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Abstract

We propose a phonon-assisted tunnelling model for explanation of conductivity
dependence on temperature and temperature-dependent I-V characteristics in
deoxyribonucleic acid (DNA) molecules. The capability of this model for explanation of
conductivity peculiarities in DNA is illustrated by comparison of the temperature
dependent I-V data extracted from some articles with tunnelling rate dependences on
temperature and field strength computed according to the phonon-assisted tunnelling
theory.

PACS Codes: 87.15.-v, 71.38.-k, 73.40.Gk

Introduction
Conductance properties of DNA have recently attracted a lively interest for theoreticians as well

as experimenters [1]. Understanding the charge carriers transfer mechanism along DNA double

helix is important for possible applications of DNA molecules in nanoelectronic circuit technol-

ogy [1-6].

Direct conductivity measurements have shown a very wide range of conducting properties

ranging from no conduction [5,7,8] to a good linear conductor [2,9,10], while in other experi-

ments semiconducting conductivity behaviour emerges [3,6,11-14].

The wide range of charge transport behaviour seems to arise from different experimental con-

ditions in which the measurements are carried out. These include the nature of the devices used

to measure the conductivity, the sequence and length of the DNA, the type of contacts, the envi-

ronment in different experiments, etc., all can greatly effects the conductivity of the DNA mole-

cules. For instance, Kasumov et al. [4] have shown that strongly deformed DNA molecules
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deposited on a substrate, whose thickness is less than half the native thickness of the molecule,

are insulating, whereas molecules keeping their native thickness are conducting down to very low

temperature with a non-ohmic behaviour characteristics of a one dimensional (1D) conductor.

Extensive experimental and theoretical work over the past decade has led to substantial clari-

fication of charge transport mechanisms in DNA. The dominant mechanisms appear to be short-

range quantum mechanical tunnelling [14-18] or long-range thermally activated hopping

[10,13,19-24]. But these mechanisms are not capable to explain all the field- and temperature-

behaviour of experimental data associated with conduction of the DNA molecules. Indeed, the

hopping models confronted with difficulties in explaining the observed strong conductivity

dependence on the temperature along λ-DNA double helix at high temperatures and a very week

dependence at low temperatures [9]. The tunnelling mechanism was excluded in the case of tem-

perature-dependent results [9,11].

We affirm that in many cases the temperature-dependent conductivity of DNA molecules

could be explained by the quantum mechanical tunnelling theories in which the impact of pho-

nons on tunnelling rate is included. In the event, "pure" tunnelling can be observed at low tem-

peratures when the vibrations modes of the molecule are frozen. At moderate temperatures the

input of phonon energy to the process of tunnelling must be taken into account and contempo-

rary phonon-assisted tunnelling theories (PhAT) [25-27] realise this.

Recently, it has been shown that the PhAT describes well not only the nonlinear I-V curves,

but also the temperature-dependent conductivity in conducting polymers [28,29]. Therefore, we

invoke the PhAT theory to describe some the temperature-dependent experimental data on elec-

trical transport through DNA molecules presented by other authors.

Model and comparison with experimental data
We suggest that the thermoactivated current through the DNA molecules is caused by the charge

carriers released from localised states located between HOMO and LUMO levels of DNA ones

[11]. In the dc case, the said levels are continuously filled from the electrode. Assuming that the

electrons are released from these states due to phonon-assisted tunnelling, we will compare the

current (the same as the conductance) dependence on the temperature and field strength with

the tunnelling rate dependence on these parameters, computed using the PhAT theory. For this

purpose we explore the equation (18) in [27] derived by Makram-Ebeid and Lannoo for the pho-

non-assisted tunnelling of the electrons from the impurity centre. Taking into consideration the

fact that this theory has been evaluated using the Condon approximation, it is more suitable for

the molecular structures than other ones. For the tunnelling rate dependence on field strength E

and temperature T this theory gives:
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where

Here po = εT/ħω, ħω is the phonon energy, εT is the centre depth, IP is the modified Bessel func-

tion and S is the Huang-Rhys coupling constant.

In the first instance, the comparison of the I-V data measured in the temperature range from

43 K to 294 K for poly(dA)-poly(dT) DNA molecules (from Fig 2a in [11]) with theoretical

W(E,T) dependences is presented in Fig. 1. The W(E,T) dependences were calculated using centre

depth εT to be 0.21 eV (the value is slightly higher than the value of the activation energy esti-

mated in Table 1, which is offered in Ref. [11]), and for the electron effective mass the value of
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Comparison of I – V dependences in poly(dA)-poly(dT) DNA molecules extracted from figure 2 (a) in [11] (sym-bols) with theoretical W (E,T) against E dependences (solid curves) calculated for the same T as in the experiment (from top to bottom) using the following parameters: εT = 0.21 eV,m* = 1.5 me, ω = 43 meV and S = 12Figure 1
Comparison of I – V dependences in poly(dA)-poly(dT) DNA molecules extracted from figure 2(a) in [11] (sym-
bols) with theoretical W (E,T) against E dependences (solid curves) calculated for the same T as in the experiment 
(from top to bottom) using the following parameters: εT = 0.21 eV,m* = 1.5 me, ħω = 43 meV and S = 12.
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1.5 me [30] was used. For the phonon energy, the value of 43 meV was selected. This value is sim-

ilar to the value of 348 cm-1 used for the calculation of the DNA IR active modes in [31]. The cou-

pling constant S was chosen in order to get the best fit of the experimental data with the

calculated dependences on the assumption that the field strength for tunnelling is proportional

to the applied voltage. As is seen in Fig. 1, the theoretical W(E,T) dependences fit well with the

experimental data for entire range of the measured temperatures. The field strength for theoreti-

cal curves ranges from 0.16 MV/m to 500 MV/m, which is close to the field strength estimated

from the sample thickness (about 20 nm).

The judgment on the carriers transfer mechanism is often carried out considering the conduct-

ance dependence on the temperature. The conductance measured by Yoo et al. for poly(dA)-

poly(dT) was strongly temperature-dependent around room temperature and slightly tempera-

ture-dependent at low temperatures [11]. The authors explain such dependence within small

polaron hopping model. We note that the W (E,T) versus E characteristics at temperatures below

100 K are weakly dependent on the temperature, and this feature is in excellent agreement with

the experimental observation. This circumstance is also evident in Fig. 2 (solid lines) from the

plot of ln W (E,T) versus 1/T calculated using the same parameters as in Fig. 1 and for E = 135

MV/m. The symbols in Fig. 2 represent the experimental data extracted from figure 2(c) in [11].

One can see that the theoretical dependences of the phonon-assisted tunnelling rate are in good

agreement with the experimental data.

Tran et al. [9] using the resonant cavity technique studied conductivity and its temperature

dependence along the λ-DNA double helix at microwave frequencies. They observed similar

Experimental σ (T) against 1/T dependence for poly(dA)-poly(dT) DNA molecules extracted from figure 2 (c) in [11] (symbols) fitted to W (E,T) against 1/T dependence, calculated using the same parameters as in Fig. 1Figure 2
Experimental σ (T) against 1/T dependence for poly(dA)-poly(dT) DNA molecules extracted from figure 2 (c) in 
[11] (symbols) fitted to W (E,T) against 1/T dependence, calculated using the same parameters as in Fig. 1.
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behaviour of the conductivity on the temperature as in [11], i.e. a strong temperature dependence

of conductivity at high temperatures, whereas at low temperatures the conductivity in λ-DNA

exhibits a very weak temperature dependence. They explain the temperature-dependent conduc-

tivity suggesting two transport mechanisms, i.e. ionic conduction at low temperatures and tem-

perature driven hopping transport processes at high temperatures. The underlying physics of the

weak temperature dependence at low temperatures was not understood. The calculation in [32]

has also shown that transport through DNA does not have a purely hopping character.

In Fig. 3 the experimental data extracted from Fig. 3 in [9] for λ-DNA (symbols) fitted to the

PhAT rate dependences on 1/T for the λ-DNA in buffer (solid curve) and for the dray λ-DNA

(dashed curve), are depicted. In this case the theoretical W(T) dependences reflect also the exper-

imental data well.

Conclusion
In conclusion, the PhAT model is able to explain the peculiarities of field- and temperature-

dependent current observed in DNA molecules in a wide region of the electric field strength. A

strong temperature dependence of conductivity observed at high temperatures and a very weak

temperature dependence at low temperatures of DNA molecules is comprehensible in the frame-

work of the PhAT model. It is worth to note that the W(E,T) dependences at both low and high

temperatures are calculated using the same set of parameters, i.e. εT, m*, T, E, ħω and S. From

these ones only the Huang-Rhys coupling constant S is the fitting parameter estimated from the

Experimental σ (T) against 1/T dependences for the λ-DNA in buffer and for the dray λ-DNA extracted from figure 3 in [9] (symbols) fitted to theoretical W (E,T) against 1/T dependences calculated for the following parameters: εT = 0.21 eV, E = 290 MV/m, S = 12 (solid line) and for parameters εT = 0.17 eV, E = 315 MV/m, S = 8 (dashed line)Figure 3
Experimental σ (T) against 1/T dependences for the λ-DNA in buffer and for the dray λ-DNA extracted from figure 
3 in [9] (symbols) fitted to theoretical W (E,T) against 1/T dependences calculated for the following parameters: εT = 
0.21 eV, E = 290 MV/m, S = 12 (solid line) and for parameters εT = 0.17 eV, E = 315 MV/m, S = 8 (dashed line).
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best fitting of the experimental data and theory. Other parameters are known from experiments

or from literary sources. An advantage of the PhAT model over the other models used is the pos-

sibility to describe the behaviour of the I-V data measured at different temperatures with the same

set of parameters characterizing the material.

Thus, the PhAT mechanism, in some cases, could be dominant in the conductance of the DNA

molecules.
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