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Abstract: Monte Carlo (MC) simulations are the standard tool for describing jet-like

multi-particle final states. To apply them to the simulation of medium-modified jets in

heavy ion collisions, a probabilistic implementation of medium-induced quantum interfer-

ence effects is needed. Here, we analyze in detail how the quantum interference effects

included in the Baier-Dokshitzer-Mueller-Peigné-Schiff–Zakharov (BDMPS-Z) formalism

of medium-induced gluon radiation can be implemented in a quantitatively controlled,

local probabilistic parton cascade. The resulting MC algorithm is formulated in terms of

elastic and inelastic mean free paths, and it is by construction insensitive to the IR and UV

divergences of the total elastic and inelastic cross sections that serve as its basic building

blocks in the incoherent limit. Interference effects are implemented by reweighting gluon

production histories as a function of the number of scattering centers that act within the

gluon formation time. Unlike existing implementations based on gluon formation time,

we find generic arguments for why a quantitative implementation of quantum interfer-

ence cannot amount to a mere dead-time requirement for subsequent gluon production.

We validate the proposed MC algorithm by comparing MC simulations with parametric

dependencies and analytical results of the BDMPS-Z formalism. In particular, we show

that the MC algorithm interpolates correctly between analytically known limiting cases for

totally coherent and incoherent gluon production, and that it accounts quantitatively for

the medium-induced gluon energy distribution ωdI/dω and the resulting average parton

energy loss. We also verify that the MC algorithm implements the transverse momentum

broadening of the BDMPS-Z formalism. We finally discuss why the proposed MC algorithm

provides a suitable starting point for going beyond the approximations of the BDMPS-Z

formalism.
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1 Introduction

Most generally, the notion ’jet quenching’ is currently used to characterize a broad range

of experimental observations including the modification of high-pT single inclusive hadron

spectra, jet-like particle correlations and reconstructed jets in nucleus-nucleus collisions.

Jet quenching was discovered at RHIC via measurements of single inclusive hadron spectra,

and the phenomenon was characterized extensively on the level of two-particle near-side

and back-to-back high-pT correlation functions and particle yields associated with trigger

particles [1, 2]. Two-particle correlations displaying very similar features were also seen at

the same time in nucleus-nucleus collisions at the ten times lower center of mass energy

of the CERN SPS [3], whereas the single inclusive hadron spectra at the CERN SPS do

not show the dramatic suppression up to a factor 5 observed at collider energies [4]. In

recent years, a strong effort has gone into studying jet quenching at the highest experimen-

tally accessible transverse momenta where one may hope to establish the most direct link

between the rich jet quenching phenomenology and a partonic explanation rooted in QCD.

In this context, we mention that first preliminary results on reconstructed jet mea-

surements have become available at RHIC [5–7] within the last two years. With the much

wider kinematic reach accessible at the LHC, numerous novel opportunities for studying

jet quenching emerge now. Data from the first exploratory heavy ion run have shown al-

ready that the nuclear modification of charged hadron spectra is somewhat stronger than

at RHIC and that it persists beyond pT = 20 GeV [8]. Soon, the kinematic range of

these measurements will be extended by a large factor, and much more detailed informa-

tion about quenching of high-pT particles and particle correlations will become available.

Moreover, first measurements of reconstructed jets in heavy ion collisions at LHC indicate

already that also jets of order 100 GeV display significant medium-modifications. In partic-

ular, samples of reconstructed dijets display an energy imbalance distribution that is much

wider than in the absence of a nuclear environment [9, 10]. These measurements indicate

that the quenching of reconstructed jets is accompanied by the medium-induced produc-

tion of many soft particles [11]. At present, our still incomplete theoretical understanding

of jet quenching is largely based on the picture that highly energetic partons produced in

dense QCD matter are degraded in energy due to elastic and inelastic interactions with

the surrounding medium prior to hadronization outside the medium [12–16]. This pic-

ture is supported in particular by data on single inclusive hadron spectra and particle

correlations. The coming years are likely to show a strong interplay of experimental and

theoretical efforts to characterize jet quenching on the level of multi-particle final states

and reconstructed jets with the aim of further constraining the microscopic dynamics of

this phenomenon and drawing conclusions about the properties of the QCD matter by

which it is induced.
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Monte Carlo tools have well-recognized advantages for the phenomenological analysis

of high-pT multi-particle final states. They are the method of choice for formulating the

evolution of a parton shower with minimal kinematic approximations and exact implemen-

tation of conservation laws. They are also best suited for interfacing this partonic evolution

with the hadronic final state. Moreover, the fact that they generate not only event averages

but also event distributions of final state particles meets an obvious experimental demand

and allows for the interfacing with modern jet finding techniques [17]. To satisfy these

experimental and theoretical needs for the study of heavy ion collisions, several Monte

Carlo tools for the simulation of jet quenching have been developed in recent years. Some

of the available tools are full event generators that supplement standard ’vacuum’ final

state parton showers with models of medium-induced gluon radiation tailored to analyt-

ical calculations of medium-induced parton energy loss. Hijing [18, 19], Q-Pythia [20],

Q-Herwig [21] and Pyquen/Hydjet++ [22, 23] fall into this class. Other approaches

modify the Pythia parton shower, e.g., to implement the picture of a medium-modified

Q2-evolution as in YaJEM [24, 25], or to implement rate equations based on a perturbative

calculation of partonic energy loss as in Martini [26]. Finally, Jewel [27] aims at formu-

lating a stand-alone final state parton shower that interpolates between three analytically

known limits, namely the vacuum parton shower in the absence of medium effects, the

analytically known limit of energy loss via elastic multiple scattering, and radiative energy

loss. In its current version, however, radiative energy loss is modeled similar to other efforts

ad hoc in terms of medium-modified splitting functions. A more detailed discussion of the

current status of MC tools for jet quenching can be found in ref. [28].

The ’vacuum’ parton showers used in MC event generators like Pythia [29], Her-

wig [30] and Sherpa [31] are faithful representations of the theory of Quantum Chro-

modynamics (QCD). They resum to leading logarithmic accuracy the large logarithms

associated with collinear gluon emission, and they thus implement with known accuracy

and without additional model-dependent input analytically known features of QCD. In

contrast, the MC tools for jet quenching listed above are phenomenological models. They

may tailor some numerical steps according to QCD-based analytical calculations, but these

QCD-based results do not define the MC tool up to controlled accuracy, they solely moti-

vate physical choices in a more complex (and more complete) dynamical procedure. This is

a perfectly legitimate approach that meets the demand of a broad range of applications. We

argue, however, that it is also of interest to complement these pragmatic approaches with

a conceptual exploration of whether a MC algorithm of jet quenching can be formulated as

a faithful implementation of QCD-based calculations of parton energy loss. Establishing

such a clearer connection between MC tools and analytical QCD-based knowledge of jet

quenching may be important for constraining the fundamental QCD properties of matter

that induce the observed jet quenching phenomena. Moreover, as we shall discuss in de-

tail in section 7, such a faithful MC implementation provides a suitable starting point for

overcoming many of the technical limitations of the state of the art of analytical parton

energy loss calculations. With this motivation, we present in the present paper a MC

tool that provides with controlled accuracy a local and probabilistic implementation of the

BDMPS-Z formalism of medium-induced radiative parton energy loss.

– 3 –
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The BDMPS-Z formalism [32–35] is historically one of the first QCD-based calculations

of medium-induced radiative parton energy loss in the high energy limit. Its path-integral

formulation that we recall in section 2, provides the generating function for formulations

of radiative parton energy loss in terms of an opacity expansion [36, 37]. Also, other

formulations of medium-induced radiative parton energy loss [38, 39] are known to display

the same medium-dependencies as the BDMPS-Z formalism ( for a more complete overview,

see ref. [12]). In short, the most widely used radiative parton energy loss calculations are

closely related to the BDMPS-Z formalism. Moreover, all existing analytical results, as

well as generic physics reasoning, point to the dominant role of the so-called non-abelian

Landau-Pomeranchuk-Migdal (LPM) effect in medium-induced gluon radiation, and this

destructive quantum interference effect is accounted for in the BDMPS-Z formalism. We

therefore expect that a MC implementation of the BDMPS-Z formalism can provide more

general guidance as to how medium-effects should be formulated in a MC parton shower.

We note as an aside, that the BDMPS-Z formalism does not provide all the information

that enters a final-state parton shower. For instance, the BDMPS-Z formalism has been

derived for a relatively limited kinematic range only (see discussion in section 2), and it

does not specify whether and how the angular ordering prescription of a vacuum parton

shower should be changed in the medium. For recent work on this latter question, see

ref. [40, 41]. The present paper will not address these advanced issues. To the extent to

which future studies of radiative parton energy loss result in improvements of the BDMPS-

Z formalism, it will be interesting to explore whether these refinements can be incorporated

in modifications of the MC algorithm discussed here.

A priori, it is unclear whether destructive quantum interference such as the non-abelian

LPM effect can be recast in a local probabilistic MC implementation of controlled accuracy.

A prominent example in which destructive quantum interference can be formulated indeed

in terms of a probabilistic prescription is the angular ordering condition of the vacuum

parton shower. In general, however, quantum interference effects need not be in one-to-

one correspondence with a local and probabilistic procedure. In a previous paper, we had

pointed out [42] that the concept of formation time can be identified unambiguously in the

BDMPS-Z formalism and that it could play the same role for the probabilistic implemen-

tation of medium-induced quantum interference as does angular ordering for implementing

destructive interference of gluon production processes in the vacuum. In the present paper,

this basic idea is worked out in full technical detail. It will also become clear why some

elements of our original proposal have to be modified to arrive at a faithful implementation

of the BDMPS-Z formalism.

Our paper is organized as follows: We first identify the main building blocks of the

proposed MC implementation by analyzing in section 2 the BDMPS-Z formalism in the

opacity expansion. Based on this analysis, we discuss in section 3 a simplified MC algorithm

that does not trace yet the kinematic dependences of parton splitting, but that accounts

for the formal BDMPS-Z limits of totally coherent and incoherent gluon production on the

level of total radiated particle yields. Section 4 discusses how this elementary algorithm

extends naturally to a full MC implementation of the BDMPS-Z formalism. In sections 5

and 6, we demonstrate that the proposed MC algorithm provides indeed a quantitatively
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controlled implementation of the BDMPS-Z formalism. Finally, we discuss in the outlook

of section 7 the perspectives for further uses and developments of this MC tool.

2 Time-scale for medium-induced interference in the opacity expansion

Medium-induced gluon radiation is expected to be the dominant energy loss mechanism of

highly energetic partons in QCD matter. Several groups have calculated the corresponding

medium-induced gluon energy distribution ω dI
dω in the kinematical regime [32–38]

E ≫ ω ≫ |k| , |qi| ≥ ΛQCD , (2.1)

where the energy E of the projectile parent parton is much larger than the energy ω of the

radiated gluon, which is much larger than its transverse momentum k and the transverse

momentum transfers qi from scattering centers in the medium.

In this section, we recall first that to each order in opacity [36, 37], the double dif-

ferential medium-induced gluon distribution ω dI
dω dk can be written in terms of two classes

of elementary cross sections (called R and H and defined below), multiplied by weight-

ing factors that interpolate between limits of coherent and incoherent particle production.

We emphasize that the scales of interpolation between coherent and incoherent particle

production are set by inverse transverse energies that have an interpretation as formation

times. They will play a central role in the algorithm proposed in section 4.

2.1 Medium-induced gluon radiation in the high energy limit

Our aim is to specify a Monte Carlo algorithm that implements the double differen-

tial medium-induced gluon energy distribution ω dI
dω dk

, derived first by Baier, Dokshitzer,

Mueller, Peigné and Schiff (BDMPS) [32, 33] and independently by Zakharov [34, 35] in

the eikonal approximation (2.1). As a preparatory step, we summarize here information

about ω dI
dω dk

that will be needed in the following discussion. For a medium of finite size,

the distribution ω dI
dω dk of radiated gluons can be written in the compact path integral

formulation [36]

ω
dI

dω dk
=

αs CR

(2π)2 ω2
2Re

∫ ∞

ξ0

dyl

∫ ∞

yl

dȳl

∫

du e−ik·u e
− 1

2

R ∞
ȳl

dξ n(ξ) σ(u)

× ∂

∂y
· ∂

∂u

∫ u=r(ȳl)

y=0
Dr exp

[

i

∫ ȳl

yl

dξ
ω

2

(

ṙ2 − n(ξ)σ (r)

i ω

)]

. (2.2)

Here, the right hand side of (2.2) contains several internal variables (u, y, r, yl, ȳl), which

do not relate directly to measurable quantities. The longitudinal coordinates yl, ȳl result

from integrating over the ordered longitudinal gluon emission points in the amplitude and

complex conjugate amplitude of a multiple scattering cross section. The two-dimensional

transverse coordinates u, y and r emerge in the derivation of (2.2) as distances between the

positions of projectile components in the amplitude and complex conjugate amplitude [36].

In the following, we discuss in more detail how the hard ’projectile’ parton, the ’target’

medium, and the interaction between both is accounted for by equation (2.2).
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Characterization of the medium A partonic projectile that interacts perturbatively

with the medium exchanges gluons with some components of the target. The momen-

tum transfer between projectile and target can involve both transverse momentum q and

longitudinal momentum ql. In radiative parton energy loss calculations based on the high-

energy approximation (2.1), the transverse momentum transfer dominates, |q| ≫ ql. This

motivates a description of the target in terms of a collection of colored static scattering

potentials A(q), [43, 44]

eikonalqlq, q= A(  )q 

Targeta a’ (2.3)

This approximation neglects recoil effects, and thus it automatically neglects collisional

energy loss. To treat collisional and radiative energy loss on the same level, one would

have to undo the approximation (2.3).

In equation (2.2), the scattering potentials A(q) enter the gluon energy distribution in

the form of the so-called dipole cross section

σ(r) = 2

∫

dq

(2π)2
|A(q)|2 (1 − exp{iq.r}) . (2.4)

Here, |A(q)|2 characterizes the differential elastic cross section with which the projectile

parton transfers a transverse momentum q to a single scattering center in the medium. In

the gluon energy distribution (2.2), this quantity is always multiplied by the density n(ξ)

of scattering centers along the trajectory of the projectile. For notational simplicity, we

focus in the following on a homogeneous density distribution of scattering centers within

a box of length L, that is

n(ξ) =

{ n0 , for 0 < ξ < L ,

0 , for ξ < 0 or L < ξ .

(2.5)

Our discussion generalizes to arbitrary density profiles, but we shall not provide details

about this generalization in the present work.

Initializing the parent parton. The lower bound ξ0 of the yl-integral of (2.2) denotes

the time at which the high energy parton is produced. The parton is produced either at

some finite time, which we set to ξ0 = 0, or it is produced in the infinite past. These two

initializations correspond to different physics scenarios:

• ξ0 = 0

If the parton is produced in a hard interaction, then it is produced at a finite produc-

tion time, which we set to ξ0 = 0. Even in the absence of a medium, partons produced

– 6 –
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in a hard collision branch as a consequence of their virtuality. Equation (2.2) contains

information about this vacuum splitting, since it leads in the absence of a medium to

ω
dI(N = 0)

dω dk

∣

∣

∣

ξ0=0
=

αs

π2
CR

1

k2
, (2.6)

where CR = CF for a projectile quark and CR = CA for a projectile gluon. In (2.6),

the notation N = 0 stands for the zeroth order in the opacity expansion, which

corresponds to the case n(ξ) = 0, where medium effects vanish. The result (2.6) can

be identified with the LO g → g g and q → q g vacuum splitting functions in the form

that these splitting functions take in the eikonal limit (2.1).

• ξ0 = −∞
The condition ξ0 = −∞ initializes a parton that has propagated for an infinitely

long time without branching, prior to possibly interacting with the medium for times

ξ ≥ 0. In the absence of a medium, this parton will never branch,

ω
dI(N = 0)

dω dk

∣

∣

∣

ξ0=−∞
= 0 . (2.7)

In this sense, the parent parton propagates as if it were ’on-shell’. Because of con-

finement, a colored parton does not propagate forever and this situation will never

be realized in a physical process in the vacuum. But it is a relevant limiting case for

understanding the physics contained in (2.2)

Characteristic interaction terms. In the following subsections, we shall demonstrate

that the terms related to vacuum radiation and medium-induced radiation can be identified

unambiguously in the radiated gluon energy distribution (2.2) even outside the incoherent

limit. In preparation for this analysis, we here define the kinematic dependencies which

signal vacuum radiation and medium-induced radiation.

Perturbative splittings in the vacuum result in a characteristic 1
k2 -distribution of the

daughter gluons, with the transverse momentum measured with respect to the direction of

the high energy parent parton. As vacuum radiation term, we shall identify the term

H (k) =
1

k2
, (2.8)

which appears for instance in equation (2.6). Consistent with vacuum radiation, this term

does not depend on medium properties. If a gluon, produced by vacuum radiation, scatters

incoherently on N scattering centers which transfer transverse momenta qi respectively,

then the transverse momentum distribution of the gluon will be shifted to

H

(

k +
N
∑

i=1

qi

)

. (2.9)

We will refer also to terms of the form (2.9) as (shifted) vacuum radiation.

– 7 –
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In the eikonal approximation (2.1), the basic cross section for medium-induced gluon

radiation in potential scattering with momentum transfer q between target and projectile

can be written as

2

= |A(  )|   R(  ;  )kq q2+ +q

k

(2.10)

Here, |A(q)|2 characterizes the differential elastic scattering cross section with which the

projectile parton interacts with the static potential, and R(k;q) is the Bertsch-Gunion

term [45]

R(k;q) =
q2

k2 (k + q)2 , (2.11)

which denotes the distribution of gluons of transverse momentum k, produced in a single

incoherent interaction of a high energy parton with a colored scattering potential trans-

ferring transverse momentum q. The Bertsch-Gunion term characterizes medium-induced

radiation. Consistent with this notation, R vanishes in the absence of medium effects, that

is for q = 0. If a gluon, after being produced incoherently on one scattering center, scat-

ters subsequently incoherently on N − 1 other scattering centers, then the Bertsch-Gunion

momentum distribution is shifted to

R

(

k +

N−1
∑

i=1

qi;qN

)

. (2.12)

This is the incoherent (i.e. probabilistic) result of multiple elastic scattering.

In analyzing the gluon energy distribution (2.2), we shall also encounter medium-

induced radiation terms of the form

R

(

k;
N
∑

i=1

qi

)

. (2.13)

These terms result when N scattering centers act coherently in a single gluon production

process. They will be found in regions of phase space, where the formation time of the

gluon is too long to resolve the N scattering centers individually. Of course, radiation

terms in which gluons are produced in the coherent scattering on N scattering centers

prior to rescattering incoherently on M other scattering centers can be found also. These

terms are of the form

R



k +

M
∑

j=1

qN+j ;

N
∑

i=1

qi



 . (2.14)

In the following subsections, we analyze the gluon energy distribution (2.2) in the

opacity expansion. In doing so, we substantiate table 1.

In particular, we specify how interference effects interpolate between incoherent el-

ementary processes of the form H and R. This will be the basis for proposing a MC

algorithm.

– 8 –
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ξ0 parent parton dIvacuum

dωdk
dImedium

dωdk interference of

ξ0 = −∞ acts as if on-shell = 0 terms of form R only

ξ0 = 0 branches as if virtual ∝ 1
ω

1
k2 terms of form R and H

Table 1. Summary of characteristics of the ξ0 = 0 and ξ0 = −∞ cases.

2.2 Interference effects for medium-induced gluon radiation (case ξ0 = −∞)

As discussed above, the gluon energy distribution (2.2) for a parton initialized at time ξ0 =

−∞ allows us to study the interference of different sources of medium-induced radiation

in a limiting case, in which complications due to vacuum radiation are absent.

The following analysis relies on the opacity expansion. This is an expansion of the

integrand of (2.2) in powers of the density of scattering centers n(ξ) times the effective

scattering strength σ(r) of a single scattering center. The opacity expansion amounts to

an expansion in powers of
∫

dξ n(ξ) Vtot = n0 LVtot, where Vtot characterizes the cross

section presented by the scattering potential A(q),

Vtot ≡
∫

dq

(2π)2
|A(q)|2 . (2.15)

In practice, the opacity expansion of (2.2) results in integrations over the transverse mo-

menta q1, . . . ,qN , which are weighted by the differential elastic scattering cross sections

|A(q1)|2, . . . , |A(qN )|2, but which do automatically factorize into powers of Vtot. For this

reason, the N -th order of opacity is obtained most easily by collecting all terms of order

(n0 L)N .

2.2.1 N = 1 opacity expansion

The zeroth order in opacity corresponds to the absence of medium effects, n(ξ) = 0, when

no gluons are radiated, see equation (2.7). The first non-vanishing term in an opacity

expansion of (2.2) is then the first order

ω
dI(N = 1)

dω dkdq1
=

αs

π2
CR (n0 L)

1

(2π)2
(

|A(q1)|2 − Vtot δ̄(q1)
) q2

1

k2 (k + q1)2 . (2.16)

We define δ̄(q) as

δ̄(q) ≡ (2π)2δ(q) , (2.17)

to absorb a factor (2π)2 that is common to many formulas in the following.

In general, to any order in the opacity expansion of (2.2), factors |A(q)|2 in the inte-

grand appear always in the combination
(

|A(q)|2 − Vtot δ̄(q)
)

. The terms Vtot arise as a

consequence of probability conservation, as we explain in more detail below.

To first order in opacity, see (2.16), the term proportional to Vtot δ̄(q1) vanishes, and

the result is of the form (2.10) of an elastic cross section |A(q)|2 times a Bertsch-Gunion

term (2.11). Hence, the N = 1 opacity contribution to the gluon energy distribution (2.2)

accounts for all radiated gluons, which have interacted with exactly one scattering center

in the medium. The prefactor (n0 L) in (2.16) counts the number of independent gluon

productions which occur within the length L.
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2.2.2 N = 2 opacity expansion and formation time

Medium-induced quantum interference arises, if a single gluon is produced in interactions

with at least two scattering centers. In the opacity expansion, this is realized for N ≥ 2. In

particular, for N = 2, the medium-induced gluon distribution can be written in the form

ω
dI(N = 2)

dω dkdq1 dq2
=

αs

π2

CR

(2π)4
(

|A(q1)|2 − Vtotδ̄(q1)
) (

|A(q2)|2 − Vtotδ̄(q2)
)

×
[

(n0 L)2

2
R(k + q1;q2) − n2

0

1 − cos(LQ1)

Q2
1

R(k + q1;q2)

+n2
0

1 − cos(LQ1)

Q2
1

R(k;q1 + q2)

]

. (2.18)

Here, we have adopted the following conventions [36]: To N -th order in opacity, subscripts

are labeled such that i = 1 is the last, i = 2 the next to last and i = N the first scattering

center along the trajectory of the partonic projectile. Also, the sign of the transverse

momenta qi are chosen such that they are flowing from the projectile to the medium.

The qualitatively novel feature of the N = 2 result (2.18), compared to the first order

result (2.15), is the appearance of an interference factor

Z(Q1, L) = n2
0

1 − cos(LQ1)

Q2
1

. (2.19)

In general, interference factors depend on the in-medium path length L and on transverse

energies

Q ≡ k2

2 ω
, Qi ≡

(

k +
∑i

j=1 qj

)2

2 ω
. (2.20)

For the following, it will be useful to view the inverse of these transverse energies as

formation times. In particular,

τ = 1/Q , formation time of the final state gluon, (2.21)

and

τ1 = 1/Q1 , gluon formation time prior to last interaction at i = 1 . (2.22)

The interference factor (2.19) interpolates between the two limiting cases

n2
0

1 − cos(LQ1)

Q2
1

=

{
(n0 L)2

2 , for L ≪ τ1 , n0 L = const.

0 , for L ≫ τ1 , n0 L = const.

(2.23)

In both limiting cases, the energy distribution (2.18) has a probabilistic interpretation:

• Incoherent production limit L ≫ τ1, n0 L = const.

ω
dI(N = 2)

dω dkdq1 dq2
=

αs

π2

CR

(2π)4
(

|A(q1)|2 − Vtotδ̄(q1)
) (

|A(q2)|2 − Vtotδ̄(q2)
)

×(n0 L)2

2
R(k + q1;q2) . (2.24)
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Here the Bertsch-Gunion term R(k + q1;q2) denotes a medium-induced radiation

term, for which the gluon was produced incoherently on the first scattering center

with momentum transfer q2 and scattered incoherently on the last scattering center

with momentum transfer q1 .

• Totally coherent production limit L ≪ τ1, n0 L = const.

ω
dI(N = 2)

dω dkdq1 dq2
=

αs

π2

CR

(2π)4
(

|A(q1)|2 − Vtotδ̄(q1)
) (

|A(q2)|2 − Vtotδ̄(q2)
)

×(n0 L)2

2
R(k;q1 + q2) . (2.25)

Here, the Bertsch-Gunion term R(k;q1 +q2) denotes a coherent gluon production in

which the two scattering centers are not resolved but act effectively as a single one.

In the expressions above, there are terms proportional to |A(q1)|2 |A(q2)|2. These corre-

spond to processes, in which the radiated gluon exchanges momentum with exactly two

scattering centers. In addition, there are terms proportional to Vtot |A(q2)|2, in equa-

tions (2.24) and (2.25), which involve only one momentum transfer with the target. For

these latter terms, the totally coherent and incoherent limits differ by a factor 2. This

can be understood in terms of a probabilistic picture of the partonic dynamics: In the

incoherent case, the gluon can scatter on the second scattering center at ξ1 only after it

was produced incoherently at position ξ2. The corresponding weight from the integrals

along the trajectory is ∝
∫ L
0 dξ2 n0

∫ L
ξ2

dξ1 n0 = (n0 L)2/2. In contrast, in the coher-

ent case when both scattering centers lie within the formation time of the gluon, their

time ordering does not matter and the probability conserving contribution has the weight
∫ L
0 dξ2 n0

∫ L
0 dξ1 n0 = (n0 L)2, which is a factor 2 larger.

2.3 Combining medium-induced and vacuum gluon radiation (case ξ0 = 0)

In section 2.2, we discussed how destructive interference gives rise to formation time scales

in the gluon energy distribution (2.2) with initialization ξ0 = −∞, where vacuum radiation

is absent. Here, we parallel this discussion for the initialization ξ0 = 0, when the hard

projectile splits also in the absence of a medium, as expected for a virtual state.

2.3.1 N = 1 Opacity expansion for ξ0 = 0

To zeroth order in opacity, the gluon energy distribution (2.2) yields the singular part
dI

dz dk = αsCR
1
k2

1
z . This is the leading order quark or gluon splitting function for z = ω/E

within the eikonal approximation (2.1).

Destructive interference arises already to first order in opacity,

ω
dI(N = 1)

dω dkdq1
=

αs

π2

CR

(2π)2
(

|A(q1)|2 − Vtot δ̄(q1)
)

n0
LQ1 − sin (LQ1)

Q1

×
[

1

(k + q1)2
+

q2
1

k2 (k + q1)2

]

. (2.26)
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Here, τ1 = 1/Q1 is the formation time of the gluon prior to scattering on the medium with

momentum transfer q1. The limiting cases are:

• The limit L ≪ τ1, n0 L = const.

One finds the limit

lim
L/τ1→0

ω
dI(N = 1)

dω dkdq1
= 0 . (2.27)

As we discuss in more detail in appendix A, this limit is consistent with the proba-

bilistic picture that a gluon can only be produced in a scattering if it is formed as

part of the incoming projectile wave function prior to the scattering.

• N = 1: Incoherent production limit for L ≫ τ1, n0 L = const.

ω
dI(N = 1)

dω dkdq1
=

αs

π2

CR

(2π)2
(n0 L)

[

−Vtotδ̄(q1)H(k) + |A(q1)|2 H(k + q1)

+|A(q1)|2 R(k, q1)
]

(2.28)

On the right hand side of this equation, the first term is proportional to Vtot and

implements probability conservation: the total probability that a scattering with

some momentum transfer q1 occurs is subtracted from the N = 0-contribution that

no momentum transfer occurs. If a momentum transfer occurs, then this momen-

tum transfer can either shift probabilistically the transverse momentum of the fully

formed gluon. This is the second term proportional to H(k + q1). Alternatively,

the momentum transfer leads to a medium-induced gluon production, distributed

according to the Bertsch-Gunion term R(k, q1).

2.3.2 N = 2 Opacity expansion for ξ0 = 0

For ξ = 0, the 2nd order in opacity of equation (2.2) can be written in the compact form [36]

ω
dI(N = 2)

dω dkdq1 dq2
=

αs

π2

CR

(2π)4
(

|A(q1)|2 − Vtot δ̄(q1)
) (

|A(q2)|2 − Vtot δ̄(q2)
)

× 1

(2 ω)2

2
∑

j=0

Zj+1

(

k +
2
∑

i=1

qi

)

·
(

k +

2−j
∑

i=1

qi

)

, (2.29)

where

Z1 = n2
0

2 cos(LQ2) − 2 + L2Q2
2

2 Q4
2

, (2.30)

Z2 = n2
0

Q3
1

[

2 cos(LQ2) − 2 + L2Q2
2

]

2 Q3
1 (Q1 − Q2) Q3

2

− n2
0

Q3
1

[

2 cos(LQ1) − 1 + L2Q2
1

]

2 Q3
1 (Q1 − Q2) Q3

2

, (2.31)

Z3 = n2
0

Q2
1 [−1 + 2 cos(LQ2)]

QQ2
1 (Q1 − Q2) Q2

2

− n2
0

Q2
2 [−1 + 2 cos(LQ1)]

QQ2
1 (Q1 − Q2) Q2

2

. (2.32)
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We consider again the case of a fixed number of effective scattering centers, n0 L = const.

In the limit n0 L = const, L → 0, expression (2.29) vanishes,

lim
n0 L=const , L→0

ω
dI(N = 2)

dω dkdq1 dq2
= 0 , (2.33)

and so do all higher orders in opacity. In the opposite limit, n0 L = const, L → ∞, one

finds the totally incoherent limit

lim
n0L=const L→∞

ω
dI(N = 2)

dω dkdq1 dq2
=

αs

π2

CR

(2π)4
[

(n0L)2

2
|A(q1)|2|A(q2)|2 [H(k+q1+q2)+R(k+q1,q2)]

−Vtotδ̄(q1)
(n0L)2

2
|A(q2)|2 [H(k + q2) + R(k;q2)]

+
(n0 LVtot)

2

2
δ̄(q2)δ̄(q1)H(k)

]

. (2.34)

The probabilistic interpretation of this expression is as follows: If the gluon has interacted

incoherently with two scattering centers prior to escaping from the medium after length

L with momentum k, then this gluon was either produced in a vacuum splitting and

accumulated transverse momentum incoherently in two scattering. This is the term H(k+

q1 + q2). Alternatively, the gluon was produced in a medium-induced interaction R(k +

q1,q2) with momentum transfer q2 and accumulated additional transverse momentum

q1 incoherently in a second interaction. The second and third line of (2.34) readjust the

probabilities that the gluon was produced with less than two momentum transfers from the

medium. In particular, to all orders in N , the vacuum emission H(k) remains unmodified

by the medium with the weight given by the no-scattering probability S = exp [−n0 LVtot],

and the last line is the second order in opacity of S H(k). Similarly, the second line readjusts

the probability for gluon production processes with exactly one scattering center involved.

What dictates the scale at which the vanishing (totally coherent) radiation pattern (2.33)

evolves into a fully developed incoherent radiation pattern (2.34)? For reasons that will

become clear in the following subsection, we focus our discussion of this question on the

medium-induced radiation term R(k + q1,q2). We observe that in the limit n0 L = const,

L → ∞ of the gluon energy distribution (2.29), only the term proportional to Z2 contributes

to the medium-induced radiation term R. The limiting cases of Z2 are

lim
n0 L=const , L→∞

Z2 =
n2

0L
2

2Q1Q2
, lim

n0 L=const , L→0
Z2 = 0 . (2.35)

Inspection of equation (2.31) shows that for n0 L = const, the first term vanishes for scales

L ≪ 1/Q2 and the second term for length scales L ≪ 1/Q1. To fully explore the physical

implications of this observation, we recall that Q2 is the transverse energy of the gluon

prior to interacting with the target, and Q1 is the transverse energy of the gluon after the

first and prior to the second scattering. For the most likely scattering histories, transverse
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energy will be built up step by step in multiple scattering, Q2 ≪ Q1. We have written this

as a strong inequality with the idea that medium-induced transverse momentum broadening

should dominate over the initial transverse momentum of the vacuum radiation. Now, for

Q2 ≪ Q1, one sees that the second term in (2.31) dominates the value of Z2 for sufficiently

large L, and this second term dies out on length scales L ≪ 1/Q1. This leads us to

the qualitative conclusion that it is the formation time 1/Q1 of the gluon prior to its last

interaction with the target that determines whether the radiation R takes place. The gluon

is only radiated if its formation time is sufficiently short so that formation is completed on

a scale comparable with the in-medium path length.

2.3.3 Guidance for an MC implementation

A remarkable simplification of MC simulations of the k-integrated radiation pattern arises

from the fact that vacuum terms like H(k+q) in (2.28) do not contribute to parton energy

loss. This is so, since H(k + q) amounts to a probability-conserving redistribution of glu-

ons in transverse momentum space; this redistribution affects neither the yield of emitted

gluons, nor their energy distribution. As a consequence, neglecting the terms proportional

to H does not affect the gluon energy distribution ωdI/dω. For k-differential distributions,

a similar a priori argument does not exist. We note as an aside that terms proportional to

H were not taken into account in the original derivation of the BDMPS-Z formalism. They

appeared first in the derivation of ref. [36] that leads to (2.2). That they modify the trans-

verse momentum distribution was also recognized in ref. [46]. However, there is numerical

evidence that inclusion of these terms is a numerically small effect [36]. Based on this

observation, we shall seek a MC implementation of the BDMPS-Z formalism that neglects

terms proportional to H. This treatment is exact for k-integrated quantities, and - as we

shall show in section 6 - it is a satisfactory approximation for k-differential information.

For the medium-induced radiation terms R, at first order in opacity, the only difference

between the cases ξ0 = −∞ (2.16) and ξ0 = 0 (2.26) is the reduction in the phase space of

R due to the destructive interference term n0 (LQ1 − sin (LQ1)) /Q1. The analysis to first

order in opacity did not allow us to disentangle between an interpretation of this phase

space cut in terms of either i) the formation time prior to the very first or ii) prior to the

very last interaction with the medium. The analysis of the 2nd order in opacity, however,

gave support to the second interpretation, see section 2.3.2. Motivated by this observation,

we shall propose in section 4 a Monte Carlo implementation of the BDMPS-Z formalism

for ξ0 = 0, according to which gluons are rejected from the simulation if their formation is

not completed within the medium.

The analysis of the opacity expansion in section 2.3.2 supports only the parametric

statement that those medium-induced gluons contribute to the distribution (2.2) whose

formation is completed on a length scale comparable to L. It is one conceivable (though

not unique) implementation of this parametric argument to count solely gluons whose

formation is completed within the medium. We note that in establishing a one-to-one

correspondence between the opacity expansion of (2.2) and a MC algorithm, this is the only

point where we have found only parametric and not quantitative guidance. Accordingly,
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we have tested numerically some variations of this prescription, and we shall comment on

this in section 5.

3 A simplified problem: a MC algorithm for 〈Ng〉 in the totally coherent

and incoherent BDMPS limits

The main aim of this paper is to formulate a MC algorithm that interpolates correctly

between the analytically known BDMPS results in the opacity expansion. Explicit expres-

sions for these limits are known analytically [36] to arbitrary high orders in opacity. For

the case of an incident projectile (ξ0 = −∞), the totally coherent limit is

ω
dI

dω dk

∣

∣

∣

∣

∣

coh

=
αs

π2
CR exp [−n0 LVtot]

∞
∑

Ns=1

1

Ns!

(

Ns
∏

i=1

∫

qi

n0 L

)

R



k,
Ns
∑

j=1

qj



 , (3.1)

and the incoherent limit is

ω
dI

dω dk

∣

∣

∣

∣

∣

incoh

=
αs

π2
CR exp [−n0 LVtot]

∞
∑

Ns=1

1

Ns!

(

Ns
∏

i=1

∫

qi

n0 L

)

Ns
∑

j=1

R

(

k +

j−1
∑

l=1

ql,qj

)

.

(3.2)

Here, we have used the shorthand
∫

qi

f(q) ≡
∫

dqi

(2π)2
|A(qi)|2 f(q) . (3.3)

In general, contributions to N -th order in opacity contain products of a number Ns (1 ≤
Ns ≤ N) of cross sections |A(qi)|2, and a number N − Ns of cross sections Vtot, obtained

from expanding the prefactor exp [−n0 LVtot].

In this section, we consider first the simpler problem of formulating for the limits of

totally coherent and incoherent gluon production an algorithm for the momentum-space

integrated average number of radiated gluons,

〈Ng〉 =

∫

k,ω

dI

dω dk
. (3.4)

This study will be extended to the differential spectrum in section 4.

3.1 Relating BDMPS-Z to elastic and inelastic mean free paths

We consider first the Ns = 1 scattering contribution to the totally coherent and incoherent

BDMPS limits (3.1) and (3.2). The resulting average number of radiated gluons is

〈Ng〉(Ns = 1) = exp [−n0 LVtot] n0 L
αs

π2
CR

∫

k,ω

∫

dq

(2π)2
|A(q)|2 1

ω
R (k,q)

≡ n0 Lσinel exp [−n0 LVtot] . (3.5)

Here, we have used the analysis of equation (2.16) to define the inelastic cross section for

incoherent gluon production on a single scattering center as

σinel ≡
αs

π2
CR

∫

k,ω

∫

dq

(2π)2
|A(q)|2 1

ω
R (k,q) . (3.6)
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Here, the integrations over k and ω require regularization. The value of the regulator is

a physical choice: it determines up to which soft scale infrared and collinear production

processes are counted towards the inelastic cross section. We shall explain in section 5 how,

based on this definition of σinel, one can calculate measurable quantities that are insensitive

to the choice of regulators. In the BDMPS-Z formalism, factors |A(q)|2 and Vtot are always

multiplied by the density n0 of scattering centers. The product n0 σinel defines the inelastic

mean free path λinel
L

λinel
≡ n0 Lσinel . (3.7)

Physical results depend on λinel, but they do not depend separately on σinel and n0.

As seen in the discussion of (2.3), the term |A(q)|2 can be viewed as the differen-

tial elastic cross section dσel

dq for scattering of the partonic projectile on a single target.

Accordingly, we identify

Vtot =

∫

dq

(2π)2
|A(q)|2 ≡ σel . (3.8)

The exponential factor exp (−n0 LVtot) can then be written in terms of the elastic mean

free path λel,

exp (−n0 LVtot) ≡ exp

(

− L

λel

)

. (3.9)

3.1.1 Incoherent limit

The higher order terms of the coherent and totally incoherent BDMPS-Z limits (3.1)

and (3.2) differ. In particular, for Ns = 2, we have

〈N incoh
g 〉(Ns = 2) =

αs

π2
CR e−n0 L Vtot

1

2!

∫

k,ω

∫

q1

∫

q2

(n0 L)2

(

R (k,q1)

ω
+

R (k + q1,q2)

ω

)

= e−L/ λel
1

2!
L2 2

λel λinel
. (3.10)

Here, the first term ∝ R (k,q1) has a q2-independent integrand and can be written as

a factor 1/λel. This is a consequence of
∫

q2
1 = Vtot and the argument leading to (3.9).

For the second term ∝ R (k + q1,q2), a formal shift k → k − q1 in the integral of (3.10)

indicates that its contribution to the transverse momentum integrated average (3.10) is of

the same magnitude. This prompts us to identify in the incoherent limit the higher orders

of Ns with

〈N incoh
g 〉(Ns) = e−L/λel

1

Ns!
LNs

Ns

λinel λ
Ns−1
el

. (3.11)

Summing over all orders of Ns, one finds

〈N incoh
g 〉 =

∞
∑

Ns=1

〈N incoh
g 〉(Ns) =

L

λinel
. (3.12)

This is the expected result for the average number of gluons produced incoherently within

a length L, and it thus supports our identification of momentum-integrated terms in the

BDMPS-Z formalism with elastic and inelastic mean free paths.
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3.1.2 Totally coherent limit

To arbitrary order in opacity, we find from (3.1) for the totally coherent limit

〈N coh
g 〉(Ns) = e−L/λtot

1

Ns!

(

L

λel

)Ns
∫

k,ω

(

Ns
∏

i=1

(
∫

dq

(2π)2
|A(q)|2

Vtot

)

)

αs

π2

CR

ω
R



k,

Ns
∑

j=1

qj





(3.13)

In general, the k-integration over R
(

k,
∑Ns

j=1 qj

)

differs from the integration over

R
(

k +
∑j−1

l=1 ql,qj

)

in the incoherent limit. However, both k-integrals are dominated

by contributions from the two (IR regulated) singularities in the Bertsch-Gunion factor,

and these dominant contributions are identical for both integrals. This prompts us to write

〈N coh
g 〉(Ns) = exp

(

− L

λel

)

1

Ns!

(

L

λel

)Ns λel

λinel
. (3.14)

All totally coherent contributions 〈N coh
g 〉(Ns) are exactly one factor 1/Ns smaller than

those of the incoherent limit (3.11). The resulting average number of gluons produced

totally coherently is

〈N coh
g 〉 =

∞
∑

Ns=1

〈N coh
g 〉(Ns) =

λel

λinel

(

1 − e−L/λel

)

. (3.15)

3.1.3 Ambiguities in identifying mean free paths in the BDMPS-Z formalism

In the BDMPS-Z formalism, one calculates radiation cross sections for multiple scattering

processes that have one additional gluon in the final state and that involve a very large

number of elastic interactions. Therefore, the BDMPS-Z formalism is derived under the

assumption that λel ≪ λinel. The ratio of these mean free paths sets the value of the strong

coupling constant, λel/λinel ∝ αs, see section 5 for a quantitative discussion. In this sense,

the BDMPS-Z formalism is a weak coupling approach with regards to gluon radiation,

whereas it resums the possibly non-perturbatively strong interactions between projectile

and target.

In general, the total mean free path λtot is defined as

1

λtot
=

1

λel
+

1

λinel
. (3.16)

However, in a formalism where λel/λinel = O(αs) ≪ 1, the inverse of λtot equals the inverse

of λel up to subleading corrections of O(αs) that become negligible. That leads to some

ambiguities in identifying mean free paths in the BDMPS-Z formalism. In the discussion

so far, we have chosen to interpret Vtot as a phase-space integrated elastic cross section.

This is natural in the light of equation (2.3). On the other hand, one has also the choice of

identifying n0 Vtot with 1/λtot, and this ambiguity cannot be resolved within the accuracy

of the BDMPS-Z formalism. We note that taking this alternative choice, one would find

for instance 〈N coh
g 〉 = λtot

λinel

(

1 − e−L/λtot

)

. In contrast to (3.15), this is smaller than unity

for arbitrary values of λinel and λel, while equation (3.15) can be larger than unity for

λel > λinel. In the region λel ≪ λinel, for which the BDMPS-Z formalism was derived, this

difference becomes negligible.
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3.2 MC algorithms for the incoherent and totally coherent BDMPS-Z limits

We consider a medium composed of scattering centers of a given density n0 that provide

elastic and inelastic cross sections to a projectile parton. We work within the approxima-

tions of the BDMPS-Z formalism, that means: We neglect elastic scatterings of the projec-

tile partons, since they are unimportant for gluon radiation. And we neglect subsequent

inelastic scatterings of the radiated gluons, since they are unimportant for understanding

the energy loss of the projectile parton.

3.2.1 MC algorithm for the incoherent BDMPS-Z limit

We first formulate a MC algorithm that implements the BDMPS-Z formalism in the absence

of quantum interference effects (incoherent limit). The starting point of the probabilistic

evolution is a partonic projectile that propagates on a straight line ξ ∈ [0; L] through a

medium of path-length L. The interaction between projectile and medium is characterized

fully in terms of the inelastic mean free path λinel of the projectile and the elastic mean

free path λel of the radiated gluons. The dynamic evolution starts at ξ = 0 and it proceeds

according to the following steps:

1. Determine whether and where the projectile undergoes its next inelastic scattering

Decide with probability 1 − Sproj
no (L) that a scattering occurs within the remaining

in-medium path length L. Here, Sproj
no (L) is the probability that the projectile does

not undergo any inelastic interaction within length L,

Sproj
no (L) = exp (−L/λinel) . (3.17)

If no further inelastic interaction is found, then stop the dynamical evolution. Else,

determine the distance ξ to the next inelastic scattering center according to the

probability density

Σ(ξ) = −dSproj
no (ξ)

dξ
=

1

λinel
Sproj

no (ξ) . (3.18)

2. After inelastic scattering, continue propagating the projectile

After an inelastic interaction at position ξ, the outgoing projectile has a remaining

in-medium path length L − ξ. To establish whether the projectile undergoes further

inelastic interactions, repeat step 1 with inelastic no-scattering probability Sproj
no (L−

ξ). Reiterate this step till no further inelastic interaction is found.

3. After inelastic scattering, propagate the produced gluon

The gluon, produced in an inelastic process at position ξ, has a remaining in-medium

path-length L− ξ. Determine the number and positions of additional elastic interac-

tions of the gluon with the medium as follows:

Determine whether and where the gluon undergoes its next elastic scattering, based

on the elastic no-scattering probability Sel
no(L−ξ) = exp [−(L − ξ)/λel]. That means,

decide with probability 1 − Sel
no(L − ξ) that there is another elastic scattering, and

determine its distance ξ′ − ξ according to the probability density

Σ(ξ′ − ξ) = −dSel
no(ξ′ − ξ)

dξ′
=

1

λel
Sel

no(ξ′ − ξ) . (3.19)
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Reiterate this process for each gluon till no further elastic scattering center is found.

According to this MC algorithm, the probability Pinel(m) for generating dynamical scat-

tering histories with exactly m inelastic interactions is determined by reiterating step 2 in

the above algorithm,

Pinel(m) =

∫ L

0

dx1

λinel
e−x1/λinel

∫ L

x1

dx2

λinel
e−(x2−x1)/λinel . . .

∫ L

xm−1

dxm

λinel
exp [−(L − xm)/λinel]

= exp

[

− L

λinel

]

1

m!

(

L

λinel

)m

. (3.20)

Since the algorithm produces exactly one gluon per inelastic interaction, Pinel(m) is the

probability for finding scattering histories with exactly m produced gluons. The average

number of gluons per scattering history is

〈NMC,incoh
g 〉 =

∞
∑

m=1

Pinel(m) m =
L

λinel
, (3.21)

which is consistent with the corresponding incoherent limit in the BDMPS-Z formalism,

see (3.11).

3.2.2 MC algorithm in the presence of coherence effects

Coherence effects in gluon production processes can be accounted for by modeling the

production as taking place over a finite formation time τf in (2.21). The incoherent limit

of gluon production is then realized for the case τf ≪ λinel , λel and the totally coherent

limit is realized for τf ≫ L. To decide which of these limits applies to a specific gluon

production process, the MC algorithm needs to know τf . The dynamical determination

of τf requires k-differential information and will be discussed in the context of the k-

differential algorithm in section 4. As a preparatory step, we explore here the formal limits

τf → 0 (incoherent) and τf → ∞ (totally incoherent) gluon radiation, and we study in

these limits k-integrated yields. We want to devise an algorithm that extends naturally

to a k-differential version. To this end, we should use information about whether we work

in the totally coherent or incoherent limit only in algorithmic steps in which information

about τf would be dynamically available in the k-differential version. Therefore, as long as

the inelastic scattering and its kinematics is not yet determined, the MC algorithm must

still allow for the cases that the inelastic production process could be either incoherent

or could include coherence effects. This consideration prompts us to seek an MC imple-

mentation that starts from selecting an inelastic process as in the incoherent case, based

on equations (3.17) and (3.18). Coherence effects will then be included by modifying the

subsequent evolution and by reweighting the inelastic process that was selected with the

probability of an incoherent production. Such reweighting is a standard Monte Carlo tech-

nique in algorithms that overestimate probabilities. We discuss now both these elements

in more detail.
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Modifying the subsequent evolution. Assume that the MC algorithm has selected

an inelastic process ’at ξ’ according to (3.17), (3.18), and that the formation time τf of

the produced gluon is then found to be finite. How should this be taken into account

in the further probabilisitic evolution? The general idea is that if τf cannot be neglected

(τf > λinel , λel), then the position ξ selected in (3.18) cannot be interpreted as the ’point’ of

the gluon emission. Rather, we view the simulated pair of values ξ, τf as specifying a region

of extent τf around ξ, over which the gluon production process takes place. Technically,

this translates into the requirement that if gluon production could have started as early as

ξinit = max [ξ − τf ; 0], then the produced gluon is allowed to scatter elastically from time

ξinit onwards, and not only after time ξ. This is a modification of step 3 of the incoherent

algorithm. Physically, it means that within this entire region between ξinit and ξinit + τf ,

elastic interactions act coherently with the inelastic one.

In the present subsection, we restrict our discussion to the totally coherent case, τf ≫
L. In this particular limit, irrespective of the position ξ at which the MC algorithm

allocates the center of an inelastic process, this process is delocalized over the entire in-

medium path length L. As a consequence, irrespective of the choice of ξ, the radiated

gluon can accumulate additional elastic interactions between ξinit = 0 and L.

Reweighting inelastic processes. In the incoherent case, the probability that the pro-

jectile parton undergoes one or more inelastic interactions is given by 1−Sproj
no (L), see (3.17).

Each scattering center serves as an independent source of gluon production. In contrast, in

the presence of coherence effects, it is the ensemble of several scattering centers that acts ef-

fectively as one source of gluon production. Therefore, the factor 1−Sproj
no (L) overestimates

the probability of inelastic interactions, and a reweighting is needed.

To determine this reweighting factor, we observe that in the totally coherent limit

of the BDMPS-Z formalism, 〈N coh
g 〉(Ns) in (3.14) denotes the average number of gluons

produced with exactly (Ns − 1) elastic and one inelastic interaction. The corresponding

expression in the incoherent limit is given in (3.11) and it is one power of Ns larger,

〈N incoh
g 〉(Ns) = Ns 〈N coh

g 〉(Ns). Therefore, the Ns-averaged number of emitted gluons can

be obtained in the totally coherent limit, if a gluon selected according to (3.17), (3.18) and

having undergone Ns scatterings is accepted with probability

w =
1

Ns
. (3.22)

Based on these considerations, we propose the following MC algorithm for the totally

coherent limit:

1. Determine whether the projectile undergoes an inelastic scattering.

As in the incoherent case, use (3.17) to decide with probability 1 − Sproj
no (L) that a

scattering occurs within the in-medium path length L. If no inelastic interaction is

found, then stop the dynamical evolution.

2. After inelastic scattering, continue propagating the projectile.

Establish whether the projectile undergoes further inelastic interactions by searching

with probability 1 − Sproj
no (L − ξ) for further inelastic scatterings between ξ and L.
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3. After inelastic scattering, propagate the produced gluon up to length L and reweight

its production probability.

In the totally coherent case, the production is delocalized over the entire medium of

length L and therefore, all gluons undergo elastic scattering over an in-medium path

length L. With probability 1 − w = 1 − 1
Ns

, the produced gluons are rejected.

3.3 Validating the proposed MC algorithms

We have written MC programs that implement the algorithms proposed in sections 3.2.1

and 3.2.2 for the case of incoherent and totally coherent gluon production, respectively.

To check that these algorithms reproduce the analytically known results of the BDMPS-Z

formalism, we establish that they account for the average number of gluons produced per

scattering history in both limits, 〈N coh
g 〉 and 〈N incoh

g 〉. In addition, the MC algorithms allow

us to plot the average number of gluons 〈Ng〉(incoh)
j and 〈Ng〉(coh)

j , produced with exactly

j momentum transfers from the medium. Here, we test against this more differential

information.

In the totally coherent limit, we see from equation (3.13) that the expansion of

〈N coh
g 〉(Ns) to order Ns involves gluon radiation terms with exactly Ns momentum trans-

fers. As a consequence, the average number of gluons produced with exactly j momentum

transfers is given by

〈Ng〉(coh)
j = 〈N coh

g 〉(Ns = j) . (3.23)

The analogous identification of orders in the opacity expansion with number of momen-

tum transfers does not hold in the incoherent limit. As one sees for instance from equa-

tion (3.10), the second order receives contributions from gluons that were produced either

with one single momentum transfer (these are the terms R(k,q1)) or with two momentum

transfers (these are the terms R(k + q1,q2)). To identify all contributions with a fixed

number of momentum transfers, we write the incoherent limit of the BDMPS-Z formalism

as a series

ω
dI

dωdk

∣

∣

∣

∣

∣

incoh

=
αs

π2
CR exp (−n0LVtot)

∞
∑

N=1

1

N !
(n0LVtot)

N−1 n0L

∫

q1

R(k,q1)

+
αs

π2
CR exp (−n0LVtot)

∞
∑

N=2

1

N !
(n0LVtot)

N−2 (n0L)2
∫

q1

∫

q2

R(k + q2,q1)

. . . (3.24)

Here, contributions involving the radiation term R
(

k +
∑j

i=2 qi,q1

)

denote gluon produc-

tion processes with j-fold scattering (i.e. with (j − 1)-fold elastic scattering). Integrating

formally over phase space, one finds that the average number of such gluons per event,

produced with j-fold scattering, can be expressed in terms of complete and incomplete
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Figure 1. The average number of gluons, produced with exactly j momentum transfers from the

medium. Results are shown for some arbitrary choice of inelastic and elastic mean free path, and

total in-medium path length L. Analytical results of the BDMPS-Z formalism are compared to MC

simulations in the totally coherent and incoherent limits.

Γ-functions,

〈Ng〉(incoh)
j = exp

(

− L

λel

) ∞
∑

N=j

1

N !

(

L

λel

)N ( λel

λinel

)

=
L

λinel

Γ(j) − Γ(j, L
λel

)

L
λel

Γ(j)
(3.25)

One can check that the average number of incoherently produced gluons is again given by

〈Ng〉(incoh) =

∞
∑

j=1

〈Ng〉(incoh)
j =

L

λinel
. (3.26)

Figure 1 shows analytical results for 〈Ng〉(incoh)
j and 〈Ng〉(coh)

j , compared to output of

the MC programs implementing the algorithms of section 3.2.1 and 3.2.2. We have tested

that the proposed algorithms reproduce the results of the BDMPS-Z formalism for a broad
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range of values of the inelastic and elastic mean free path and for different in-medium path

lengths L. The differences between analytical results and MC simulations could always be

decreased arbitrarily by increasing sufficiently the number of events in the MC simulation.

This establishes that the proposed algorithms implement the BDMPS-Z formalism for k−
and ω-integrated quantities.

4 A k- and ω-differential MC algorithm in the totally coherent and in-

coherent BDMPS-limits

In the previous section, we have shown how the coherent and incoherent limits of the phase

space integrated average number of radiated gluons
∫

dω
∫

dk dI
dω dk

can be simulated in

a probabilistic MC algorithm. In the present section, we extend these algorithms to a

simulation of the differential gluon distribution dI
dω dk .

The basic building block for the differential distribution
∫

dω
∫

dk dI
dω dk

is the inelas-

tic interaction of the projectile with a single scattering center. According to eqs. (2.10)

and (2.16), the corresponding inelastic cross section is

dσinel

dω dqdk
=

αs

π2
CR

1

ω

1

(2π)2
|A(q)|2 q2

k2 (k + q)2 . (4.1)

We seek a MC algorithm that interpolates between the coherent and incoherent limits by

treating all momentum transfers during the formation time of a gluon as coherent, and all

scatterings outside the formation time as incoherent. Such an algorithm must keep track

of the kinematics of the scatterings, and it must account dynamically for changes in the

formation time. We propose an algorithm that as criterion for decoherence of the gluon

requires the relative phase of the radiated gluon

ϕ(∆z) =

〈

k2
⊥

2ω
∆z

〉

, (4.2)

to become unity. More precisely, we observe that the interference factor (2.23) extracted

from the BDMPS-Z formalism is best approximated by a Θ-function of the form1

n2
0

1 − cos(LQ1)

Q2
1

≈ (n0 L)2

2
Θ (3 − LQ1) . (4.3)

Therefore, we define the formation time by the condition

ϕ(τf ) ≡ 3 . (4.4)

We first discuss in section 4.1 the inputs and approximations of (4.1) that simplify an MC

implementation. We then specify a MC algorithm before discussing how some of these

approximations can be relaxed.

1The interference factor f(x = L Q1) = 2 (1 − cos x) /x2 decreases continuously from f(0) = 1 to

f(2π) = 0, and it oscillates for larger values of x with rapidly decreasing amplitude ∝ 1/x2. One finds
R

2π

0
f(x) dx = 2.84 and

R ∞

0
f(x) dx = π. Choosing the step of the Θ-function at x = 3 appears to be a

fair representation of the main quantitative features of f(x), but we do not have an a priori argument for

excluding slightly different values.
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4.1 Inputs and approximations in the proposed MC algorithm

In the study of parton energy loss models and the BDMPS-Z formalism, a standard

parametrization of elastic scattering cross sections is in terms of a Yukawa potential with

a screening mass µ,

|A(q)|2 ∝ 1

(q2 + µ2)2
. (4.5)

In the following, we work with this ansatz for µ ∈ [100 MeV; 1 GeV].

In equation (4.1), the inelastic cross section for a single incoherent scattering factorizes

into the product of the elastic cross section and a radiation term. The term R(k;q)

specifies how gluons produced with energy ω are distributed in transverse phase space

prior to undergoing subsequent interactions. What matters for the decoherence of the

gluon is its relative momentum with respect to the outgoing parent parton. If the final

transverse momentum of the gluon is build up by many interactions with the medium,

then the precise distribution of the transverse momentum at the inelastic interaction can

be expected to be unimportant. Moreover, even if there are not many interactions with the

medium, the transverse momentum of the gluon at the inelastic interaction will be set by

the recoil received by the medium. These considerations prompt us to adopt the following

approximation that simplifies the numerical implementation significantly

dσinel

dω dqdk
=

αs

π2
CR

1

ω

1

(2π)2
|A(q)|2 q2

k2 (k + q)2

≈ fprop
dσel

dq

αs CR

ω
(2π)2 δ(2) (k− q) . (4.6)

In section 5, we shall provide numerical evidence that the approximation (4.6) is sufficient

for a quantitative MC implementation of the BDMPS-Z formalism. With the help of (4.6),

the total inelastic cross section simplifies to

σinel = fprop σel αs CR log (ωmax/ωmin) . (4.7)

Here, we have considered gluon radiation in the range ω ∈ [ωmin; ωmax]. We note that

the first line of (4.6) needs to be regularized, since the integral over R(k;q) is infrared

divergent. Performing the integral over R(k;q) with an infrared cut-off ǫ around k = 0

and k = q, one finds fprop = 2
π

[

log
(

µ2/ǫ
)

+ const.
]

. In our MC algorithm, the infra-red

regulator ǫ will not appear. Rather, for one arbitrary choice of model parameters, we shall

adjust fprop such that the BDMPS result for the average parton energy loss is reproduced

with the correct norm. For all other choices of model parameters, fprop is then kept fixed

and the MC algorithm generates normalized results. What can be said a priori about the

numerical value of fprop is that there is no physical reason for choosing an infrared regulator

ǫ that is much smaller than the momentum scale µ. Therefore, the logarithm log
(

µ2/ǫ
)

should not be large, and fprop should be of order unity. We shall confirm this expectation

in section 5.

We pause to comment on this approximation from a wider perspective: The BDMPS-Z

formalism (2.2) does not depend on total elastic and inelastic cross sections, but only on
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the dipole cross section (2.4) that does not require regularization since it is differential in

configuration space. However, the opacity expansion of (2.2) rearranges this formalism in

a series that does contain total phase-space integrated quantities. To arrive at a proba-

bilistic implementation, we have assigned to some terms in the opacity expansion of (2.2)

the natural physical meaning of elastic and inelastic cross sections and of mean free paths

(see eqs. (3.7) and (3.9)). This can only be done with the help of approximations and

regularizations that are not explicit in the BDMPS-Z formalism (2.2). For instance, the

identification of phase-space integrated expressions of the opacity expansion with ratio-

nal functions of mean free paths (such as e.g. eq. (3.10)) is strictly speaking a physically

motivated assignment rather than an analytically derived fact, since the transverse mo-

mentum integrals are infra-red divergent. The crucial test for the MC implementation is

then that physical results do not depend on the regularization prescriptions employed and

that they account quantitatively for the BDMPS-Z formalism (2.2). That this is so will be

demonstrated in section 5.

4.2 A k- and ω-differential MC algorithm interpolating between the incoher-

ent and totally coherent BDMPS-limits

1. Initialisation

Set remaining path length of the projectile to total path length, Lproj = L.

2. Determine whether and where the projectile undergoes its next inelastic scattering

This step is implemented as described by equations (3.17), (3.18) and accompanying

text. If an inelastic scattering is generated at position ξ, then the remaining path

length of the projectile is set to L − ξ. The produced gluon is propagated further

according to the step 3 below. The algorithm repeats step 2 till no further inelastic

scatterings are found in the remaining path length.

3. Kinematics of gluon emission and dynamical evolution of formation time

In the BDMPS-Z formalism, the gluon energy is distributed according to 1/ω. From

this distribution, the gluon energy is generated. The initial transverse momentum of

the gluon is generated from the distribution |A(k)|2; the initial gluon phase is taken

to vanish, ϕ = 0; the number of momentum transfers to the gluon is set to Ns = 1,

and the initial formation time is determined according to

τf = (1 − ϕ)
2ω

k2
. (4.8)

Then set the remaining gluon path length to the total path length, Lgluon = L, and

check for further elastic momentum transfers within the formation time:

• With probability 1−Sel
no(min(τf, Lgluon)) there is one more scattering. Determine

the distance ∆L to the scattering centre and update the path length, Lgluon =

Lgluon − ∆L, and the gluon phase

ϕ = ϕ +
k2

2ω
∆L . (4.9)
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Determine the momentum transfer qNs
from the scattering centre according to

|A(qNs
)|2, set the transverse momentum of the gluon to k =

∑Ns

i=1 qi, and set

Ns = Ns + 1. Iterate this point until no further scattering is found.

• With probability Sel
no(min(τf, Lgluon)) there is no further scattering. Continue

with point 4.

4. Reweight the gluon production probability, and propagate gluons further.

The gluons simulated in point 3 are trial gluons that have been selected with an

overestimated production probability. Reweighting is needed to correct for this over-

estimate. If a trial gluon is generated with Ns scattering centers within its formation

time, then

• With probability 1 − 1/Ns, reject the gluon from the sample.

• With probability 1/Ns, accept the gluon as part of the scattering history. De-

termine the end of the formation process of the gluon by localizing a formation

time interval τf in an arbitrary fashion around the initial production point ξ.

Then determine further elastic momentum transfers to the gluon within the

in-medium path length after formation has been completed. (This last step is

needed only for the simulation of k-differential spectra.)

5. Accept only medium-induced gluons

To reproduce the radiation spectrum (2.2) for ξ0 = 0, accept only gluons that are

fully formed prior to leaving the medium.

It is a consequence of the approximation (4.6), that the gluon transverse momentum

is build up identically in the coherent and incoherent case. We note as an aside, that it is

possible to amend the above proposal such that it does not invoke the approximation (4.6).

To do so, one has to start from the observation that a gluon produced with Ns coherently

acting scattering centers is produced according to the probability

∫

k,ω

(

Ns
∏

i=1

(
∫

dqi

(2π)2
|A(qi)|2

Vtot

)

)

αs

π2

CR

ω
R



k,
Ns
∑

j=1

qj



 . (4.10)

In our simplified algorithm, this expression is approximated by a factor λel/λinel, and λinel

specifies the probability with which an inelastic scattering occurs. There are standard

reweighting techniques that would allow one to overestimate the probability of inelastic

interaction and to then correct it to the factor (4.10). In the present work, we did not

exploit this numerically more demanding procedure, and we did not find any indication

that such a procedure is needed to reproduce quantitatively the BDMPS-Z formalism (2.2).

The idea that the concept of formation time plays a central role in the probabilistic

implementation of medium-induced gluon radiation has been formulated previously. How-

ever, in our effort to arrive at a quantitatively reliable, probabilistic, formation time based

formulation of the BDMPS-Z formalism, we had to overcome several conceptions that were
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naively assumed at least by us, but possibly also by others. In particular, a MC formula-

tion that selects gluon production processes according to an incoherent inelastic scattering

probability overestimates gluon production in the presence of interference effects. A quan-

titatively reliable implementation must correct for this overestimate, and the algorithm

proposed here is, as far as we know, the first one that does so. On general grounds,

one expects that this feature is not specific for the BDMPS-Z formalism, but persists in

more complete formulations of radiative parton energy loss. Secondly, it turns out that

the BDMPS-Z formalism cannot be implemented exactly in a formulation that interprets

formation times as deadtimes for subsequent gluon production. Technically, this can be

seen from the form of the average number of radiated quanta 〈Ng〉j as a function of the

number of active scattering centers j, discussed in subsection 3.3. (Formulations based on

a dead time interpretation would lead to expressions for 〈Ng〉j that contain terms ∝ λinel

in the arguments of exponentials.) That formation times are not dead times for subsequent

gluon production could have been expected on the simple ground that the BDMPS-Z for-

malism is based on a multiple scattering calculation with only one gluon in the final state

and therefore cannot account for the destructive interference between different gluons. It

remains to be seen whether this feature persists in more complete analytical calculations

of medium-induced gluon emission.

5 Numerical results on the gluon energy distribution

The MC algorithm of section 3 and 4 is tailored to provide a probabilistic implementation

of the opacity expansion of (2.2). At fixed order in opacity, terms in (2.2) can be pictured as

arising from interactions of the partonic projectile with a fixed number of scattering centers.

This discrete picture of the medium lends itself naturally to a MC implementation, and

the proposed algorithm reproduces the analytically known distribution in the number of

scattering centers, see figure 1.

In contrast, in the multiple soft scattering limit of (2.2), information about the discrete

structure of the medium is lost. This limit is obtained from a saddle point approximation

of the path integral in (2.2), setting n σ(r) = 1
2 q̂ r2 . In this approximation, the BDMPS-Z

transport coefficient q̂ characterizes the average transverse momentum squared, transferred

from the medium to the projectile per unit path length. The medium can be pictured as

providing for the projectile a continuous transverse color field whose strength is character-

ized by q̂.

Here, we shall compare results of the proposed MC algorithm to the BDMPS-Z multiple

soft scattering approximation of (2.2) according to which the energy distribution (2.2) of

gluons emitted from a highly energetic projectile shows the characteristic 1/
√

ω-dependence

of the non-Abelian Landau-Pomeranchuk-Migdal effect,

ω
dI

dω
≃ 2αsCR

π

{

√

ωc/2 ω for ω ≪ ωc
1
12

(

ωc

ω

)2
for ω ≫ ωc

. (5.1)

This 1/
√

ω-spectrum is cut-off due to formation time effects at a characteristic gluon energy
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ωc = 1
2 q̂ L2. Integrating ω dI

dω , one finds the average parton energy loss

∆E =
1

4
αs CR q̂ L2 , for L < Lc ≡

√

2ωmax

q̂
. (5.2)

Here, the critical path length Lc is the maximal coherence length, which occurs for the

maximal kinematically allowed gluon energy ωmax (typically taken to be the projectile

energy Eproj). For lengths L > Lc, one expects hence that different regions of the medium

act incoherently to gluon production and that ∆E(L) increases linearly with L. The

differential distribution (5.1) continues to show the characteristic coherence effects for L >

Lc, since each gluon entering this distribution was produced coherently over a distance τf

that depends on ω.

5.1 Multiple soft scattering limit in the MC algorithm

To realize the multiple soft scattering approximation in the MC algorithm, we ensure first

that there are many elastic interactions per inelastic mean free path. Hence, we shall work

in the limit

λel ≪ λinel . (5.3)

Moreover, we ensure that all elastic interactions are soft by cutting off the power-law tails

of the Yukawa scattering potential (4.4) at |q| = 2 µ,

|A(q)|2 −→ |A(q)|2Θ (2µ − |q|) . (5.4)

This approximation in the MC algorithm can be shown to correspond on the analytical side

to a saddle point approximation of the path integral (2.2) by writing in (2.4) σ(r) ∝ q̂ r2.

The soft multiple scattering approximation of (2.2) and the average parton energy

loss (5.2) are functions of αs CR and for q̂, which are not input parameters of the MC

simulation. Instead, one specifies for MC simulations the elastic and inelastic mean free

paths, and the average transverse momentum transfer µ in the elastic scattering cross

section. To express the BDMPS energy loss formula in terms of these input parameters,

we rewrite the strong coupling constant with the help of eq. (4.7),

αs CR =
λel

λinel

1

fprop log (ωmax/ωmin)
. (5.5)

From the MC simulation, we determine the event averaged squared transverse momentum

〈q2〉 transfered from the medium to a radiated gluon per unit path length Lp,

qeff ≡ 〈q2〉
Lp

. (5.6)
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~ ω-3/2 

~ ω −3

λinel=0.1 fm, λel= 0.01 fm, µ= 0.2 GeV, ωmax=100 GeV
Multiple soft scattering limit

Figure 2. The spectrum of medium-induced gluons as a function of gluon energy ω for different

in-medium path lengths L. To compare with the soft multiple scattering limit, results have been

calculated with extreme choices of elastic and inelastic mean free paths.

We then define operationally2

q̂ = qeff . (5.7)

In general, µ2/λel would be a poor approximation of qeff , but for the particular choice of

soft scattering centers (5.4) regulated at |q| = 2 µ, 〈q2〉 = µ2 and qeff agree with µ2/λel. We

can now express the BDMPS parton energy loss formula (5.2) in terms of input parameters

of the proposed MC algorithm,

∆E =
1

4

1

fprop log (Eproj/ωmin)

λel

λinel
qeff L2 . (5.8)

It is this form of the BDMPS parton energy loss formula that we test in the MC studies

presented in this section.

2In a simplified scenario in which a fixed k
2 = µ2 is transferred per mean free path λel from the

medium to a gluon, the MC algorithm will accumulate within a length L = n λel a gluon phase ϕ ≈
1

2ω

Pn−1

j=0
j µ2 λel ≃

1

2ω

qeff L2

2
. This phase differs by a factor 2 from the standard analytical pocket estimate

ϕ = 〈k2〉
2ω

L ≃ 1

2ω
q̂ L2. The reason is that the squared transverse momentum 〈k2〉∆L accumulated between

L − ∆L and L, can contribute to ϕ only with 〈k2〉∆L ∆L/2ω and not with 〈k2〉∆L L/2ω. This illustrates

that pocket formulas for ϕ (and a fortiori for ωc and Lc) should not be expected to provide numerically

accurate prefactors but identify the parametric dependencies only.
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λinel = 0.1 fm
λel=0.01 fm, µ=0.2 GeV

0.1 1 10 100
ω  [GeV]

1e-06

0.0001

0.01

1

ωmin=50 MeV,  ωmax=100 GeV

ωmin=50 MeV,  ωmax= 20 GeV

ωmin=1 GeV,     ωmax=100 GeV

λinel~ 1/Log[ωmax/ωmin]
λel=0.01 fm, µ = 0.2 GeV

Figure 3. Cut-off insensitivity of the MC algorithm. For rescaled inelastic mean free path λinel,

varying the IR and UV regulators of the inelastic cross section does not affect the physics results

of the MC simulations, but is limited to changing the kinematic range within which these physics

results are generated.

In the following subsections 5.2 and 5.3, we explore the proposed MC algorithm for

values λel ≃ O(10−1) λinel that realize the multiple scattering approximation (5.3). We

note that the strong coupling constant in (5.3) is proportional to λel/λinel; moreover, it

decreases with a large logarithm 1/ log (ωmax/ωmin) ≃ O(10−1). (Unless stated otherwise,

the numerical results in this section are for ωmax = 100 GeV and ωmin = 50 MeV.) As a

consequence, the numerical values for the average energy loss presented in the next sub-

sections 5.2 and 5.3 will be typically a factor 10−2 lower than realistic values, since they

have been obtained with an artificially low strong coupling constant. It is only by relaxing

the multiple soft scattering approximation (5.3) that realistic values of the strong coupling

strength can be implemented in the present MC algorithm. This will be done in section 5.4.

5.2 MC results of the gluon energy distribution and control of cut-off depen-

dence

Figure 2 shows the medium-induced gluon spectrum for a projectile parton propagating

through a medium of path length L. These and the following results were obtained for

MC simulations of Nevt = 106 events. For sufficiently large in-medium path length L,

the spectrum ω dI
dω approaches the characteristic 1/

√
ω-dependence expected for the non-
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abelian LPM effect. This dependence may be understood also by the following parametric

argument: In the incoherent limit, gluon production on a single scattering center results

in a spectrum ∝ 1/ω. Coherence effects imply that the number Ncoh of scattering centers

located within the formation time of the gluon act as one single effective scattering center.

The resulting gluon spectrum is ∝ 1
Ncoh ω . The average number of coherently acting scatter-

ing centers is proportional to the average formation time, and this average formation time

should satisfy tcoh ∝ ω
q̂ tcoh

. As a consequence, Ncoh ∝ tcoh ∝ √
ω and therefore coherence

effects change the gluon energy spectrum by one factor
√

ω.

For sufficiently small in-medium path length L or sufficiently large projectile energy

ωmax, the formation of gluons of high energy ω is suppressed since their formation time

becomes comparable to the entire in-medium path length. Parametrically, this suppression

is expected to set in at a characteristic gluon energy ωc = 1
2 q̂ L2, that takes values of ωc =

10, 40 and 90 GeV respectively for the in medium path lengths L = 1, 2 and 3 fm explored

in figure 2. We note as an aside that in the limit ωc L → ∞, the expression (2.2) reduces to

the BDMPS limiting result dI
dω ∝ log

∣

∣

∣cos
(

1+i√
2

ωc

ω

)∣

∣

∣. Numercial inspection of this limiting

case reveals that the transition from the small-ω to the large-ω behavior of (5.1) occurs

at values that are a factor ∼ 3 − 5 smaller than ωc. This is quantitatively consistent with

the location of this transition region in figure 2, and it further illustrates the comment in

footnote 2. Furthermore, a lower value for the transition energy was also found in [47, 48].

We conclude that the proposed MC algorithm reproduces the ω−3/2-dependence of the

BDMPS-Z formalism for soft gluon production up to the expected scale which is of order

ωc. For higher gluon energies, one observes a steeper ω-dependence, consistent with the

BDMPS-Z formalism, but one finds some deviations from the ω−3-dependence of (5.1) for

realistic projectile energies. Since gluon energies ω ≫ ωc are known to be numerically

unimportant in the BDMPS-Z formalism, these deviations will turn out to be negligible

for the following.

We now turn to an issue that is crucial for the predictive power of a MC algorithm,

namely that the physics results of the algorithm are insensitive to the numerical choices of

IR and UV regulators, though various intermediate steps in the algorithm may depend on

the choice of such regulators. To be specific, the MC algorithm selects inelastic interactions

with a probability 1−exp (−L/λinel) that depends on the total inelastic cross section. This

cross section (4.7) depends explicitly on IR- and UV regulators ωmin and ωmax. The physics

output will still be insensitive to these regulators if the dependence of the total inelastic

cross section on phase space available for radiation is respected in the MC implementation.

Technically, this is achieved in the present algorithm by rescaling λinel according to the

cut-off dependence of σinel. Figure 3 illustrates that with this rescaling, the proposed MC

algorithm satisfies this important property of cut-off independence. More explicitly, by

changing the values of the IR and/or UV cut-off, we change the numerical value of σinel

so that λinel varies like λinel ∝ 1/ log (ωmax/ωmin). Once an inelastic scattering center is

identified in the MC simulation, the kinematics of the emitted gluon is then chosen in the

same kinematic range ω ∈ [ωmin; ωmax] that was used for the calculation of σinel. As seen

on the right hand side of figure 3, this procedure results in cut-off independence of physical

– 31 –



J
H
E
P
0
7
(
2
0
1
1
)
1
1
8
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L (fm)

0

0.2

0.4

0.6

0.8

1
 ∆

 E
 (

G
eV

)

E proj  = 10 GeV

E proj  = 20 GeV

E proj  = 50 GeV

E proj  = 100 GeV

 λ el  = 0.01 fm, µ  = 0.2 GeV, λ inel = 0.1 fm/Log[ ω max/ω min]

Figure 4. The average energy loss ∆E as a function of in-medium path length L and for different

values of the UV regulator ωmax = Eproj of the differential inelastic cross section.

results: choosing ωmin and ωmax specifies the range within which results are generated, but

it does not affect the results within this range.

In general, the appearance of IR and UV cut-offs in the MC algorithm can have different

reasons. For differential inelastic cross sections that implement exact energy-momentum

conservation, there is no need to specify by hand an UV cut-off ωmax. Rather, the form of

the cross section will automatically account for the physical requirement that gluons can

only be emitted with energies smaller than the energy of the incoming partonic projectile,

ωmax = Eproj. The introduction of an UV cut-off is only necessary, since one uses typically

the approximate high-energy limit of the radiation cross section ∝ 1/ω, that extends to

arbitrarily large gluon energy. For the case of the IR cut-off ωmin of the ω-integration, or for

the case of the corresponding IR regulator ǫ of the k-differential cross section that enters the

total inelastic cross section (4.7) via the factor fprop, the situation is different. There is no

perturbative physics argument that could specify the precise value of these regulators. All

one can require is that whatever values for these IR cuts are chosen, the physics simulated

above these values does not depend on the choice of the regulator. Figure 3 illustrates that

this requirement is satisfied by the proposed MC algorithm.

– 32 –



J
H
E
P
0
7
(
2
0
1
1
)
1
1
8

0 0.2 0.4 0.6 0.8 1
L [fm]

0

∆ 
E

  [
G

eV
]

λel= 0.002 fm

λel
 = 0.01 fm

λel = 0.05 fm

λinel=0.1 fm,    µ= 0.2 GeV, 

0 1 2 3 4 5
L [fm]

0

0.5

1

fit to λ el = 0.002 fm for L<1.0 fm

ωmax= 100 GeV

Figure 5. The average parton energy loss ∆E(L) for different values of the elastic mean free path.

5.3 MC results for the average parton energy loss ∆E

In this subsection, we discuss MC simulation results for the average parton energy loss

∆E. The main purpose of this discussion is to give numerical support to equation (5.8).

Figure 4 shows the L-dependence of the average energy loss for different values of the

UV regulator ωmax = Eproj. In this and all subsequent simulations, the value of the inelas-

tic mean free path was adjusted to the varying phase space, λinel ∝ 1/ log (ωmax/ωmin), so

that cut-off independent results were obtained. Since gluons of larger energy ω require on

average a longer in-medium path length to form, one expects on general grounds that the

small-L behavior of the average parton energy loss ∆E is independent of the choice of the

UV regulator ωmax. This is seen clearly in figure 4 for sufficiently small L. Moreover, for

sufficiently large L > Lc, figure 4 confirms the expected linear L-dependence of ∆E. The

transition from a quadratic to a linear dependence occurs at an in-medium path length of

order Lc ∝
√

ωmax that increase with the UV cut-off ωmax = Eproj. Our remark about the

accuracy of scale estimates, made about ωc in the discussion of figure 2, and in footnote 2,

applies here too. We note in particular that the quantity Lc is not a quantitative prediction

of the BDMPS-Z formalism, but that it characterizes only the expected parametric depen-

dencies of (2.2). Consistent with this, we observe that the transition from quadratic to

linear behavior shows the parametric dependencies expected for the BDMPS-Z formalism.
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G
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/f
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2 ]
MC simulation
fit ~ 1/λinel

λel=0.01, µ=0.2 GeV, ωmax = 100 GeV
multiple soft scattering limit

Figure 6. The dependence of the average parton energy loss ∆E on the inelastic mean free path

λinel.

In general, we find that the ansatz ∆E(L) = aL2 provides a very good description of

results of the MC simulations, if the prefactor a is fit in the range L < Lc. But for values

L ≪ Lc, results for ∆E(L) tend to lie significantly below the L2-fit. As we discuss now,

this deviation can be understood by studying the dependence of average parton energy loss

on the elastic mean free path λel, see figure 5. According to equation (5.8), ∆E ∝ λel qeff .

Since qeff = q̂ ≈ µ2

λel
, one expects that the average parton energy loss is independent of

λel for L < Lc and for fixed average momentum transfer µ per scattering center. On the

other hand, the critical length depends on λel, Lc ∝ 1/
√

q̂ ∝
√

λel and therefore the L2-

dependence of ∆E should extend to larger values of L for larger values of λel. On the scale

of sufficiently large L, these features are confirmed by the MC data, see the right hand

side of figure 5: results fall on a common L2-curve for L < Lc, and they turn to a linear

L-dependence at a scale Lc ∝
√

λel. (The curve for λel = 0.01 fm in figure 5 turns to a

linear L-dependence around L ∼ 5 fm, while the curve for λel = 0.05 fm shows a quadratic

behavior to much larger L, data not shown.)

On scales of very small in-medium pathlength, however, there is a characteristic de-

viation from the λel-independence of ∆E. On the left hand side of figure 5, we fit an

L2-dependence to the data obtained for the smallest elastic mean free path λel = 0.002 fm.

Remarkably, at large L, this fit reproduces perfectly the data simulated with a 25 times

larger mean free path, although this parameter set lies significantly below the L2-curve for
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MC simulation
qeff = b/λel, b = (0.201 GeV)2
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inel=0.1 fm,  µ = 0.2 GeV

Figure 7. l.h.s.: Dependence of the average parton energy loss on the effective quenching parameter

qeff . r.h.s.: The effective quenching parameter as a function of the elastic mean free path λel.

L < 1.0 fm. This illustrates that increasing λel at fixed L amounts to studying deviations

from the soft multiple scattering limit. These occur when the probability for no scattering

becomes sizeable — this is an effect that does not occur in the multiple soft scattering

calculation but that will always be present in the Monte Carlo implementation. However,

at fixed small value L, the characteristic L2-dependence of the soft multiple scattering

limit (5.8) can always be recovered by going to sufficiently small values of λel. The default

parameter choice λel = 0.01 fm used in this section was largely motivated by the idea to

go sufficiently deep into the multiple scattering limit λel ≪ λinel to observe a quadratic

L-dependence on a scale of 1 fm. In summary, figure 5 confirms the λel-dependence of the

expression (5.8) for the average parton energy loss and it quantifies the relevance of the

multiple soft scattering approximation (5.3).

Motivated by these observations, we perform all fits of the quadratic L-dependence of

∆E(L) in the range L ∈ [0; Lc]. We can then confirm the other parametric dependencies of

equation (5.8). In particular, we have calculated the average parton energy loss for different

values of the inelastic mean free path λinel, and we have fit the prefactor a of ∆E(L) = aL2,

see figure 6. The average energy loss is found to be inversely proportional to λinel.

We have also characterized the dependence of the average parton energy loss on the

quenching parameter. The right hand side of figure 7 confirms that for the current choice

of soft elastic scatterings (5.4), the effective quenching parameter qeff satisfies indeed qeff =
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q̂ ≈ µ2/λel. The left hand side of figure 7 provides the check that the average parton energy

loss depends linearly on qeff .

With the figures 4, 5, 6 and 7, we have confirmed all parametric dependencies of

the BDMPS-Z result (5.8) for the average parton energy loss. To determine the overall

normalization, we make the ansatz ∆E = c qeff L2. A direct fit of ∆E = c qeff L2 to MC

data in figure 7 results in c = 0.0021. On the other hand, we require from (5.8)

c =
1

4

1

fprop log (ωmax/ωmin)

λel

λinel
≡ 2.1 10−3 . (5.9)

For the values λel/λinel = 1/10, and log (ωmax/ωmin) = log(100/0.05) ≈ 7.6 used in the

simulations of figure 7, we find therefore

fprop = 1.58 . (5.10)

We recall that in the present formulation, the value of fprop is not a prediction of the

BDMPS-Z formalism. Rather, as argued in the discussion of (4.7), this factor absorbs the

remaining dependence on the IR cut-off of the total inelastic cross section that is needed in

intermediate steps of the MC algorithm. It is a prediction, however, that the factor fprop is

of order unity, and that it is a universal factor that is valid for all model parameter choices.

This later statement will be further supported by the numerical studies in section 5.4.

We note that the factor fprop absorbs also uncertainties of the MC implementation. In

particular, we know from further numerical studies that fprop grows roughly proportional

with ϕ(τf ) (data not shown). Since the choice of ϕ(τf ) = 3 adopted here is uncertain

by ca. 15% (see discussion of eq. (4.3)), the factor fprop will also absorb this uncertainty.

Noting that in the proposed MC algorithm, the acceptance criterion for produced gluons

(step 5 in section 4.2) is based solely on the parametric arguments of section 2.3.3, we have

also investigated modifications of this acceptance criterion. In one extreme alternative

version, we required instead that gluons are counted towards the medium-induced spectrum

if their formation after the last momentum transfer is completed within a time of scale

L, irrespective of whether this amounts to completed formation inside or outside of the

medium. For this modified MC algorithm, we repeated the entire study of sections 5 and 6

with analogous conclusions and very similar figures. The main difference compared to

the results presented here was that we found an fprop that was approximately a factor

2 smaller than the value quoted in (5.10). From this we conclude that depending on

how one implements those elements of the MC algorithm for which the opacity expansion

of (2.2) provides only qualitative but not quantitative guidance, one arrives at a different

factor fprop of order unity. Most importantly, however, once these ambiguities in the MC

implementation are fixed by choosing a specific value for fprop, the absolute normalization

of the simulated parton energy loss is fixed for all parameter choices.

5.4 MC results for phenomenologically motivated parameter values

The choice of elastic and inelastic mean free paths amounts to specifying the strong coupling

constant αs, see (5.5). In the numerical studies in subsections 5.2 and 5.3, we focussed
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Figure 8. The average medium-induced energy loss ∆E as a function of in-medium path length

L for a quark of energy 100 GeV, calculated for choices of λel = λinel.

on the perturbative limit λel ≪ λinel. The parameters chosen in these studies correspond

to a nominally perturbative regime in which αs ∼ O(10−2 − 10−3) or smaller. We now

establish that the properties of the MC algorithm discussed in sections 5.2 and 5.3, persist

for phenomenologically more relevant parameter choices.

According to equation (5.5), realistic values for αs are obtained for choices λel =

O(λinel), and this motivates the parameter choices of the simulations shown in figure 8

and 9. These simulations included gluon radiation in the range ωmin = 50 MeV to ωmax =

100 GeV. We note that physical results do not depend on the precise choice of ωmin; in

particular, a larger value of ωmin could be absorbed in a rescaled inelastic mean free path

λinel ∝ 1/ log (ωmax, ωmin), as discussed in the context of figure 3. On the other hand,

physical results depend on the upper boundary ωmax that sets the critical length Lc ≃
√

4ωmax/q̂ at which ∆E(L) changes from a quadratic to a linear L-dependence. The scale

of ωmax is set by the physical UV cut-off on the radiation spectrum that is given by the

energy of the partonic projectile.

For the simulations shown in figure 8, we studied two different values of λinel = λel for

Yukawa masses µ = 0.2, 0.5, 0.7 and 1.0 GeV in the elastic scattering cross section (4.5),

respectively. These Yukawa masses set the scale of the transport coefficient qeff ∼ µ2/λel.

With these parameter choices, medium-induced gluon radiation is studied for a projec-

tile parton of Eproj = 100 GeV energy, propagating through a time-independent static

medium of transport coefficient qeff . The results in figure 8 shows that the transition from
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Figure 9. Same as figure 2 but for a phenomenologically relevant set of model parameters.

a quadratic to a linear behavior occurs also for phenomenologically relevant parameter val-

ues at a scale of order Lc, as established in section 5.2 in the multiple soft scattering limit.

Fitting a quadratic dependence to the small-L region of ∆E(L), we confirm all parametric

dependencies of (5.8). Moreover, we confirm within an accuracy of better than 5 %, that

the proportionality factor fprop of (5.8) takes the same value as in the multiple soft scat-

tering limit, fprop = 1.58. This shows that for one universal normalization of the inelastic

cross section (4.7), the MC algorithm accounts faithfully for the results of the BDMPS-Z

formalism (2.2) over a very wide parameter range, including phenomenologically motivated

parameter choices.

The BDMPS-Z path integral (2.2) does not depend separately on the coupling constant,

the number of scattering centers per unit path length n and the dipole cross section σ.

Rather, it depends only on αs and on the linear combination n σ. As a consequence, the

MC implementation of (2.2) does not depend separately on qeff , λel and λinel. Rather, it

depends only on two combinations of these three parameters, which may be chosen to be qeff

and λel/λinel, only. This is clearly seen in figure 8, where the choices λel = λinel = 0.1 fm

with µ = 0.7 GeV and λel = λinel = 0.2 fm with µ = 1.0 GeV correspond to different

microscopic pictures of the interaction between projectile and medium, but result both in

the same average squared momentum transfer per unit path length qeff = 5 GeV2/fm, and

in the same average parton energy loss.

Comparing figure 9 to figure 2, we observe that also the ω-differential information
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Figure 10. The distribution of medium-induced gluons as a function of the normalized squared

transverse momentum κ2 = k2/qeffL. Data points display the simulated gluon yield separately for

different ranges of gluon energy ω.

continues to show for phenomenologically motivated parameter choices the main features

that we have established in the multiple soft scattering limit. In particular, the spectrum

shows for soft gluon energies the ω−3/2-dependence characteristic for medium-induced

coherence, and for large gluon energy a steeper fall-off ∝ 1/ω3. Also, the transition

between these two limiting spectra occurs at the scale ω ∼ ωc = 1
2 q̂ L2, as expected from

the BDMPS-Z result (5.1).

We finally note that for the model parameters chosen in this subsection, one finds

the still rather small value of αs ≈ 0.1. For larger values of αs, the resulting average

parton energy loss will increase correspondingly. Therefore, figure 8 illustrates that for

phenomenologically relevant parameters and length scales, the average parton energy loss

can attain values of tens of GeV.

6 Numerical results on transverse momentum broadening

In section 5, we have demonstrated that the MC algorithm of subsection 4.1 reproduces

faithfully the ω-dependence of (2.2) for k-integrated quantities. We now discuss how the

MC algorithm accounts for the k-dependence of the BDMPS-Z formalism.
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Figure 11. Same as figure 10, but for different ranges of gluon energy ω ∈ [ωmin; ωmax], and for

different values of the quenching parameter qeff . That MC results for different parameter choices

fall on a universal curve illustrates the scaling property (6.2).

It is a generic feature of the BDMPS-Z formalism that the transverse momentum of

produced gluons is accumulated according to transverse Brownian motion,

〈k2〉 ∝ q̂ L . (6.1)

To identify this feature numerically, we plot in figure 10 the simulated double differential

distribution dI
dω dk

for different ranges of gluon energies ω as a function of κ2 = k2/qeffL. In

accordance with (6.1), the main contribution to the yields of simulated gluons lies in the

range κ2 ≤ 1, irrespective of the gluon energy, and irrespective of the choice of the parame-

ters λel, λinel and µ2 that control the rate of gluon production and its transverse momentum

broadening. The double differential distribution ω dI
dω dκ2 of (2.2) has been analyzed and

plotted for the soft multiple scattering limit and the N = 1 opacity approximation in

ref. [47]. We note that the results of the MC simulation shown in figure 10 reproduce very

well the main results of ref. [47]. In particular, the gluon yield dies out at a scale κ2 ∼ O(1),

it decreases with increasing gluon energy, and it shows a plateau for logarithmically small

values of κ2. Also, the overall normalization of the MC results for the double differential

distribution is in general agreement with the results of ref. [47].

There are also qualitatively noteworthy though quantitatively small differences be-

tween the analysis of (2.2) in ref. [47] and the output of the MC algorithm proposed here.
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Figure 12. The distribution of medium-induced gluons as a function of gluon energy ω. Data points

display the simulated gluon yield separately for different ranges of transverse gluon momentum k.

In particular, destructive medium-induced interference effects can modify the gluon radia-

tion such that in comparison to the vacuum distribution, the total yield of produced gluons

is reduced in some phase space region below its average value in the vacuum. This would

show up in negative values of the medium-induced gluon energy distribution ω dI
dω dk . Such

an effect has been identified indeed in a small phase space region of (2.2) [47]. A similar

observation of small negative contributions has been made for the k-integrated distribution

ω dI
dω at very small in-medium path length. In contrast to the analytic calculation, which

considers both vacuum and medium induced radiation and subtracts the unperturbed vac-

uum spectrum from the total gluon spectrum, the MC algorithm neglects the vacuum

emissions (as a consequence the MC spectrum cannot become negative). While this can be

seen in small deviations of (2.2) from MC results, we emphasize here that all numerically

important, generic features of (2.2) are accounted for quantitatively by the MC algorithm.

It is also a characteristic feature of the BDMPS-Z formalism that medium-induced

gluon radiation occurs for all gluon energies that accumulate at least a phase factor of

order unity in the medium, 〈k2〉L
2 ω = ωc

ω > 1. In combination with the transverse momentum

broadening (6.1), the technical manifestation of this statement is that the gluon radiation
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Figure 13. Same as figure 11, but for different ranges of squared transverse momentum k2, and for

different values of the quenching parameter qeff . That MC results for different parameter choices

fall on a universal curve illustrates the scaling property (6.2).

spectrum is only a function of the rescaled variables ω/ωc and k2/q̂L,

ω
dI

dω dκ2
= f

(

ωc

ω
,
k2

q̂L

)

. (6.2)

To illustrate that this scaling is satisfied by the proposed MC algorithm, we have plotted in

figure 11 MC simulations of ω dI
dω dκ2 as a function of κ2 for different ranges of gluon energy,

ω ∈ [ωmin; ωmax], and for different values of µ2 (i.e. different values of qeff), keeping L, λel

and λinel fixed. It is then a direct consequence of (6.2) that varying ωmin, ωmax and qeff by

the same factor will leave the distribution ω dI
dω dκ2 unchanged. Figure 11 illustrates that

this generic scaling property of the BDMPS-Z formalism is satisfied by the MC algorithm.

We finally discuss the ω-dependence of the double-differential gluon energy distribution

for fixed values of κ2. The multiple soft scattering approximation and the N = 1 opacity

approximation of (2.2) are known to result in an ω-dependence of ω dI
dω dκ2 that is flatter

for increasing κ2 [47]. The same feature is clearly seen in figure 12.
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We finally show in figure 13 that the universal scaling property (6.2) is also clearly

supported by the analysis of the ω-dependence of ω dI
dω dκ2 . In summary, we conclude that

the MC algorithm proposed in section 4 reproduces all numerically relevant qualitative and

quantitative features of the BDMPS-Z formalism.

7 Conclusions and outlook

Multi-parton production processes exhibit destructive quantum interference effects. In

general, their probabilistic implementation involves approximations. For multiple parton

branching in the vacuum, the dominant destructive interference effect can be taken into ac-

count probabilistically by an angular ordering prescription. This probabilistic reformulation

of the analytical expression is an approximation that is known to have the same parametric

accuracy in log Q2 and log 1/x as the leading order perturbative calculation. Within QCD

matter, parton splitting close to the eikonal limit (2.1) is dominated by medium-induced

destructive quantum interference effects that are calculated in the BDMPS-Z formalism.

In this paper, we have demonstrated that the dominant medium-induced interference effect

for k- and ω-differential parton distributions can be taken into account probabilistically

by a re-weighting of gluon emission probabilities based on gluon formation times. This

probabilistic formulation is an approximation of the analytical BDMPS-Z result (2.2). We

have established in a detailed numerical study to what extent it is a good approximation.

The proposed probabilistic implementation of the BDMPS-Z formalism is based on ap-

proximating by theta-functions those oscillatory functions that interpolate in the analytical

BDMPS-Z formalism between the coherent and incoherent limiting cases. The proposed

MC implementation reproduces by construction the known coherent and incoherent limiting

cases and it interpolates, by construction, between these limits on the correct momentum

scales. This ensures that the MC simulations agree in normalization and parametric de-

pendencies with the analytically known results. In small regions of phase space and for

very small in-medium path lengths, however, destructive interference effects are known to

show up in the medium-induced part of the k-integrated gluon energy distribution eq. (2.2)

as oscillatory behavior. The approximations in the probabilistic reformulation will not ac-

count for detailed interference effects such as oscillations in ω dI
dω , but these are known to be

numerically small and they depend also in analytical calculations on the approximations

employed to evaluate eq. (2.2). While we have not advanced a parametric argument for the

accuracy of the proposed MC algorithm, we conclude from the detailed numerical study in

section 5 that the algorithm allows to implement probabilistically and in a quantitatively

controlled manner all numerically relevant features of the BDMPS-Z formalism. This in-

cludes the correct normalization of the average parton energy loss and the norm and shape

of the ω-differential distribution, as well as the parametric dependencies on in-medium

path length, transport coefficient and coupling constant. An analogous remark applies to

the k-differential distribution, as established in section 6.

The phenomenological modeling of jet quenching based on the BDMPS-Z formalism

faces several longstanding problems. First, phenomenological models must account for

medium-induced gluon splitting also outside the kinematic regions E ≫ ω and ω ≫ |k|,
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within which the BDMPS-Z formalism has been derived. Second, energy and momentum

is not conserved in the BDMPS-Z formalism but its conservation at each microscopic in-

teraction is phenomenologically important, in particular if it comes to simulating not only

leading hadrons but the energy loss (a.k.a. medium-modified fragmentation) of recon-

structed jets. Third, it is desirable to understand better how the medium-induced gluon

radiation depends on properties of the scattering centers in the medium, and this requires

the ability to vary the nature of the scattering centers in model calculations. Fourth, it

is indispensable for a phenomenological model of medium-modified jet fragmentation that

all components of the parton shower are treated on the same footing, and that means that

all components can be subject to both elastic and inelastic interactions. In the BDMPS-

Z formalism, however, radiated gluons scatter only elastically, and the projectile quark

scatters only inelastically. Therefore the distribution of subleading partons obtained from

the BDMPS-Z formalism must not be regarded as a suitable proxy for a medium-modified

parton shower. Fifth, since the BDMPS-Z formalism has been derived close to the eikonal

approximation, it is recoilness. This has resulted in a debate that distinguishes in an ad hoc

way between collisional and radiative parton energy loss, rather than pushing for a physical

formulation of the problem in which radiative contributions are necessarily accompanied

by recoil (and therefore by effects that one typically associates with collisional energy loss).

The possibilities for improving on these major deficiencies of the BDMPS-Z formalism

with refined analytical techniques appear to be limited. The proposed MC implementation

of the BDMPS-Z formalism opens significant novel opportunities to this end. In particular,

the proposed algorithm can be supplemented naturally with i) exact kinematics outside

the region E ≫ ω ≫ |k|, ii) exact energy-momentum conservation at each interaction

with the medium, iii) a large variety of models for the interaction with between projectile

and medium, iv) a democratic treatment of all components of the parton shower and v) a

kinematically correct, dynamical inclusion of recoil effects. In close analogy to the more

mature situation in elementary particle physics, we expect that MC techniques will become

in the next years also in heavy ion physics the preferred choice for the description of high-

pT multi-particle final states, and we recognize their advantages in interfacing dynamical

simulations of parton evolution with hadronization models. In the present paper, we have

demonstrated only that the proposed MC algorithm implements all numerically relevant

features of the BDMPS-Z formalism probabilistically. In our view, the main importance of

this result lies in the fact that it establishes a starting point for going beyond the BDMPS-Z

formalism in a framework that remains rooted in the analytically identified medium-induced

interference effects. We plan to explore this approach in subsequent work.
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A Formation time of vacuum radiation from the BDMPS-Z formalism

Here, we demonstrate that a simple extension of the opacity expansion of section 2 allows

one to identify within the BDMPS-Z formalism a formation time for vacuum radiation.

Although this quantity does not enter the MC algorithm proposed in the present paper,

we find this observation sufficiently interesting to discuss it in the present appendix.

The main idea of the following is to gain further insight into the different roles of

vacuum and medium-induced radiation by introducing a length scale L̄ that separates the

production of the partonic projectile at ξ0 = 0 from its in-medium propagation after time

L̄. To this end, we study the BDMPS-Z formalism for a uniform distribution of scattering

centers in a spatial region that is separated by a length L̄ from ξ0,

n(ξ) =

{n0 , for L̄ < ξ < L̄ + L ,

0 , for ξ < L̄ or ξ > L̄ + L .

(A.1)

From equation (2.2), we find then to first order in opacity the medium-induced gluon energy

distribution

ω
dI(N = 1)

dω dkdq
=

αs CR

π2

1

(2π)2
(

|A(q)|2 − Vtot δ̄(q)
)

[

1

(k + q)2 +
q2

k2 (k + q)2

]

,

× (n0 L)
LQ1 − sin

(

(L + L̄) Q1

)

+ sin
(

L̄Q1

)

LQ1
. (A.2)

Here, k denotes the transverse momentum of the gluon in the final state, and (k + q)

can be regarded as the transverse momentum of an incoming gluonic component of the

partonic projectile. The value Q1 = (k + q)2 /2ω denotes then the transverse energy of

this initial gluonic projectile component, prior to exchanging a transverse momentum q

with the medium. In the following, we investigate under which conditions this initial gluonic

component can be freed (i.e. radiated) by a medium positioned between L̄ and L̄ + L.

We note first that the vacuum radiation term H (k + q) in the first line of (A.2) dis-

plays the standard collinear singularity of the vacuum radiation. Also, the medium-induced

radiation term R (k,q) shows singularities for vanishing incoming gluon momentum (k + q)

and for vanishing outgoing gluon momentum k, as one expects for the radiation from an

isolated single scattering center. We now discuss how the destructive interference term in

the second line of (A.2) regulates the incoming singularity at a scale that depends on the

position and thickness of the target. We consider first a medium of a fixed number of active

scattering centers, that means, a medium of fixed opacity (n0 L = fixed). For gluons of ini-

tial transverse energy Q1, we can then always find a sufficiently large in-medium path length

L ≫ 1/Q1, so that these gluons can be freed with negligible destructive interference effects,

LQ1 − sin
(

(L + L̄) Q1

)

+ sin
(

L̄Q1

)

LQ1

∣

∣

∣

∣

∣

L Q1≫1

= 1 . (A.3)

What happens in the opposite limit, when the longitudinal extension of the medium L

is small compared to the inverse transverse energy of the incoming gluon, L ≪ 1/Q1?
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Expanding the phase factor for (LQ1) ≪ 1, we find

LQ1 − sin
(

(L + L̄) Q1

)

+ sin
(

L̄Q1

)

LQ1
=
(

1 − cos(L̄Q1)
)

+
1

2
sin L̄Q1 (LQ1)

+
1

6
cos(L̄Q1) (LQ1)2 + O

(

L3 Q3
1

)

. (A.4)

The limit n0 L = fixed, L → 0 corresponds to localizing medium effects exactly at a

distance L̄ after the starting point ξ0 of the parton evolution. In this limit, the phase

factor (A.4) is
(

1 − cos L̄Q1

)

, and it cancels the 1/ (k + q)2 divergencies in (A.2) only if

L̄Q1 ≪ 1. Therefore, gluons with initial transverse energy Q1 can only be produced in

interactions with the medium, if the medium is placed at a distance

L̄ >
1

Q1
≡ τ

(vac)
f . (A.5)

We note that the limit n0 L = fixed, L → 0 can be viewed as a gedankenexperiment,

according to which one produces a parton at time ξ0 and allows for its vacuum evolution

up to a time L̄ before testing the content of the evolved vacuum wave function by an

interaction with the medium at time L̄. The inequality (A.5) suggests a probabilistic

picture according to which - irrespective of the nature of the medium and the strength

of its interaction - one can interact with gluons of transverse energy Q1 in the incoming

vacuum wave function of the projectile only at times later than 1/Q1. In this sense, the

inverse transverse energy 1/Q1 of the gluonic components prior to interaction with the

medium has a natural interpretation as the formation time τ
(vac)
f of gluons in the vacuum.

Heuristic proposals for the life time of a parent parton in the vacuum are often based

on its virtuality Q. In its own rest frame, a state of virtuality Q is expected to have a

lifetime ∼ 1/Q. In a Lorentz frame in which this virtual partonic state has energy E, its

life time ∼ 1/Q is Lorentz dilated by a boost factor E/Q,

τlife ∼
E

Q2
. (A.6)

We consider now the standard perturbative situation that the virtual parent parton splits

into two partons with much lower virtuality and with momentum fractions z and (1 − z)

respectively. The relative transverse momentum kpair between the two daughter partons

satisfies then k2
pair ≃ z (1 − z) Q2. Taking the softer daughter parton to be the gluon with

energy ω = z E and (1 − z) ≃ 1, one finds

τlife ≡
E

Q2
≃ ω

k2
pair

∝ τ
(vac)
f . (A.7)

To sum up: We have advanced heuristic arguments to characterize the partonic lifetime of

the parent parton by ∼ E/Q2. We now find that this estimate is fully equivalent to the

formation time of the daughter parton, that we have identified within the BDMPS-Z for-

malism in (A.5) in terms of a transverse gluon energy. The BDMPS-Z formalism does not

provide an explicit description for the virtuality evolution since it is limited to the calcula-

tion of single medium-induced gluon emissions. However, the BDMPS-Z formalism knows
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about the virtuality of parent partons in the sense that i) it allows for parton splitting in

the absence of medium effects and ii) it attributes time scales to the vacuum splittings that

are consistent with standard heuristic arguments based on the virtuality of parent partons.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribution,

and reproduction in any medium, provided the original author(s) and source are credited.
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