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1 Introduction

Recently, many efforts have been devoted to study the thermodynamical properties of black

holes, in connection with higher dimensional supergravity models [1, 2]. These properties

have been extensively studied via different methods including numerical computation using

various codes [3]. In fact, several models based on mathematical methods have been ex-

plored to study critical behaviors of black holes having different geometrical configurations

in arbitrary dimensions. A particular emphasis has been put on AdS black holes [4–10].

More precisely, a nice interplay between the behaviors of the RN-AdS black hole systems

and the Van der Waals fluids has been shown [11–15]. In this context, several landmarks

of statistical liquid-gas systems, such as the P-V criticality, the Gibbs free energy, the first

order phase transition and the behavior near the critical points have been derived. Also,

in arbitrary dimensions of the spacetime, the authors [11, 13] studied the critical behaviors

of charged RN-AdS black holes. Extension to other solutions considered as a subject of in-

terest in gravity theory, has also been performed and their corresponding phase transitions

and statistical properties have been investigated using different approaches [16–19]. More

recently, some authors have worked out the heat properties of AdS charged black holes and

their solutions in four dimensions [20, 21].

The aim in this paper is to reconsider the heat properties of AdS black holes in higher

spacetime dimensions. More precisely, we will study the corresponding thermodynamical

properties including the sign of the heat capacity explored when discussing the stability

problem. In particular, we will derive the expression of the latent heat considered as

a trivial consequence of the Hawking-Page phase transition. To overcome the instabil-

ity problem, the Maxwell construction in (T, S) plane is then elaborated to modify the

Hawking-Page phase structure [19, 20]. Finally, we will discuss the thermodynamic cycle

and the holographic heat engines.

The paper is organized as follows. In section 2, we reconsider the study of thermody-

namics of AdS black holes along with the latent heat. Section 3 is devoted to Maxwell’s
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construction of higher dimensional AdS black holes. In section 4, we discuss the thermo-

dynamical cycle and holographic heat engines. Finally, section 5 contains our conclusions.

2 Thermodynamics and latent heat

This section concerns the study of the latent heat properties of Ads black holes in higher

dimensions. This investigation could be supported by the existence of higher dimensional

supergravity theories including superstring models, M-theory, and related topics. Here, we

consider a non-rotating, neutral, asymptotically anti-de Sitter black holes in high dimen-

sions spacetime n ≥ 4. The corresponding metric solution reads as

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

n−2 (2.1)

where dΩ2
n−2 represents the volume of (n− 2)-dimensional sphere. This solution is charac-

terized by the function f(r) taking the following general form

f(r) = 1− 2M

r(n−3)
+

r2

ℓ2
. (2.2)

It is worth recalling that the parameter M indicates the ADM mass of such a black hole

solution while its horizon radius r+ can be identified to the largest real root of f(r) = 0.

These two parameters are linked via the relation

M =
rn−3
+

2

(

r2+
ℓ2

+ 1

)

. (2.3)

In the non-rotating AdS black holes, M should be interpreted as an enthalpy [4] which can

be written as follows

H(S, P ) =
1

2

(

4S

ω

)
n−3
n−2

(

16πP

(n− 2)(n− 1)

(

4S

ω

) 2
n−2

+ 1

)

. (2.4)

where the Bekenstein-Hawking entropy is given in terms of the horizon

S =
ω

4
rn−2
+ . (2.5)

In this equation, the quantity ω reads as

ω =
2π

n−1
2

Γ
(

n−1
2

) . (2.6)

In fact, many other thermodynamical quantities can be also computed using similar tech-

nics. Indeed, the pressure can be associated with the cosmological constant Λ and they are

related as P = − Λ
8π = (n−2)(n−1)

16ℓ2π
, whereas the temperature is given in terms of the horizon

radius r+ via the following form

T =
f ′(r+)

4π
= −n(n− 5)− 2r2+Λ + 6

4πr+(2− n)
. (2.7)

– 2 –



J
H
E
P
0
5
(
2
0
1
5
)
1
4
9

By combining thermodynamical relations, the temperature can be re-written as

T =

(

∂H

∂S

)

P

=
4

1
2−n

(

n2 − 5n+ 6
) (

S
ω

)
1

2−n + π2
2

n−2
+4P

(

S
ω

)
1

n−2

4π(n− 2)
. (2.8)

One can see that the temperature presents a minimum associated with the following en-

tropy value

STmin = π
2−n
2 ω





2
2(1−n)
n−2

√
n2 − 5n+ 6√
P





n−2

. (2.9)

This minimum is given by

Tmin =
2(n− 3)

√
P

√
π
√

(n− 3)(n− 2)
. (2.10)

A similar computation shows that the heat capacity can be expressed as

Cp =

(

T
∂S

∂T

)

P

=

(n− 2)S

(

π 2
4

n−2
+4P

(

S
ω

)
2

n−2 + n2 − 5n+ 6

)

π 2
4

n−2
+4P

(

S
ω

)
2

n−2 − n2 + 5n− 6
(2.11)

Note that this quantity is negative for S < STmin . It becomes positive for S > STmin ,

but diverges at S = STmin .

Besides, recalling that the variation of Gibbs free energy G is

dG = −SdT + PdV, (2.12)

and knowing that G is the Legendre transform of the enthalpy, one finds

G = H − TS =
4

n−1
2−n

π
S(T, P )

(

S(T, P )

ω

) 1
2−n






1−

π4
2(1−n)
2−n P

(

S(T,P )
ω

) 2
n−2

n2 − 3n+ 2






. (2.13)

where the entropy function given in terms of T and P reads as

S(T, P ) = 24−5n(πP )2−nω

[

2
2n
n−2 (n− 2)πT

±
√
π

√

(n− 2)
(

π2
4n
n−2 (n− 2)T 2 − 2

8
n−2

+6(n− 3)P
)

]n−2

(2.14)

Let

B =
(n2 − 3n+ 2)ω

2
n−2

π 4
2(1−n)
2−n

(2.15)

Then, from eq. (2.13) we see that for PS
2

n−2 > B the Gibbs free energy is negative,

hence the black hole is a more stable thermodynamical configuration than the Anti-de

Sitter one.
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Figure 1. Phase diagram for higher dimensional AdS black holes. The coexistence line of the

AdS-Radiation / Black hole phase transition of such a system in (P, T ) plane.

For PS
2

n−2 < B, however, the pure AdS space-time is the more stable which means

that the black hole with S <
(B
P

)
n−2
2 will evaporate. This is associated with the line where

the Hawking-Page transition occurs. This line, dubbed coexistence line, is defined by the

following equation

S = 41−n
(

n2 − 3n+ 2
)

n
2
−1

π1−n
2 ωP 1−n

2 . (2.16)

where the pressure P |coexistance can be computed in terms of the temperature for any

dimension thanks to equations (2.14) and (2.16),

P |coexistance =



















































3πT 2

8 , n = 4
2(32−85 3√2+168 22/3)πT 2

1849 , n = 5
80πT 2

529 , n = 6
...

567πT 2

6241 , n = 10.
...

(2.17)

This is illustrated in figure 1 which clearly indicates the existence of the two phases.

This figure shows the coexistence curve of the Hawking-Page phase transition, repre-

sented by the lower (solid) line. It also indicate that the heat capacity diverges on the

upper (dashed) line while the lower branch of the free energy goes to minus infinity on the

line given by P = 0.
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Figure 2. Left: the Gibbs free energy as a function of temperature at fixed P = 1 for 4 ≤ n ≤ 6.

Right: higher dimensional cases associated with 7 ≤ n ≤ 11 Schwarzschild-AdS black hole.

Next, we would like to address the stability issue of such solutions. To do so, we plot

in figure 2 the behavior of the Gibbs free energy G in terms of the temperature T at fixed

pressure.

One can notice a minimum temperature Tmin for which no black holes with T < Tmin

can survive. However, above this temperature, two branches of the black holes appear. In

fact, the upper branch describes an unstable small (Schwarzschild-like) black hole involv-

ing a negative specific heat. For (T > Tmin), the black holes, at lower branch, become

stable with positive specific heat. In addition since the Hawking-Page temperature THP is

associated with vanishing values of the Gibbs free energy, then the black hole Gibbs free

energy becomes negative for T > THP . In fact, at T = THP , a first order Hawking-Page

phase transition shows up between the thermal radiations and large black holes as reported

in [20, 22, 23].

Moreover, from figure 1 we also note a jump in entropy which becomes more relevant

in terms of the dimension of the space time as shown in the following equation

∆S = 41−n
(

n2 − 3n+ 2
)

n
2
−1

π1−n
2 ωP 1−n

2 . (2.18)

Notice that the latent heat of the black hole which nucleates from anti-de Sitter space time

can be computed using the following thermodynamical expression

L = T∆S. (2.19)

Indeed, using eq. (2.8), the calculation results in

L =
2−

n
n−2 (n− 2)ω

π

(

41−nπ1−n
2

(

n2 − 3n+ 2

P

)
n−2
2

)

n−3
n−2

(2.20)

which is equal to the mass on the coexistence curve in the black hole phase. Here, note

that for n = 4, we reproduce the result reported in [20]. It turns out that the latent heat

is nonzero for any finite T and vanishes for very large values of T . In fact, in the case of

asymptotically flat space-time with P = 0, the latent heat becomes infinite which means

that the black hole cannot nucleate in Minkowski space [20].
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Figure 3. The temperature as function of the entropy in four dimension, with P = 1.

It is clear now that the sign of the heat capacity plays an important role in the deter-

mination of the stability of the black hole. More precisely, its negative values render the

black hole unstable. In the next section we will show how to overcome this problem, by

using the Maxwell construction to modify the Hawking-Page phase structure.

3 On Maxwell’s construction of high dimensional AdS black holes

In this section, we investigate the corresponding Maxwell’s construction. To do so, we first

recall that the equal area law was introduced by Maxwell in order to explain the experi-

mental behaviors of real fluids. Usually, this construction is elaborated in the (P, V ) plane

while keeping constant temperature [16, 18, 19]. However, fixing the pressure in (2.12),

such a construction can also be done in the (T, S) plane. For Schwarzschild-AdS black

hole, the choice of this plane has been explained in many papers including [16, 17, 22].

The starting point is the temperature as a un function of the entropy given by eq. (2.8).

Then, we plot this function in figure 3. It is observed that this function involves mini-

mums at STmin and Tmin given by eq. (2.9) and eq. (2.10) respectively. For any value of the

cosmological constant, these quantities produce the following reduced forms

t =
1

2
s

1
n−2 +

1

2

1

s
1

n−2

, (3.1)

s ≡ S

STmin

and t ≡ T

Tmin
. (3.2)

It is recalled that the Maxwell area law can be obtained using the fact the Gibbs free

energy is the same for coexisting black holes. Exploring Gibbs free energy (2.13)

∆G0,g = −
∫ 2

1
SdT = 0, (3.3)

T ⋆∆S0,g =

∫ g

0
TdS, (3.4)
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n x0 xg s0 sg t⋆

4 0.50000 1.30277 0.25 1.69722 1.03518

5 0.62996 1.19213 0.25 1.69424 1.01548

6 0.70710 1.14071 0.25 1.69319 1.00868

7 0.75785 1.11100 0.25 1.69271 1.00555

8 0.79370 1.09165 0.25 1.69244 1.00385

9 0.82033 1.07805 0.25 1.69229 1.00283

10 0.84089 1.06796 0.25 1.69218 1.00216

11 0.85724 1.06018 0.25 1.69211 1.00171

Table 1. Roots of the polynomial form and the corresponding entropy and temperature.

where T ⋆ is the temperature of the equal area isotherm. The equal area law, in the reduced

variables, gives the entropy of the liquid and gaseous phases. This solves the following

equations










t = 1

2s
1

n−2

(

s
2

n−2 + 1
)

t⋆ = (n−2)2

(n−3)(n−1)
s
n−3
n−2−s

n−3
n−2
0

s0−s
.

(3.5)

Introducing new variable x ≡ s
1

n−2 , we get the following equation

2
2

n−2
+2(n− 3)xn+2 − 2

2
n−2

+2(n− 1)xn − 2
2

n−2 (n− 3)(n− 1)x4

+
(

n
(

2
4

n−2 (n− 3) + n− 5
)

+ 2
n+2
n−2 + 6

)

x3 − 2
2

n−2 (n− 3)(n− 1)x2 = 0. (3.6)

The solutions of this equation associated with each dimension are listed in table 1,

We should eliminate the states corresponding to either complex or negatives values

since they have no physical meaning. In the (T, S) plane (or equivalently in (t, x)), the

system involves similar behaviors associated with the unstable (unphysical) part of the Van

der Waals’ picture in the (P, V ) plane. Roughly, in 4 we show the Maxwell’s equal area in

the (t, x)-plane for high dimensional Schwarzschild-Ads black hole.

It is observed that a pure radiation phase can survive beyond Tmin up to the higher

temperature given by the isotherm T ⋆ = t⋆Tmin. For T = T ⋆, the black holes with different

entropy values have the same free energy. They are more stable than the pure radiation.

For T > Tmin, there exists a single and stable black hole with a positive heat capacity.

When we go back to four dimensions, we recover the results reported in [16] and [17]

describing neutral case.

4 Thermodynamic cycle and the heat engines

Having discussed some thermodynamical properties of the Schwarzschild-AdS black hole

including the thermodynamical quantities associated with stability and phases transitions,

we pave the way to the study of the corresponding work from the heat energy according to

– 7 –
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Figure 4. The t − x diagrams for space dimension n between 4 and 11. t⋆ and x0,g are given in

table 1.
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Figure 5. Considered cycle.

a cycle between two sources (cold/hot) with temperature TC and TH respectively. Then,

we make contact with the Carnot cycle defined as a simple cycle described by two isobars

and two isochores as in [21]. This is illustrated in figure 5.

Exploring the equation (2.7) and using the relation between the cosmological constant

and the pressure, we can derive the equation of state of the black holes. The calculation

gives the following equation

P =
1

4
(n− 2)T

(

(n− 1)V

ω

)− 1
n−1

−
(

n2 − 5n+ 6
)

16π

(

(n− 1)V

ω

)− 2
n−1

(4.1)

where the thermodynamical volume V is linked to the horizon radius r+ via the relation

V =
ω

n− 1
rn−1
+ . (4.2)

Now it is possible to extract the work of the cycle: expressing the volume in terms of the

entropy, which will be used to reduce the number of variables in the final expression for

the efficiency, the work takes the following form

W =
4

1
n−2

+1

n− 1
(P1 − P4)

(

S2

(

S2

ω

) 1
n−2

− S1

(

S1

ω

) 1
n−2

)

(4.3)

where the subscripts refer to the quantities evaluated at the corners labeled (1, 2, 3, 4). To

derive the efficiency, one has to compute the heat quantity. The upper isobar transforma-

tion will produce the net inflow of the heat which will be identified with QH . The latter is

expressed as follows

QH =

∫ T2

T1

Cp(P1, T )dt. (4.4)

The integration do not look nice due to the entropy dependence of Cp giving non-trivial T

dependence.

Thus the efficiency is given by

η =
W

QH

. (4.5)
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To determine such a quantity, we will use the large value limits of T and P . In this way,

the equation (2.14) becomes

S =
1

3
2

−2n2+3n−4
n−2 (n− 2)n−5ωP 2−nTn−8

[

3 2
3n
n−2 (n− 2)3T 6 − 3

π
2

3n
n−2 (n− 3)(n− 2)3PT 4

+
3

π2
2

n
n−2

+1(n− 3)2
(

2
4

n−2n3 − 9 2
4

n−2n2 + 3 2
2n
n−2

+1n− 5 2
2n
n−2

)

P 2T 2 (4.6)

+
4

π3

(

−3 2
2(n+1)
n−2 + 3 2

n+4
n−2 (n− 3)− 2

6
n−2 (n− 4)(n− 3)

)

(n− 2)(n− 3)3P 3 + · · ·
]

In this limit, the heat capacity (2.11) reduces to

Cp = 2
−2n2+3n−8

n−2 ω(n− 2)n−3
(

4
5

n−2
+2(n− 5)n+ 3 32

n
n−2

) Tn−4

πPn−3

+41−n(n− 2)ω

(

(n− 2)T

P

)n−2

+ · · · . (4.7)

which infers the following expression

QH =
21−2nω

(

P1

n−2

)2−n

π2(n− 1)T 5
1 T

5
2

[

(n− 3)2(n− 1)P 2
1

(

T
5
1 T

n
2 − T

5
2 T

n
1

)

+ 2π2(n− 2)T 4
1 T

4
2 (T1T

n
2 − T2T

n
1 )

]

+ ·

= −
1

3
2

−4n2+17n−12

n−2

(

n
2
− 5n+ 6

)n−3
π
3−n

ωP
4−n
1

(

S2

ω

) 7
n−2

×

(

π2
4

n−2
+4

P1

(

(

S1

S2

) 7
n−2

(

S1

ω

) n

2−n

−

(

S2

ω

) n

2−n

)

+ 3(n− 2)

(

S2

ω

)

−

2
n−2

(

(

S1

S2

) 5
n−2

(

S1

ω

) n

2−n

−

(

S2

ω

) n

2−n

)

+ · · · .

)

. (4.8)

Then, the efficiency is finally given by

η = 3 2
2n

n−2
−

20
n−2

−19(n− 3)3(n− 2)3−n
π
n−5

P
n−6
1 (P1 − P4)

(

(

S2

ω

)
n−1

n−2

−

(

S1

ω

)
n−1

n−2

)

(

S2

ω

)

−

7
n−2

×

[

3(n−2)

(

S2

ω

)

−

2
n−2

(

(

S1

S2

) 5
n−2

(

4
1

2−n (n−3)

(

S1

ω

) 1
2−n

)n

−

(

4
1

2−n (n−3)

(

S2

ω

) 1
2−n

)n)]

− π2
4

n−2
+4

P1

(

(

S1

S2

) 7
n−2

(

4
1

2−n (n− 3)

(

S1

ω

) 1
2−n

)n

−

(

4
1

2−n (n− 3)

(

S2

ω

) 1
2−n

)n)]

(4.9)

×



(n−1)

((

2−
2

n−2
−2(n−3)

(

S2

ω

) 1
2−n

)n

−

(

S1

S2

) 7
n−2

(

2−
2

n−2
−2(n−3)

(

S1

ω

) 1
2−n

)n)2




−1

+· · ·

The efficiency can be calculated at leading order: identifying TC = T4 and TH = T2,

corresponding to the lowest and highest temperatures of the engine, with P ∼ 1
4(n −

2)T
(

(n−1)V
ω

)− 1
n−1

+ · · · , we obtain

η = 1− TC

TH

(

V2

V4

) 1
n−1

. (4.10)

In this way, we can compare with the efficiency of the Carnot cycle ηCarnot = 1 − TC
TH

.

Again, it is worth noting that for n = 4, we recover the result reported in [21].
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5 Conclusion

In this work, we have investigated the heat properties of AdS black holes in higher dimen-

sions. We have considered the study of corresponding thermodynamical properties along

with the sign of the heat capacity explored in the determination of the stability of such

black hole. More precisely, we have computed the latent heat as a trivial consequence of the

Hawking-Page phase transition. To overcome the instability problem, the Maxwell’ con-

struction have been elaborated to modify the Hawking-Page phase structure in the (T, S)

plane. We have derived the equal area isotherm for any dimension in the range 4 ≤ n ≤ 11.

Then, we have analyzed the thermodynamic cycle and the holographic heat engines using

the expression of the extracted work and efficiency.

By following [21], it is possible to make contact with Maldacena conjecture known by

AdS/CFT holographic correspondence [24, 25]. This could be useful to bring new features

in the gauge theories embedded in string theory and related topics.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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