X7 X",

The next step is to sum over the contracted world-volume indices and to note that éI? =
—el''? such that we can write

1 . 1 .
04; = +7 (i€ T e ) D' X D1 X7 X1 — 5 (i T e ) D' X Dy X7 X1
1 . 1

(i€ T 4pe;;) D' X Do X7 XT + g(

+7 iel;T1p) D" X' D, X7 X', (3.15)

By explicitly setting ¢ = 1 and j7 = 2 the above expression can be re-written as

1 4 1 .
0A; = —7 (i 0,/ )DIXTD; X7 XT + 5 (i€ ,T/) DX D, X7 X!

1 1
+ 7 (i L, D7) DP X DY X7 XT 4 é(z‘grjrf ) D'X'D, X7 X1, (3.16)

which represents the spatial components of the desired gauge field transformation. We now
conjecture that the same relationship holds true for the time-like component of the gauge
field transformation and therefore

1 1
0A, = — (i€ r“174)D,X'D, X’ X + 7 (i€ r,r’y)p"x'D,x7 x*
1

1
+ 7 (i€ T, 07 )DP X DY X7 XT + g(ig ) D"X’D,x' X" (3.17)

Applying this method to the remaining nine terms in (3.10) results in the following sim-
plified expression for the higher order BLG gauge field supersymmetry transformation

1 1
0A,=—7 (i€ r'r’¢)p,x'D, X’ x! + 5 (i Ty, T7) D" X7 DP X X!
1 1
- g (i€ r,'y) D, XD, X7 X" - r,07¢)D, X D" X7 X!
1 1
+ G r'r’y) D, X'D, X’ X! + G r'r’y) p,x’D, X’ x*
1 1
+ g (i€ T, 075y DY X DP XK XTI 4 5 (i€ r'y) D, XK XK X7
1 1
+ 3 (i T, 07 EMyy prx I X HEM x T 5 (i€ T, I7ep) X BEM X KLM X7 (3 18)

These terms are in complete agreement with the gauge field supersymmetry terms derived
by Richmond. Thus we have shown, at lowest non-trivial order in Fermions, that we are
able to derive the full set of four-derivative corrected BLG supersymmetry transformations,
in perfect agreement with the literature. Following the original approach of Bagger and
Lambert, one would like to show that this algebra closes on to equations of motion. Both
the scalar field and gauge field transformations derived in this section have been shown to

,10,



close on-shell [3]. However, closure of the fermion supersymmetry transformation requires
knowledge of the quadratic fermion terms in 6+ and the cubic fermion terms in § X’ and
0A,. It is therefore imperative that the structure of the quadratic fermion corrections are
elucidated for §v. This will then allow us to construct the corresponding supercurrent and
supercharge and generate the cubic fermion corrections to the gauge field and scalar field
transformations. This will then allow for the closure of the higher order fermion transfor-
mation which will in turn reveal the correct higher order fermion equation of motion. In
the next section we take the first step towards achieving this goal by deriving the quadratic

fermion corrections to 1.

4 Quadratic fermion transformations

In this section we will apply our method to determine the non-trivial quadratic fermion
terms of the fermion supersymmetry transformation. Our start point is the quadratic
fermion terms appearing in the ten-dimensional Super Yang Mills Fermion supersymmetry

transformation
(51/1(3) = alQ()\41/;FMDN1/JFMN€ + >\5IEPMNPDMwFNp6) (4.1)

Performing the dimensional reduction and applying the dNS duality transformation results
in the following expression

S1bzy = +MYT™ DD, X% — My [ X7 41D, X e
— MY D" D, X je + MyT' [ X7, ) X e
— 259Dy DF X Be + 2Xs T IV D, p D, X €
— As¢THTY D X e + 2059T IV [ X5, ] DA X e
+ 20sYTHT [ X;, ) Dy X je + AsPTH (X7, 4] X e (4.2)
The next task is to re-write these terms in an SO(8) invariant form. Furthermore, we will
see that the requirement of SO(8) invariance will place a constraint on the coefficients A4

and As. We begin by noticing that the first, third, fifth and sixth terms combine to form
a single SO(8) invariant term

(2X\5 — A)YT! D,y DH X e (4.3)

where we made use of I'" = —I'"*T'* +n*" and discarded terms proportional to the fermion
equation of motion I'* D7) which will not appear at this order of lf;. Next we look at the
second and eighth terms appearing in (4.2). A little thought reveals that these two terms,
when combined, can be expressed as

(X TTET (X X7 ) D, XK + AspDPT R (X X 1D, X5
—2X5THIX 01D, X" — AgpTH[ X p] Dy X e (4.4)

We see that SO(8) invariance requires that the last two terms cancel and therefore the

coefficients are constrained
A= —2);5. (4.5)

— 11 —



The remaining terms appearing in (4.2) can also be re-written in an SO(8) invariant form.
The final result for the quadratic fermion term is

5 = +4ANsYT Db DF X e + Asp TTETH [ X X7 p) D, X K e
1. - _
+ §A5wF“F”KD#¢[XI,XJ,XK]e — MR (X XL ][ X7, XK XL)e
- >\5QLFI[XK7XJ7w][levaXK]e' (46)

It is remarkable that our method has uniquely determined the quadratic fermion supersym-
metry transformation in BLG theory whilst at the same time constraining the coefficients
appearing in ten dimensional Super Yang-Mills theory. It should now, in principle, be pos-
sible use this expression to construct the corresponding supercurrent and supercharge and
generate the cubic fermion corrections to the gauge field and scalar field transformations
respectively. We hope to report on this result in a future publication.

5 Conclusions

In this short paper we have presented a new method for determining the four-derivative
corrected supersymmetry transformations of BLG theory. For the special case of Euclidean
three-algbera, we were able to reproduce the well known result of Richmond [3]. Further-
more, we were able to apply our method to determine, for the first time, the quadratic
fermion corrections to the higher order fermion supersymmetry transformation. What is
perhaps surprising about our approach is that it only depends on knowledge of the ten-
dimensional fermion supersymmetry transformation. We have also seen that the require-
ment of SO(8) invariance in (2 + 1) dimensions constrains the a/? coefficients appearing in
the ten-dimensional Super Yang-Mills Theory.

The wealth of riches that emerge from such a modest start point are suggestive of a
deeper explanation. A few points are worth mentioning. Firstly, our method is contingent
on our ability to construct the supersymmetry current from the relation éJ# = —¢T'*§. In
other words, it appears that only knowledge of the fermion supersymmetry transformation
is required. This may be related to the fact that the supersymmetry current, R-current and
energy-momentum tensor live within the same supergravity supermultiplet. Since the R-
current only depends on the fermion field it follows that the supervariation of the R-current,
and therefore the supercurrent, will also only depend on the fermion supersymmetry trans-
formation. Secondly, in order to generate the gauge field supersymmetry transformation
from the supercharge we had to assume a certain Poisson structure for the spatial coordi-
nates. It is not clear at this stage how we are to interpret this assumption and we hope to
return to this issue in a future publication. Finally, it should be possible to use the quadratic
fermion term to derive the cubic fermion corrections to the gauge field and scalar field. It
would then be possible to close the fermion supersymmetry algebra and determine the
higher order fermion equation of motion. The supervariaton of this would uniquely deter-
mine the higher order bosonic equations of motion. These could then be used to construct
a maximally supersymmetric Lagrangian. This currently represents work in progress.
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A Conventions

The supersymmetry transformation parameter € and the fermion 1 of the Bagger-Lambert
theory belong to the 8 and 8. representations of the SO(8) R-symmetry and are 32-
component spinors satisfying

['HPe = +etPe, THPoh = —eVPap. (A.1)

We assume that ey = —e%'? and thus it follows that
€unne®” = —(5055 — 6757 (A2)
€€’’’ = —20% (A.3)

The following relations follow from the chirality constraint (A.1)

HPe = +€l'Pe (A.4)
THPey = —eh¥Py) (A.5)
Pl e = —2I'Me (A.6)
Pl e = +TM e (A.7)
e"PLy p0p = 20 (A.8)
HVPT i = —THVap (A.9)

Our Gamma matrix conventions are as follows

(DK TV} = 2phv (A.10)
G @e2-ang, — (—1)n(n+1)/2 g paraz.ang, (A.11)
e = 4e (A.12)
T8¢ = —ap. (A.13)

The three-bracket X'/X appearing in the duality-transformed supersymmetry transforma-
tion is defined as

XTE = gl J1IX7T XB) 4 g (X5, X7 4 g [ X, X)) (A.14)

with
=00, ovm), 1=1,2,...8 (A.15)
In deriving the quadratic fermion terms in section 4 we made use of the following expressions

which follow directly from (A.14) and (A.15). Note, we have suppressed factors of gy s in
what follows

PrRIXT XE )X X5 X e = R (X7 g X% (A.16)
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P [ XE X7 ][ X, X7, XE]e — 42T [ X7 p] XY e (A17
YT IR [ XT X7 D, X K e — —2THTI*[ X7 4p) D, X e (A.18
YT E D [ XT X X K]e — —3¢gTHT D,np X e (A.19

YT X XK y]D, XK e — —THT X ] D, X8 — TH[ X ] D, X e (A.20

YT D, wDF X e — —pD,pDFXBe + YT D,y DH X'e (A.21

YTrTET! [ XT X7 y]D, XK e — +2¢THTI*(XI ] D, X" + 2TH[ X 4] D, X e

+ 2THTI [ X 4] D, X Be (A.22

any medium, provided the original author(s) and source are credited.
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