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Results  Radioprotection of directly targeted T98G cells by 
methylproamine was observed for 137Cs γ-rays and X-rays 
but not for He2+ charged particle irradiation. The effect of 
methylproamine on the bystander cell population was tested 
for both X-ray irradiation and He2+ ion microbeam irradia-
tion. The X-ray bystander experiments were carried out by 
medium transfer from irradiated to non-irradiated cultures 
and three experimental designs were tested. Radioprotection 
was only observed when recipient cells were pretreated with 
the drug prior to exposure to the conditioned medium. In 
microbeam bystander experiments targeted and nontargeted 
cells were co-cultured with continuous methylproamine 
treatment during irradiation and postradiation incubation; 
radioprotection of bystander cells was observed.
Discussion and conclusion  Methylproamine protected tar-
geted cells from DNA damage caused by γ-ray or X-ray ra-
diation but not He2+ ion radiation. Protection of bystander 
cells was independent of the type of radiation which the do-
nor population received.
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Radioprotektive Wirkung von Methylproamine auf 
direkt bestrahlte Zellen und Bystander-Zellen

Zusammenfassung
Einleitung  Radioprotektive Agenzien sind sowohl in der 
Strahlentherapie von Krebserkrankungen als auch im Strah-
lenschutz im Zusammenhang mit akzidenteller Exposition 
von Bedeutung. Methylproamine ist die Leitsubstanz einer 
Klasse von Radioprotektoren, die ihre Wirkung als DNA-
bindende Antioxidanzien entfalten und so die Reparatur 

Abstract
Introduction  Radioprotective agents are of interest for ap-
plication in radiotherapy for cancer and in public health 
medicine in the context of accidental radiation exposure. 
Methylproamine is the lead compound of a class of radio-
protectors which act as DNA binding anti-oxidants, enabling 
the repair of transient radiation-induced oxidative DNA le-
sions. This study tested methylproamine for the radioprotec-
tion of both directly targeted and bystander cells.
Methods  T98G glioma cells were treated with 15 μM meth-
ylproamine and exposed to 137Cs γ-ray/X-ray irradiation and 
He2+ microbeam irradiation. Radioprotection of directly tar-
geted cells and bystander cells was measured by clonogenic 
survival or γH2AX assay.
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von transienten strahleninduzierten oxidativen DNA-Schä-
den ermöglichen. Die Studie untersucht die radioprotekti-
ve Wirkung von Methylproamine auf direkt bestrahlte und 
Bystander-Zellen.
Methoden  T98G-Gliomzellen wurden mit 15 μM Methyl-
proamine inkubiert und anschließend mit 137Cs-γ -Strahlen/
Röntgenstrahlung bzw. He2+-Microbeam-Bestrahlung be-
handelt. Die Radioprotektion direkt bestrahlter und Bys-
tander-Zellen wurde als klonales Zellüberleben oder im 
γH2AX-Foci-Assay gemessen.
Ergebnisse  Eine radioprotektive Wirkung wurde für T98G-
Gliomzellen nach direkter Bestrahlung mit 137Cs-γ-und 
Röntgenstrahlung beobachtet, nicht jedoch nach Bestrah-
lung mit He2+-Ionen. Der radioprotektive Effekt von Met-
hylproamine auf die Bystander-Population wurde sowohl 
für Röntgenstrahlung als auch He2+-Microbeam-Bestrahlu-
ng untersucht. Die Bystander-Experimente für Röntgen-
strahlen wurden mithilfe von Zellkulturmediumtransfers 
von bestrahlten zu unbestrahlten Zellkulturen durchgeführt, 
drei verschiedene Experimentdesigns wurden getestet. Ra-
dioprotektion wurde nur beobachtet, wenn die Empfänger-
kultur mit Methylproamine vorbehandelt wurden, bevor sie 
dem konditionierten Zellkulturmedium ausgesetzt wurden. 
In den Microbeam-Bystander-Experimenten wurden be-
strahlte und unbestrahlte Zellen kokultiviert, und die Be-
handlung mit Methylproamine erstreckte sich kontinuier-
lich über den Zeitraum der Bestrahlung und die anschlie-
ßende Inkubationszeit.
Diskussion und Fazit  Methylproamine schützte direkt be-
strahlte Zellen vor DNA-Schädigung durch γ-Strahlen und 
Röntgenstrahlung, jedoch nicht vor Schäden durch He2+-
Ionen. Die Protektion der Bystander-Zellen war unabhängig 
von der Art der Bestrahlung, der die Donorpopulation aus-
gesetzt war.

Schlüsselwörter  Radioprotektion · Methylproamine · 
Strahleninduzierter Bystander-Effekt · γH2AX · 
Strahlentherapie

Introduction

Methylproamine is the lead compound of a new class of 
radioprotectors related to the commercially available fluo-
rescent DNA stains Hoechst 33258 and Hoechst 33342 (see 
Fig. 1 for structures). Aside from potential uses in cancer 
radiotherapy, especially in the context of topical application 
to normal tissues “at risk” in cancer radiotherapy patients 
[1–3], such as oral mucosa, rectal mucosa, oesophageal 
mucosa and skin, there are potential applications for new 
radioprotectors that extend beyond the oncology arena, 
involving both planned and unplanned radiation exposures 
[4, 5].

The development of methylproamine and analogues was 
originally inspired by reports of unexpected radioprotec-
tive activity of Hoechst 33342 [6] and modification of the 
radiation sensitivity of human tumour cells by a bis-benz-
imidazole derivative was reported by Young et al. [7] and 
Denison et al. [8]. Guided by a mechanistic hypothesis for 
the radioprotective activity, analogues of Hoechst 33342 
with more electron-rich substituents were synthesised and 
evaluated, and methylproamine proved to be a more potent 
radioprotector than Hoechst 33342 [9].

From a mechanistic standpoint methylproamine can be 
considered as a DNA binding anti-oxidant. Pulse radioly-
sis experiments support a mechanism involving repair of 
transient radiation-induced oxidative lesions on DNA, by 
a process of electron/hole transfer from/to nearby DNA-
bound drug. This hypothesis is consistent with the results 
of recent investigations of double-stranded break induction, 
just an hour after irradiation, as reflected by the appearance 
of γH2AX foci, which serve as a sensitive marker for DNA 
double strand breaks [10]. As previously shown, treatment 
with methylproamine before and during irradiation reduced 
the level of radiation-induced γH2AX foci in cultured kera-
tinocytes, in parallel with a subsequent reduction in the 
extent of radiation-induced cell-killing [11]. Thus the radio-
protection by methylproamine, demonstrated for the clono-
genic survival endpoint, can be ascribed to a decrease in the 
yield of early DNA damage as measured by the foci assay.

A major interest in contemporary radiobiology is the 
phenomenon of the bystander effect, which describes the 

Fig. 1  Methylproamine. The 
molecular structure of meth-
ylproamine and parent ligands 
are shown in Fig 1; for Hoechst 
33342, R1 = H, R2 = OCH2CH3; 
for Hoechst 33258, R1 = H, 
R2 = OH; for methylproamine 
R1 = CH3 and R2 = N(CH3)2

 



250

1 3

S. Burdak-Rothkamm et al.

transfer. The microbeam experiments used 3 MeV He2+ ions 
from the Gray Cancer Institute charged particle microbeam 
[27]. In the medium transfer experiments, donor cells were 
irradiated with 240 kV X-rays, and medium was transferred 
to recipient cells after contact with donor cells 30 min post-
irradiation. Recipient cells were fixed and processed for 
γH2AX 30 min later.

Protection of bystander cells was investigated in medium 
transfer experiments, using three different designs with 
respect to the addition of methylproamine (15 μM):

●● addition to the donor cell population before irradiation 
and transfer with the filtered conditioned medium,

●● addition to the filtered conditioned medium before trans-
fer to the recipient cells or

●● pre-incubation with the recipient cell population as well 
as addition to the transferred medium.

Methylproamine was added to T98G cells to a concentration 
of 15 μM at 15 min prior to irradiation (with exception of 
the medium transfer experiments where the specific treat-
ment protocol is detailed above) and was not removed until 
30 min after irradiation when the cells were fixed and pro-
cessed for γH2AX immunohistochemistry.

In separate experiments it was established that clono-
genic survival for T98G cells exposed to 15  μM methyl-
proamine was > 50 % (data not shown) and the protection 
of T98G cells from 137Cs γ-ray irradiation by treatment with 
15 μM methylproamine was shown in a clonogenic assay.

Cell culture conditions

T98G glioma cells were cultured in RPMI 1640 medium 
(Cambrex, Verviers, Belgium) supplemented with 10 % FBS 
(PAA, Pasching, Austria), 2 mM L-glutamine, 100 units/ml 
penicillin and 100 µg/ml streptomycin (all Cambrex, Ver-
viers, Belgium). T98G cells were obtained from the Euro-
pean Collection of Cell Cultures (ECACC). Cells were 
incubated at 37 °C, 5 % CO2 and for all experiments non-
confluent cell cultures were used.

Microbeam irradiation

The Gray Cancer Institute charged particle microbeam 
system was used for targeted irradiation [27, 28]. Cells 
were seeded in the centre of Mylar foil dishes pretreated 
with 1.7 µg/cm2 BD Cell-Tak adhesive (Becton Dickinson, 
Erembodegem, Belgium) and stained in medium contain-
ing a 0.8 µM concentration of the fluorescent dye Hoechst 
33342 (Molecular Probes, Leiden, the Netherlands) to 
enable visualisation of cell nuclei by fluorescent micros-
copy at the microbeam stage.

For the study of targeted cells, 1,000 cells were seeded 
within a volume of 30 µl of complete culture medium in the 

observation that not only irradiated cells, but also the neigh-
bours of the irradiated cells, respond to the effects of ion-
ising radiation, particularly in terms of radiation-induced 
DNA damage, chromosome damage, mutation and loss of 
clonogenic viability [12–16]. The availability of micro-
beam technology has played a key role in the discovery and 
mechanistic investigation of the bystander effect. An alter-
native approach to investigate bystander effects are medium 
transfer experiments where filtered conditioned medium 
is transferred from irradiated cell cultures to nonirradiated 
(bystander) cultures. Proposed mechanisms for the propaga-
tion of bystander effects are the release of radical oxygen and 
nitrogen species, cytokines and the induction of a range of 
intra- and intercellular signalling pathways [17–23]. Radia-
tion-induced bystander effects are currently discussed in the 
context of their contribution to carcinogenesis [24] and in 
view of a potential exploitation of bystander effects in cancer 
therapy [25]. The identification of molecular drug targets in 
the bystander signalling pathway provides a rationale for a 
pharmacological modulation of bystander effects [26].

We now report the results of microbeam and medium 
transfer experiments designed to explore radioprotection by 
methylproamine in the context of the bystander effect. In 
short, we address the question: Does methylproamine protect 
the targeted (irradiated) cells, the bystander cells, or both? 
Aside from extending the knowledge of the bystander phe-
nomenon, the results also contribute to our understanding of 
the mechanism of radioprotection. T98G glioma cells were 
chosen for the study since the techniques to be used for the 
bystander studies were well-established for these cells. How-
ever it was then necessary to undertake separate experiments 
on the effect of methylproamine on these cells to determine 
the optimal drug concentration for the bystander studies. 
From our experience with V79 cells [6] and human kerati-
nocytes [8], exposure to methylproamine is associated with 
concentration-dependent, and exposure time-dependent cyto-
toxicity. For example for a human keratinocyte cell line, a 
1 h exposure to 20 μM methylproamine reduced clonogenic 
survival down to about 80 % [8]. Thus a suitable drug concen-
tration was established for T98G cells (namely 15 μM), that 
provided radioprotection without intolerable cytotoxicity.

Material and methods

Experimental design

Radioprotection by methylproamine of directly irradiated 
and bystander cells was studied using γH2AX foci as the 
experimental endpoint for radiation-induced DNA damage. 
T98G cells were irradiated with He2+ ions or 240 kV X-rays. 
The radiation-induced bystander effect was studied in two 
different protocols—microbeam irradiation and medium 
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fication of foci numbers, individual γH2AX foci per cell 
nucleus were counted by eye.

Clonogenic survival assay

Cultures for use in the clonogenic survival assays were in 
log phase growth with approximately 1 × 106 cells/25  cm2 
flask. The cell number to media volume ratio was kept 
constant for all experiments (1 × 106 cells/5  ml media). 
Accordingly, the media volume in the experimental flasks 
was adjusted after an initial cell number estimation using 
duplicate spare flasks. Methylproamine was solubilised in 
40 mM acetic acid/50 % ethanol and added to the medium in 
the flasks to give a final concentration of 15 μM. The flasks 
were then incubated for 30 min at 37 °C, 5 % CO2 before 
being irradiated with 137Cs γ-rays using a Gamma Cell 40 
Irradiator (Nordion International, Ottawa, ON, Canada) at 
a dose rate of 0.56 Gy/min. Control flasks (containing no 
methylproamine) were exposed to doses between 0 and 
12  Gy while the flasks containing methylproamine were 
exposed to doses of 0–24 Gy. Following irradiation, flasks 
were returned to 37 °C, 5 % CO2 for the remainder of the 
incubation period (1 h total incubation).

After the incubation, cells were washed with PBS/EDTA 
and the monolayer disrupted by treatment with 0.01 % pro-
nase (Merck KGaA, Darmstadt, Germany) in PBS/0.5 mM 
EDTA (Sigma, St Louis, MO, USA). Following pronase 
treatment, the pronase was neutralised by the addition of 
growth media and a single cell suspension was created by 
repeat pipetting (20 ×) with a 5 ml pipette. The cell suspen-
sion was then centrifuged at 1500 rpm (458 rcf) for 5 min, 
the cell pellet resuspended in growth media and again 
repeatedly pipetted (20 ×) to form a single cell suspension. 
Cell numbers were determined using a Z2 Coulter Counter 
(Beckman Coulter Australia, Gladesville, NSW, Australia).

After determining the cell numbers in each flask, cells 
were diluted, using serial dilutions, to the appropriate con-
centration and plated into 60 mm petri dishes. Five repli-
cates were made from each flask. The petri dishes were then 
incubated, undisturbed, for 8 days at 37 °C in a humidified 
atmosphere of 5 % CO2. The resulting colonies were fixed 
with neutral formalin before being stained with 0.01 % 
crystal violet. Colonies containing more than 50 cells were 
counted by hand using an inverted stereo microscope.

Results

Effect of treatment with methylproamine on directly 
irradiated cells

Clonogenic cell survival was determined for T98G glioma 
cells after single doses of 137Cs γ-ray irradiation between 

central area of the dish and irradiated with a defined number 
of He2+ ions per nucleus.

Bystander cells were studied as cells adjacent to cells 
irradiated by a line of 5 helium ions/µm (approx. 2–3 μm 
wide) across the culture dish; for bystander experiments 
10,000 cells were seeded in the centre of each dish.

Cells were incubated at 37 °C, 5 % CO2 for 30 min after 
irradiation and prior to fixation.

X-ray irradiation and medium transfer experiments

Cells were irradiated with 240  kV X-rays (Pantak) with 
4.3  mm aluminium filtration (0.4  Gy/min). Cells were 
grown on coverslips sitting in tissue culture dishes. Irradia-
tion and subsequent incubation was performed at 37 °C to 
allow foci formation. After 10 min, cells were placed on ice 
to prevent DNA repair, fixed with 4 % paraformaldehyde 
and immunostained for γH2AX foci as described below.

For medium transfer experiments, cells were seeded 
on 22 × 22  mm2 coverslips placed in 6-well tissue culture 
dishes and were treated with filtered medium obtained from 
cells, which had been irradiated with 2 Gy of X-rays (Pan-
tak, 240 KV) followed by 30 min of incubation. The cell 
culture medium was filtered through a 0.45 μm syringe filter 
in order to prevent the transfer of cells with the supernatant 
culture medium. The recipient cells were incubated with the 
conditioned medium at 37 °C, 5 % CO2 for further 30 min.

Immunocytochemistry

For immunocytochemistry, cells were fixed for 15 min with 
4 % paraformaldehyde, permeabilized with 0.5 % Triton-X 
100 (both Sigma, Poole, UK) and blocked with 3 % FBS 
(PAA, Pasching, Austria) in PBS for 30 min at room tem-
perature. Incubation with a primary antibody specific for 
γH2AX (H2AX p139S; Upstate, Chandlers Ford, UK) for 
1 h at room temperature was followed by incubation with 
a matching Alexa Fluor 488 labelled secondary antibody 
(Molecular Probes, Leiden, the Netherlands) and nuclear 
counterstaining with DAPI. Between antibody incubations, 
cells were washed tree times with PBS/3 % FBS. For cells 
cultured on coverslips, the inverted coverslip was placed on 
a glass slide with VectaShield mounting medium for fluores-
cence microscopy (Vector Laboratories, Burlingame, CA) 
after staining was completed, and the edges were sealed 
with clear nail varnish. Cells growing on Mylar foil were 
stained within the microbeam dish and the foil was glued 
to a glass slide. A coverslip was placed on top of the Mylar 
foil with VectaShield mounting medium after staining was 
completed, and the edges were sealed with nail varnish.

A fluorescence microscope was used for imaging and 
analysis (Zeiss, Welwyn Garden City, UK). For quanti-
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Protection of bystander cells from radiation-induced DNA 
damage by methylproamine

To investigate the effect of methylproamine on X-ray-
induced γH2AX foci formation in bystander cells, a medium 
transfer assay was applied and filtered cell culture medium 
was transferred from an irradiated cell culture to a nonirradi-
ated one. Three different treatment protocols were chosen: 
Methylproamine was (1) added to the donor cell popula-
tion before irradiation and transferred with the filtered 
conditioned medium, (2) added to the filtered conditioned 
medium before transfer to the recipient cells, or (3) pre-
incubated with the recipient cell population and also added 
to the transferred medium.

T98G cells that were incubated with filtered medium 
derived from the irradiated donor cells showed significant 
induction of bystander γH2AX foci [Fig 3a (upper image) 
and 3b (column 1)], consistent with our previous studies 
[14, 15]. Following treatment with methylproamine accord-
ing to the three different protocols detailed above, a sig-
nificant reduction of medium transfer-induced bystander 
γH2AX foci was only seen when the recipient bystander 
cells were pre-incubated with 15  μM of methylproamine 
and methylproamine was also added to the transferred fil-
tered medium (p < 0.01, t-test) [Fig. 3a (lower image) and 3b 
(column 4)]. The two other protocols where the donor cells 
were pretreated or the agent was only added at the time of 
medium transfer did not prevent the induction of γH2AX 
foci in the recipient bystander cell population (Fig. 3b, col-
umns 2 and 3). This observation supports the hypothesis that 
methylproamine has to form a complex with the DNA mol-
ecule in order to protect the DNA from oxidative damage.

0 and 12  Gy for cells not treated with methylproamine 
and doses between 0 and 24  Gy for those protected by 
methylproamine treatment. Treatment with 15  μM of 
methylproamine—prior to, during and after irradiation—
significantly increased the clonogenic survival of T98G 
cells. On the basis of these experiments, the extent of radio-
protection corresponded to a dose modification factor of 2.1 
(Fig. 2a), similar to the results published for the FEP1811 
human keratinocyte cell line [9, 11].

In order to visualise and quantify radiation-induced DNA 
damage and the potential protection by methylproamine 
treatment, the γH2AX assay was applied which has been 
previously used as suitable endpoint in bystander studies 
[15, 29, 30]. T98G glioma cells were irradiated with X-ray 
doses between 0 and 0.5 Gy and immunofluorescent stain-
ing for γH2AX foci was performed (Fig.  2b). Treatment 
with 15 μM of methylproamine—continuously prior, during 
and after irradiation—significantly reduced the induction of 
γH2AX foci per cell (p < 0.01, t-test).

In order to study the effect of methylproamine on DNA 
damage induced by heavy charged particle irradiation on 
directly targeted cells, cultures of T98G glioma cells were 
irradiated with 0–10 particles of He2+ ions per nucleus using 
the Gray Cancer Institute charged particle microbeam sys-
tem. A linear increase in the number of γH2AX foci per 
cell with increasing radiation dose was observed (Fig. 2c). 
Treatment with methylproamine could not reduce the num-
ber of He2+-induced γH2AX foci in directly irradiated cells, 
indicating that no protection was achieved from DNA dam-
age by He2+ ion irradiation.

Fig. 2  a Clonogenic survival curves for T98G cells after 137Cs γ-ray 
irradiation, with (open squares) and without (open circles) methyl-
proamine treatment (15  µM; 15  min prior to irradiation). The data 
points show the average and standard deviation for three separate pairs 
of survival curves. The dose-modifying factor is 2.1. b Effect of meth-
ylproamine on γH2AX foci induction by X-ray irradiation. 15  µM 
methylproamine added 15  min before radiation (X-ray, 240  kV). 
Methylproamine significantly protected against radiation-induced foci 
in “targeted” T98G cells (p < 0.01, t-test), in keeping with the results 

shown for the clonogenic survival endpoint. A total of 1006 cells were 
evaluated. The background foci level in the control cell population 
was subtracted from the foci count. Error bars represent the standard 
error of the mean (SEM). c Methylproamine treatment (15 µM, added 
15 min before radiation) had no effect on γH2AX foci induction by 
He2+ microbeam irradiation in “targeted” T98G cells. A total of 336 
cells were evaluated. The background foci level in the control cell 
population was subtracted from the foci count. Error bars represent 
the SEM
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ions, bystander cells were shielded from indirectly induced 
DNA damage in both settings.

The cytotoxic effect of ionizing radiation is elicited 
largely by DNA damage attributed to the production of 
highly reactive radicals such as hydroxyl and superoxide 
radicals, in combination with direct ionisation events in 
DNA. Different qualities of ionising radiation cause dif-
ferent patterns of DNA damage. Low linear energy transfer 
(LET) radiation such as X-rays and γ-rays causes dispersed 
DNA damage including single strand breaks, base oxidation 
and occasional double strand breaks. In contrast, irradiation 
with high LET charged particles results in clustered DNA 
damage with frequent double strand breaks and complex 
patterns of DNA damage [31].

In order to understand the mechanisms underlying the 
radioprotective effect of methylproamine in directly tar-
geted and bystander cell populations, these results need to 
be discussed in the context of the hypothesised mode of 
action of methylproamine. Based on pulse radiolysis studies 
it is concluded that radioprotection by DNA-binding ligands 

In order to study the protection of bystander cells from 
radiation induced DNA damage by heavy charged particle 
irradiation, T98G cells were irradiated with a line of 5 He2+ 
ions per μm, hitting cells growing in the area of this target 
line. Bystander cells, i.e. cells adjacent to this line of irradi-
ated cells, showed a marked increase in the average num-
bers of γH2AX foci per cell (Fig. 3c; column 1). Treatment 
with 15 μM methylproamine lead to a significant reduction 
of He2+ -induced γH2AX foci in the bystander cells (column 
2; p < 0.05, t-test), similar to the effect of methylproamine 
observed for the bystander population in X-ray treated cells.

Discussion

The results presented in this study confirm that methyl-
proamine protects cultured cells from radiation-induced 
DNA damage. While the protective effect for directly irra-
diated cells was dependent on the quality of the irradiation 
and applied to X-irradiation but not to irradiation with He2+ 
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Fig. 3  Effect of methylproamine (MPA) on the induction of γH2AX 
bystander foci by medium transfer from X-ray irradiated cells and He2+ 
microbeam bystander cultures. a Bystander γH2AX foci are present 
in T98G cells treated with conditioned medium derived from X-ray 
(2 Gy) irradiated cells. Pretreatment with methylproamine markedly 
reduced γH2AX bystander foci induction. b A significant X-ray (2 Gy) 
induced bystander effect was seen in cells without methylproamine 
treatment (column 1; p < 0.01, t-test). Three different protocols were 
applied for the investigation of the effect of methylproamine on the 
bystander effect: Methylproamine added to the filtered conditioned 
medium before transfer to the recipient cells (column 2), added to the 
donor cell population before irradiation and transferred with the fil-
tered conditioned medium (column 3), or pre-incubated with the recip-
ient cell population and also added to the transferred medium (column 

4). Pretreatment of recipient cells with methylproamine (15 µM) sup-
pressed foci induction by conditioned medium from X-ray irradiated 
cells (p < 0.05, t-test) whereas the two alternative treatment protocols 
without pre-incubation had no significant effect. A total of 1474 cells 
were evaluated. The background foci level in the control cell popu-
lation was subtracted from the foci count. Error bars represent the 
standard error of the mean (SEM). c Methylamine treatment (15 µM) 
prevented He2+ microbeam irradiation-induced γH2AX bystander foci. 
A total of 414 cells were evaluated. The background foci level in the 
control cell population was subtracted from the foci count; the cause 
of the small negative value for the “induced foci” in the methylamine-
treated sample is the correction for background levels. Error bars rep-
resent the SEM
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ated genotoxic effects are thought to play a central role in 
processes like aging and carcinogenesis. Recently, ROS/
NOS- and cytokine-mediated DNA damage detected by 
the γH2AX assay was described in chronic inflammatory 
conditions, aging/senescence and in association with cancer 
[36–40].

There has been significant interest in the potential role 
of bystander signalling in therapeutic response both with 
a view to determining its clinical impact on tumour cell 
killing and potential carcinogenic effects in surrounding 
normal tissues [25, 26]. If these responses are potentially 
deleterious, agents such as methyproamine could play a role 
in treatment strategies for the use of ion beam approaches to 
preferentially protect surrounding normal tissues from the 
impacts of bystander signalling.

It is an interesting thought that radioprotective agents 
like methylproamine may also become a useful therapeutic 
option to prevent DNA damage caused by genotoxic stress 
in contexts other than radiation exposure.
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