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Abstract In this article, we study the stability of black hole
solutions found in the context of dilatonic Horava–Lifshitz
gravity in 1 + 1 dimensions by means of the quasinormal
modes approach. In order to find the corresponding quasi-
normal modes, we consider the perturbations of massive and
massless scalar fields minimally coupled to gravity. In both
cases, we found that the quasinormal modes have a dis-
crete spectrum and are completely imaginary, which leads
to damping modes. For a massive scalar field and a non-
vanishing cosmological constant, our results suggest unsta-
ble behavior for large values of the scalar field mass.

1 Introduction

For quite some time, physicists have considered Einstein’s
general relativity (GR) to be an effective theory of grav-
ity. Therefore, in order to find the happy marriage between
quantum theory and gravity, we need to know the underlying
fundamental theory of gravity. One recent proposal in this
quest has been the Horava–Lifshitz (HL) theory [1], that is, a
power-counting renormalizable theory with consistent ultra-
violet (UV) behavior. Furthermore, the theory has one fixed
point in the infrared (IR) limit, namely GR [1–4]. In terms
of the above, black holes (BHs) are important solutions for
field equations in any gravitational theory, including those of
Einstein–Hilbert, Brans–Dicke, HL, f (R), string theories,
and any generalization or modification of Einstein’s gravity.
At the quantum level, BHs play the same role as hydrogen
atom and we hope they give us some clues about the observ-
ables of any quantum theory of gravity. As such, it is impor-
tant to study the physical properties of BH solutions, such as
decay rate, gray-body factors, or their quasinormal modes.
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Quasinormal modes (QNMs), known as “ringing” in BHs, are
very important in order to understand the classical and quan-
tum aspects of BH physics. The QNMs give us hints about
the stability of the BH under consideration, as in this paper,
and can be used to compute the spectrum of the area operator
using the semiclassical approach developed by Hod [5]. The
determination of QNMs is based on the dynamics of matter
fields and on the metric perturbations in the BH background.
In this work indeed, we are interested in the stability of the
1 + 1-dilatonic HL BH using a QNMs’ approach; QNMs
associated with the perturbations of different fields have been
considered in different works [6], including those involving
dS and AdS space [7–14] and higher dimensional models,
where the QNMs can be computed for a brane situated in
the vicinity of a D-dimensional BH [15]. A similar situation
occurs in 2 + 1 dimensions [16–18], and for acoustic BHs
[19–21]. QNMs of dilatonic BHs in 3+ 1 dimensions can be
found in Refs. [22–24]. Two-dimensional theories of grav-
ity have recently attracted much attention [25–27] as simple
toy models that possess many features of gravity in higher
dimensions. They also have BH solutions which play impor-
tant roles in revealing various aspects of spacetime geometry
and quantization of gravity, and which are also related to
string theory [28,29]. The QNMs of 1 + 1 dilatonic BHs for
scalar and fermionic perturbations were studied in [30–33].

The determination of QNMs for a specific geometry
implies solving the field equations for different types of per-
turbations (scalar, fermionic, vectorial, etc.), with suitable
boundary conditions that reflect the fact that this geometry
describes a BH. The QNMs of a classical scalar perturbation
of a BH are defined as the solutions of the Klein–Gordon
equation characterized by purely ingoing waves at the hori-
zon, � ∼ e−iω(t+r), since, at least classically, an outgoing
flux is not allowed at the horizon. In addition, one has to
impose boundary conditions on the solutions in the asymp-
totic region (infinity), and for that reason it is crucial to use
asymptotic geometry for the spacetime under study. In the
case of an asymptotically flat spacetime, the condition we
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need to impose over the wave function is to have a purely out-
going wave function � ∼ e−iω(t−r) at infinity [7]. In general,
the QNMs are given by ωQNM = ωR + iωI , where ωR and
ωI are the real and imaginary parts of the frequency ωQNM,
respectively. Therefore, the study of QNMs can be imple-
mented as one possible simple alternative test for studying
the stability of the system. In this sense, any imaginary fre-
quency with the wrong sign would mean an exponentially
growing mode, rather than a damping one.

The organization of this article is as follows: In Sect. 2, we
describe briefly the HL theory and specify the 1+1-dilatonic
BH solutions. In Sect. 3, we compute the QNMs and explore
the criteria for the stability of the two BH metrics under
consideration. We finish with conclusions in Sect. 4.

2 Generalities of the Horava–Lifshitz gravity

In the following, we will describe the HL theory as developed
in Ref. [4]. The HL theory provided a new approach to quan-
tum gravity and its principal idea is based on the breaking of
the Lorentz invariance by equipping the spacetime with addi-
tional geometric structure, a preferred foliation which defines
the splitting of the coordinates into space and time; in this
theory the Lorentz invariance is assumed to appear only at
the low energies limit. One can decompose the spacetime as
follows:

ds2 = (N 2 − Ni N
i )dt2 − 2Nidx

idt − hi jdx
idx j , (1)

where N , Ni are the lapse and shift functions, respectively,
and hi j is the three-dimensional metric. The action is given
by

S = M2
Pl

2

∫
d3xdt

√
hN

(
Ki j K

i j − γ K 2 − V
)

, (2)

where MPl is the Planck mass, γ is a dimensionless constant,
and Ki j is the well-known extrinsic curvature tensor, which
is stated in the ADM formulation as

Ki j = 1

2N

(
ḣi j − ∇i N j − ∇ j Ni

)
, (3)

K being its trace. The last term in (2), V , is invariant
under three-dimensional diffeomorphisms and is known as
the “potential” term. This term is a function of the three-
dimensional metric and its derivatives. In explicit form we
have

V = −ξ R + 1

M2
Pl

(
π1�R + π2Ri j R

i j + · · ·
)

+ 1

M4
Pl

(
σ1�

2R + σ2Ri j R
jk Ri

k + · · ·
)

, (4)

where ξ, πn, σn are coupling constants, Ri j and R are the
Ricci tensor and the scalar curvature constructed with the
spatial metric. We have � := hi j∇i∇ j . The introduction
of the “potential” term in (2) improves the UV behavior of
the graviton propagator and additionally leads to different
scaling of space and time

x →ρ−1x, t → ρ−3t, N →N , Ni → ρ2Ni , hi j → hi j .

(5)

When the lapse function depends only on time, N = N (t),
we say that we are dealing with the “projectable” version
of the HL theory and the “non-projectable” version is given
when the lapse function may depend on space and time. In
Ref. [34] an extension of the non-projectable version of HL
gravity was made by the introduction of an extra mode in the
“potential” term, i.e.,V(hi j ) → V(hi j , ai ). It was shown that
this extra mode can acquire a regular quadratic Lagrangian.
The extra mode is given by

ai := ∂i N

N
. (6)

Geometrically this vector represents the proper accelera-
tion of the unit normals to the spatial slices. For the two-
dimensional case there are only two terms that contribute to
the quadratic Lagrangian: R and aiai .

2.1 Lowest dimensional Horava–Lifshitz black hole

The HL gravity has two-dimensional solutions that charac-
terize dilatonic BHs and can be used to study the physical
properties of BHs in general; furthermore, some features of
this theory, due to the fact that it utilizes two dimensions,
open the possibility of understanding physical consequences
in higher dimensional theories. As a summary, let us start
with the HL-dilaton gravity in two dimensions presented in
Ref. [35],

S = SHL + Sφ, (7)

where, as mentioned before, the quadratic Lagrangian for the
HL theory in two dimensions comes from the contribution
of the terms R and aiai ; we have

SHL = M2
Pl

2

∫
dtdx

√
g

(
(1 − λ)K 2 + ηg11a1a1

)
(8)

and

Sφ =
∫

dtdxN
√
g

[
1

2N

(
∂tφ − N 1∇1

)2 − α(∇1φ)2

−V (φ) − βφ∇1a1 − ςφa1∇1φ

]
, (9)
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where α, β, η, and ς are constants. Using the fact that K = 0
and admitting N1 = 0 together with the relativistic limit
β = ς = 0, we are left with the action

S = M2
Pl

2

∫
dtdx

(
−1

2
ηN 2a2

1 + αN 2φ′2 − V (φ)

)
. (10)

From now on, the prime denotes a derivative with respect
the coordinate x . In two dimensions the extra mode ai is
simply a1 = ∂1 ln N = (ln N )′. In Ref. [35], a new set of
BH solutions in two-dimensional HL gravity was found for
action (10). The solutions are described by

N (x) =
√

A

η
x2 − 2C1x + B

ηx
+ C

3ηx2 + 2C2 (11)

and

φ(x) = ln

√
A

η
x2 − 2C1x + B

ηx
+ C

3ηx2 + 2C2 ; (12)

these solutions were obtained by using the quantity

Vφ(x) = A + B

x3 + C

x4 , (13)

the derivative of the scalar potential given as a function of
an implicit scalar field which in turns depends on the spatial
coordinate. This was done because for generalized potentials
it is not always possible to obtain analytical solutions. We
would like to focus our attention on the following two cases:

• First case: This is described by fixing the constants in the
following way: A = B = C = 0, C1 = −M , C2 =
−1/2, and η = 1. In this case Vφ = 0. Therefore, the
metric for this solution can be written as follows:

ds2 = −(2Mx − 1)dt2 + 1

2Mx − 1
dx2, (14)

where the parameter M is related to the lapse function
N . This solution was found for the first time in [36].

• Second Case: Here we fix the constants as A = �, B =
C = 0, C1 = −M , and C2 = − ε

2 ; therefore, we have
Vφ = �, and the solution is given by

ds2 =
[(

�

η

)
x2+ 2Mx− ε

]
dt2 + 1(

�
η

)
x2 + 2Mx − ε

dx2.

(15)

The horizon of the black hole is located at

x± = −ηM

�
±

√
η

�

(
ηM2

�
+ ε

)
. (16)

If we define the variables u = √
�/ηx + √

η/�M and
u+ = √

(η/�)M2 + ε, we get

ds2 = −
(
u2 − u2+

)
dt2 + l2(

u2 − u2+
)du2, (17)

which is a suitable expression to study the quasinor-
mal modes of this black hole, and we have defined
l = (�/η)1/4. In this new coordinate system, the horizon
of the black hole is located at u = u+. The spacetimes,
described by (14) and (15), are conformally flat [37].

3 Quasinormal modes

In order to study the QNMs, we consider a scalar field mini-
mally coupled to gravity propagating in the background of the
two-dimensional HL BH. We consider the following action
for the scalar field:

S[ϕ] =
∫

d2x
√−g

(
−1

2
(∇ϕ)2 − 1

2
m2ϕ2

)
, (18)

where m is the mass of the scalar field. From the variation of
δφ the field equation is given by

�ϕ − m2ϕ = 0, (19)

where � is the D’Alambertian operator, in the following sec-
tions, we will solve the Klein–Gordon Eq. (19) for the space-
times described in the previous section.

3.1 Spacetime metric ds2 = −(2Mx − 1)dt2 + 1
2Mx−1 dx2

3.1.1 Massive scalar field

The case of a massive scalar field perturbing the background
described by the metric (14) was discussed for the first time
in [36,37]. If we use ϕ(t, x) = e−iωtϕ(x) the equation of
motion (19) is represented by

(2Mx − 1)
d2ϕ(x)

dx2 + 2M
dϕ(x)

dx

+ ω2

2Mx−1
ϕ(x) − m2ϕ(x)=0.

(20)

For this metric and massive scalar field, the QNMs were
computed in [38], where the authors claimed that the solution
for the QNMs are completely different from the standard case
where the QNMs have a discrete spectrum. They proposed
a real and continuous spectrum for the QNMs of a scalar
perturbation. In the next section, we look at this situation,
but instead we use the confluent hypergeometric function
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0F1(a, b; x) place of the modified Bessel functions. Now,
using the tortoise coordinate defined by x∗ = 1

2M ln(2Mx −
1) we can write Eq. (20) as a Schroedinger type equation
with effective potential [38]

Veff = m2e2Mx∗ ; (21)

this potential diverges when x∗ → ∞. If we consider the vari-
able z = m

M eMx∗ [36], after some straightforward algebra, the
equation of motion (20) can be written as the Bessel equation,

z2 d2ϕ(z)

dz2 + z
dϕ(z)

dz
+

(
ν2 + z2

)
ϕ(z) = 0, (22)

where ν = iω
M ; this equation can be transformed into the

confluent hypergeometric equation using the change ϕ(z) =
(2i z)νe−2z F(z) [39], and we find

z
d2F(z)

dz2 + (2ν + 1 − 2i z)
dF(z)

dz
+ 2i

(
ν + 1

2

)
F(z) = 0,

(23)

whose solution is given in terms of the confluent hypergeo-
metric, or Kummer, functions

F(z) = A�

(
ν + 1

2
, 2ν + 1; 2i z

)

+B(2i z)−2ν�

(
−ν + 1

2
, 1 − 2ν; 2i z

)
, (24)

where A, B are constants and the number ν in general does
not need to be an integer [39]. In the following we will con-
sider two cases for the ν parameter since we are interested in
exploring all its possible values.

• non-integer ν In order to compute the QNMs, we need
to impose adequate boundary conditions that represent a
purely outgoing wave at infinity and purely ingoing wave
near the horizon of the BH (a condition often used in flat
spacetime). Another situation occurs when the asymp-
totic behavior of the spacetime is not flat, e.g. asymptot-
ically AdS space; in these kinds of spaces, the potential
diverges at infinity, and we can therefore impose ϕ = 0
(Dirichlet boundary condition) or dϕ

dx = 0 (Neumann
boundary condition) at infinity. As we can see from Eq.
(21), in this case we have an asymptotically AdS space.
Therefore, we need to apply boundary conditions to the
QNMs over the general solution of Eq. (23), which is
given by

ϕ(z) = Ae−2z zν�

(
ν + 1

2
, 2ν + 1; 2i z

)

+Be−2z z−ν�

(
−ν + 1

2
, 1 − 2ν; 2i z

)
; (25)

to satisfy the boundary conditions properly, we set A =
0 in order to have only ingoing waves at the horizon
(z = 0). The asymptotic behavior of � at infinity is given
by [40]

�(p, q; z) → �(q)

�(p)
z p−qez, (26)

and therefore our solution at infinity (z → ∞) reads as
follows:

ϕ(z) ∼ Bz−
1
2 e2(i−1)z �(1 − 2ν)

�(−ν + 1/2)
. (27)

We can see that the scalar field vanishes as z → ∞,
and this confirms the absence of QNMs for this HL BH
under scalar perturbation. A similar situation was found
in Ref. [18] for the QNMs of the extremal BTZ BH.
The conclusion of this case was discussed in [38], and
it represents a continuous spectrum. Additionally, if we
impose the Neumann boundary condition, we obtain a
similar asymptotic vanishing behavior for the flux

Jr (z) = ϕ∗(z)dϕ(z)

dz
− ϕ(z)

dϕ∗(z)
dz

. (28)

In light of the meaning of QNMs, for any BH perturba-
tion its geometry produces damped oscillations. This is
the so-called ringing in BHs. It is well known that the fre-
quencies of these oscillations and their damping periods
are completely fixed by the BH properties, and, as such,
are independent of the nature of the initial perturbation.
In Ref. [38] it was shown that for scalar perturbations
the oscillations have a continuous spectrum and are not
discrete, as would be expected for a BH. This result is
very strange and in our opinion, devoid of physical mean-
ing; this is because it is well known that oscillations of
QNMs are similar to normal modes of a closed system. In
the next section, we consider the second solution of the
confluent hypergeometric equation and show that QNM
oscillations have a discrete spectrum.

• ν integer

Now we shall consider the case where ν is an integer number.
For ν integer, the solution of Eq. (23) changes. In Eq. (25),
the function �(p, q; z) of the second term must be replaced
by [41]

W (α, γ ; z) = M(α, γ ; z) (ln z + ψ(1 − α) − ψ(γ ) + C)

+
∞∑
n=1

�(n + α)�(γ )Bnzn

�(α)�(n + γ )n!

+(−1)γ
∞∑
n=1

�(γ )�n + α − γ + 1�(γ − n − 1)(−1)n

�(α)n!zγ−n−1 ,

123



Eur. Phys. J. C (2016) 76 :75 Page 5 of 8 75

where

ψ(α) = �′(α)

�(α)
(29)

represents the digamma function, C = 0.577216 . . . is the
Euler constant, and

Bn =
(

1

α
+ 1

α + 1
+ · · · + 1

α + n − 1

)

−
(

1

γ
+ 1

γ + 1
+ · · · + 1

γ + n − 1

)
. (30)

Then we have

ϕ(z) = Ae−2z zν�

(
ν + 1

2
, 2ν + 1; 2i z

)

+Be−2z z−νW (p, q; z). (31)

In order to have only ingoing waves at the horizon (z = 0),
we set A = 0. The asymptotic behavior of the W -function at
infinity is given by

W (p, q; y) → π cot(πp)
�(q)

�(p)
y p−qey . (32)

Therefore, the general solution at infinity reads as follows:

ϕ(z)∼Bπ cot

[
−π

(
ν+ 1

2

)]
z
−

(
4ν+ 3

2

)
�(2ν+1)

�(−ν−1/2)
e2(i−1)z .

(33)

If we consider that ν + 1/2 = 2n+1
2 , where n is an integer

number, we are able to fulfill the Dirichlet boundary condi-
tion at infinity. From this result we can obtain the frequency
of the QNMs as

ω = −inM, (34)

and using the Neumann condition for a vanishing flux at
infinity, we obtain the same result for the QNMs as expressed
in Eq. (34).

3.1.2 Massless case

For the metric (14), when m = 0, we use the standard defi-
nition for QNMs, the Klein–Gordon Eq. (19) which reads

(2Mx − 1)
d2ϕ(x)

dx2 + 2M
dϕ(x)

dx
+ ω2

2Mx − 1
ϕ(x) = 0,

(35)

where we have assumed φ(t, x) = ϕ(x)e−iωt . If we define
the quantity x+ = 1/2M and the change of variable z =
1 − x+/x we can write Eq. (35) as follows:

(1 − z)2 d2ϕ

dz2 − 2(1 − z)
dϕ

dz
+ (1 − z)

z

dϕ

dz
+

(
ω̃

z

)2

ϕ = 0,

(36)

where ω̃ = x+ω. Note that in the new coordinate z, the
horizon of the BH is located at z = 0 and infinity at z = 1.
With the change ϕ(z) = zα(1 − z)βF(z), the last equation
reduces to the hypergeometric differential equation for the
function F(z), that is,

z(1− z)F ′′(z)+ (c− (a+b+1)z)F ′(z)−abF(z) = 0.

(37)

In this case the coefficients a, b, and c are given by the rela-
tions

c = 2α + 1, (38)

a + b = 2α + 2β + 1, (39)

ab = α(α − 1) + β(β − 1) + 2α + 2β + 2αβ, (40)

providing the expressions for the coefficients

a = α + β, (41)

b = 1 + α + β, (42)

and for the exponents we obtain

α = β = −i x+ω. (43)

Without loss of generality, we have chosen the negative signs
for the exponents. The solution of the radial equation reads

F(z) = C1F1(a, b, c; z)
+C2z

1−cF1(a − c + 1, b − c + 1, 2 − c; z), (44)

where C1 and C2 are arbitrary constants and F1(a, b, c; z) is
the hypergeometric function. The solution for ϕ(z) is given
by

ϕ(z) = C1z
−i x+ω(1 − z)−i x+ωF1(a, b, c; z)

+C2z
ix+ω(1−z)−i x+ωF1(a − c+1, b − c+1, 2− c; z).

(45)

In the neighborhood of the horizon z = 0, the function ϕ(z)
behaves as

ϕ(z) = C1e
−i x+ω ln z + C2e

ix+ω ln z, (46)

for the scalar field φ one gets

φ ∼ C1e
−iω(t+x+ ln z) + C2e

−iω(t−x+ ln z). (47)

The first term in the last equation corresponds to an ingoing
wave at the BH, while the second one represents an outgoing
wave. In order to compute the QNMs, we must impose the
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requirement that there exist only ingoing waves at the horizon
of the BH; then C2 = 0. The radial solution at the horizon is
given by

ϕ(z) = C1z
−i x+ω(1 − z)−i x+ωF1(a, b, c; z). (48)

In order to implement the boundary conditions at infinity,
z = 1, we use the linear transformation z → 1 − z, and then
we apply Kummer’s formula [42] for the hypergeometric
function,

ϕ(z) = C1z
−i x+ω(1 − z)−i x+ω �(c)�(c − a − b)

�(c − a)�(c − b)
×F1(a, b; a + b − c + 1; 1 − z)

+C1z
−i x+ω(1 − z)i x+ω �(c)�(a + b − c)

�(a)�(b)
×F1(c − a, c − b; c − a − b + 1; 1 − z). (49)

This solution near infinity, z = 1, takes the form

ϕ(z) = C1(1 − z)−i x+ω �(c)�(c − a − b)

�(c − a)�(c − b)

+C1(1 − z)i x+ω �(c)�(a + b − c)

�(a)�(b)
, (50)

and the scalar field solution near infinity behaves as

φ ∼ C1e
−iω(t+x+ ln(1−z)) �(c)�(c − a − b)

�(c − a)�(c − b)

+ C1e
−iω(t−x+ ln(1−z)) �(c)�(a + b − c)

�(a)�(b)
. (51)

To compute the QNMs, we also need to impose the boundary
conditions on the solution of the radial equation at infinity,
meaning that only purely outgoing waves are allowed there.
Therefore, the second term in the last equation must vanish;
this is fulfilled, at the poles of �(a) or �(b), where the scalar
field satisfies the considered boundary condition only when

a = −n or b = −n, (52)

where n = 0, 1, 2, . . .. These conditions determine the form
of the quasinormal modes,

ω = − i

2x+
(n + 1) . (53)

3.2 Spacetime metric ds2 =
((

�
η

)
x2 + 2Mx − ε

)
dt2

+ 1(
�
η

)
x2+2Mx−ε

dx2

For the second metric given in Eq. (17), we have a spacetime
that is not asymptotically flat; thus, as mentioned before, we
use a definition for the QNMs different from the one used in
an asymptotically flat spacetime. The formal treatment for
this kind of spacetime is presented in [7], where one defined

QNMs to be modes with only ingoing waves near the horizon
and vanishing at infinity. Thus, the Klein–Gordon equation
(19) can be written as

− 1

u2 − u2+
∂t∂tφ+ 2

l2
u∂uφ+ 1

l2
(u2−u2+)∂u∂uφ−m2φ = 0,

(54)

now, we will consider a solution of type φ(t, u) = ϕ(u)e−iωt

and the definition l = (λ/η)1/4, for which the radial equation
can be written as follows:

1

l2
(u2−u2+)ϕ′′(u)+ 2

l2
uϕ′(u)+

(
ω2

u2 − u2+
− m2

)
ϕ(u)=0,

(55)

where the prime denotes derivatives with respect the variable
u. If we define the change of variable z = 1 − u2+/u2 [43]
and follow the procedure stated for the massless case, the Eq.
(55) transforms into the hypergeometric differential Eq. (37)
for the function F(z), where the coefficients a, b, c are given
by the following relations:

a + b = 2α + 2β + 1

2
, (56)

ab = α(α − 1) + β(β − 1) + 2αβ + 3

2
α + 3

2
β, (57)

c = 2α + 1, (58)

which gives

a = α + β, (59)

b = α + β + 1

2
, (60)

and for the exponents α and β

α = −i
l

u+
ω, (61)

β = 1

4

(
1 −

√
1 + 4m2l2

)
, (62)

where, without loss of generality, we have chosen the nega-
tive signs. The solution of the radial equation reads

F(z) = C1F1(a, b, c; z)
+C2z

1−cF1(a − c + 1, b − c + 1, 2 − c; z), (63)

where C1 and C2 are arbitrary constants and F1(a, b, c; z) is
the hypergeometric function. Since ϕ(z) = zα(1 − z)βF(z),
the behavior of the scalar field near the horizon (z = 0) is
given by

φ ∼ C1e
−iω

(
t+ l

u+ ln z
)

+ C2e
−iω

(
t− l

u+ ln z
)
. (64)

123



Eur. Phys. J. C (2016) 76 :75 Page 7 of 8 75

Then the scalar field φ is purely ingoing at the horizon for
C2 = 0, and therefore the radial solution is

ϕ(z) = C1z
α(1 − z)βF1(a, b, c; z). (65)

In order to implement boundary conditions at infinity (z = 1),
we use the linear transformation z → 1 − z for the hyperge-
ometric function and we obtain

ϕ(z) = C1z
α(1 − z)β

�(c)�(c − a − b)

�(c − a)�(c − b)
×F1(a, b; a + b − c + 1; 1 − z)

+C1z
α(1 − z)c−a−b+β �(c)�(a + b − c)

�(a)�(b)
×F1(c − a, c − b; c − a − b + 1; 1 − z). (66)

Using the condition of the flux

F ∼ ϕ∗(z)∂zϕ(z) − ϕ(z)∂zϕ
∗(z),

∼ −2 iC2
1
lω

u+

(
(1 − z)

1/2
(

1−√
1+4m2l2

)
�1

2

+ 2 �1 �2
√

1 − z + (1 − z)
1/2

(
1+√

1+4m2l2
)
�2

2
)

,

∼ −2 iC2
1
lω

u+

(
(1 − z)2β �1

2 + 2 �1 �2
√

1 − z

+ (1 − z)1−2β �2
2
)
, (67)

where

�1 = �(c)�(c − a − b)

�(c − a)�(c − b)
, (68)

�2 = �(c)�(a + b − c)

�(a)�(b)
, (69)

then the flux (67) has a leading term (1−z)1−2β and vanishes
at infinity only if we impose the requirement that

a = −n or b = −n, (70)

where n = 0, 1, 2, 3 . . .. These conditions lead to the deter-
mination of the quasinormal modes as follows:

ω = −i
u+
4l

[
4n + 3 −

√
1 + 4m2l2

]
. (71)

Our results are represented in Fig. 1, where it is one sees that,
for a scalar field with large mass, the BH becomes unstable,
while for lower values of the mass, or m = 0, this kind of
black hole is stable.

4 Final remarks

This article was devoted to studying the response of two
1+1 BHs under scalar perturbations. We focused on the BH
solutions found in Ref. [35] in the context of HL gravity. The

Fig. 1 In this plot we depict the behavior of the QNMs expressed in
Eq. (71), with some parameter values, l = 1 and u+ = √

5. We can see
that the BH becomes unstable for large values of the mass m

BHs studied in the present paper also correspond to solutions
arising from standard GR plus the dilaton field; therefore,
the physical properties of these BHs can be used in different
contexts. We noted that in studying the QNM oscillations of
the metric (14) with massive scalar field perturbations it is
necessary to look at the solution in terms of the confluent
hypergeometric, or Kummer, functions, and, as a result, we
found two different cases, in one case we have absent QNMs
under scalar perturbations and in the second case we have
a discrete spectrum. These results are different from those
obtained in Ref. [38], where the QNMs are a continuous
spectrum. Also, we computed the frequencies of the massless
scalar field as sources of perturbations, and again we obtained
a discrete spectrum. From these results, we conclude that this
BH is stable under massive and massless scalar perturbations.

On the other hand, for spacetimes in which the cosmo-
logical constant does not vanish, we found, in addition to
the exact quasinormal frequencies, that when the mass of the
scalar field is large, the geometry becomes unstable. Finally,
we would like to note that the frequencies found in this arti-
cle are purely imaginary, and as such they represent pure
damping behavior.
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