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Abstract Motivated by a problem in complex dynamics, we examine the block structure
of the natural action of iterated monodromy groups on the tree of preimages of a generic
point. We show that in many cases, including when the polynomial has prime power degree,
there are no large blocks other than those arising naturally from the tree structure. However,
using a method of construction based on real graphs of polynomials, we exhibit a non-
trivial example of a degree 6 polynomial failing to have this property. This example settles
a problem raised in a recent paper of the second author regarding constant weighted sums
of polynomials in the complex plane. We also show that degree 6 is exceptional in another
regard, as it is the lowest degree for which the monodromy group of a polynomial is not
determined by the combinatorics of the post-critical set. These results give new applications
of iterated monodromy groups to complex dynamics.
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1 Introduction

Let G be a subgroup of the permutation group of a finite set S. A subset E ⊂ S is called
a G-block if for every permutation σ ∈ G we have that σ(E) ∩ E is equal to either E or
∅. Motivated by a problem in a recent paper [9] of the second author we study G-blocks
for monodromy groups of polynomial iterates. These groups are natural finite quotients of
the iterated monodromy group of the given polynomial. The latter have attracted attention
mainly for their group-theoretic interest (see e.g. [1,2,4,6]), and to a lesser extent for the light
they shed on the dynamics of the given polynomial (e.g. [5, Chapter 6]). The results of the
present paper give a new application of iterated monodromy groups to complex dynamics,
as well as results on their structure. We remark that little remains known in general about
iterated monodromy groups; see [7] for some general discussion and open questions.

The monodromy group MGn( f ) of the nth iterate f ◦n of a complex polynomial f acts
by definition on the set Rn of nth preimages of a generic point. Indeed, this action extends
to one on the tree of preimages of all iterates up to n. The primary goal of the present paper
is to show that for many, indeed in some sense most, f there are no large MGn( f )-blocks
other than those coming from the tree structure. Here is a special case of our main results in
this vein (Theorems 4.1, 4.3):

Theorem 1.1 Let f ∈ C[x] have degree d ≥ 2, f ◦n be the nth iterate of f , and let the
monodromy group MGn( f ) of f ◦n act naturally on set Rn of nth preimages of a generic
point. Suppose that either d is prime or MG( f ) acts primitively (i.e. without non-trivial
blocks) on R1. If E ⊆ Rn is any set containing a, b such that f ◦n−1(a) 	= f ◦n−1(b), then
the smallest MGn( f )-block of Rn containing E is Rn itself.

We also prove a result on the structure of MGn( f )-blocks in the case where d is a power of
a prime (Theorem 4.1).

Our other primary goal is to find polynomials f whose monodromy groups have excep-
tional properties, such as Rn containing small MGn( f )-blocks not coming from the tree
structure. To do this, we give a method for constructing examples of critically finite f with
specified critical portrait (and often even specified monodromy groups of all iterates). The
method relies on building real graphs with certain properties, and gives polynomials with
real coefficients. For instance, in Theorem 4.6 we give a polynomial h of degree 6 such that
R2 contains an MG2( f )-block of size 4 containing a and b with h(a) 	= h(b).

A more detailed outline of the paper is as follows. In Sect. 2 we discuss how the
monodromy group of a polynomial f depends on the critical portrait of f , that is, the orbits
c → f (c) → f ◦2(c) → · · · of the critical points of f . There we only look at the monodromy
group of the first iterate and we show (Theorem 2.1, 2.2) that six is the smallest degree for
which the critical portrait of a polynomial does not determine the monodromy group up to
conjugacy. In fact we give two explicit polynomials of degree 6 with real coefficients and
identical critical orbit but whose monodromy groups are not isomorphic. The method of
construction is used also in Sect. 4. In Sect. 3 we fix notation and give a few definitions.

In Sect. 4 we prove the main results of this paper. We first show (Theorem 4.1) that if
f is a polynomial whose degree is prime then the only MGn( f )-blocks are branches, and
when the degree of f is a power of a prime then the only MGn( f )-blocks are unions of
equal-height branches, contained in a branch of height one more. Motivated by this result
we call such blocks basic blocks; see Definition 3.1. We then show (Theorem 4.3) that if
MG1( f ) acts primitively on R1, then any MGn( f )-block containing elements that map to
distinct members of R1 must be all of Rn . We apply this to the case where f is a conservative
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polynomial, i.e. all critical points are also fixed points, and f has at least two critical points
(Corollary 4.4).

Then we show (Theorem 4.6) that there exist polynomials of non-prime-power degree for
which there are blocks that are not basic blocks. In fact, we give an explicit example of a
degree 6 polynomial which has MG2( f )-blocks that are non-basic. This polynomial is quite
similar to the examples used in the proof of Theorem 2.2.

In general it can be quite complicated to compute (iterated) monodromy groups of polyno-
mials. However the polynomial examples presented in this paper have two properties in com-
mon that make it much easier to compute their monodromy groups. Firstly, the post-critical
sets are finite, which means that only a finite number of generators have to be considered.
Secondly, the post-critical sets are real, which means that the action of the generators can be
determined by looking only at the real graph of the polynomials.

Let us finish the introduction by discussing the motivation for this paper. In [9] the fol-
lowing definition was introduced:

Definition 1.2 A polynomial f has a constant weighted sum of iterates (c.w.s.i.) near z ∈ C

if there exist weights a0, a1, . . . ∈ C and a constant c ∈ C such that the finite sums

N∑

n=0

an f ◦n

converge uniformly to the constant function c in a neighborhood of z as N → ∞.

The requirement that the maps
∑N

n=0 an f ◦n converge to the same constant for any point
in the neighborhood of z is very strong and one would not expect convergence to a constant
to be possible for many values of z. The only cases in which it is known that f has a constant
weighted sum of iterates near z is when f is affine or when z lies in a Siegel disc of f . Indeed,
it was shown in [9] that a generic polynomial f of degree at least 2 has a c.w.s.i. near z if
and only if z lies in a Siegel disc of f .

The proof of this result relies on the fact that the monodromy groups of the iterates of
a generic polynomial (a polynomial whose iterates f ◦n each have the maximal number of
distinct critical values) are equal to the entire group of tree automorphisms. In general the
monodromy groups of the iterates may be much smaller but in many cases the monodromy
groups can still be used to prove the same result. In fact, if the following question can be
answered affirmatively then it still follows that a polynomial of degree at least 2 has a c.w.s.i
near z if and only if z lies in a Siegel disc:

Question 1.3 Let f be a polynomial of degree at least 2 and let V be a bounded Fatou com-
ponent of f that is eventually mapped onto a periodic (super-) attracting basin or attracting
petal. Let N ∈ N.

In the case of an attracting basin or attracting petal, let p ∈ F◦N (V ) have d N distinct pre-
images and define the sets S = f ◦−N ({p}) and E = S ∩ V . In the case of a super-attracting
basin, let U ⊂ f ◦N (V ) be an arbitrarily small neighborhood of the super-attracting periodic
point in f ◦N (V ). Let p ∈ U again have d N distinct pre-images and define S = f ◦−N (p)

as before. Now E ⊂ S contains only points that lie in one chosen connected component of
f ◦−N (U ) in V .

Is it possible to choose N such that the smallest MG( f ◦N )-block of S that contains E
has more than d N−1 elements?

The orbit of a periodic Fatou component that is a (super-) attracting basin or an attracting
petal must always contain a critical point. The integer N can be chosen such that f N (V )
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contains the corresponding critical value. As was explained in [9], we may assume that the
neighborhood U of z in Definition 1.2 is large enough so that f ◦N (U ) contains the critical
value. It follows that when p is chosen close enough to this critical value, the set E will
contain two points e1, e2 with the property that f ◦N−1(e1) 	= f ◦N−1(e2). In the terminology
of Sect. 3, the points e1 and e2 belong to different major branches.

Theorems 4.1 and 4.3 say that we can answer Question 1.3 affirmatively when the degree
of f is a power of a prime number or when MG( f ) acts primitively on the roots of f , but
negatively for certain polynomials of degree 6. We obtain the following corollary.

Corollary 1.4 Suppose that f is a polynomial with complex coefficients, and that either f
has degree pk with p prime, or MG( f ) acts primitively on the f -preimages of a generic
point. Then f has a constant weighted sum of iterates near z ∈ C if and only if z is eventually
mapped into a Siegel disc of f .

The negative answer to Question 1.3 only closes off one avenue of proof when f has
degree 6. It does not imply that it is possible to have a constant weighted sum of iterates
when z does not lie in a Siegel disc. Whether this can occur for a polynomial of degree at
least 2 is still open.

2 Combinatorics of the post-critical set

Let f be a polynomial of degree d . Denote by C the set of critical points of f , and V the
set of critical values of f , that is, V = { f (c) : c ∈ C}. Then f : C \ C → C \ V is a
covering, and if p ∈ C has d distinct inverse images, then every closed loop at p contained
in C\ V induces a permutation on the inverse images of p. The subgroup of Sd thus obtained
is independent of the point p and is called the monodromy group of f , denoted MG( f ). Let
f ◦n denote the nth iterate of f (i.e. the n-fold composition of f with itself). We denote by
MGn( f ) the monodromy group of f ◦n . It is not a general subgroup of Sdn , as it must respect
the natural tree structure on preimages of p under f (see Sect. 3 for details).

The critical portrait (namely the number and multiplicity of the critical values) of a poly-
nomial f gives us a large amount of information about the monodromy groups of f ◦n . For
example, let v be a critical value of a polynomial f of degree d , and denote the inverse images
of v by z1, . . . zn . A small enough neighborhood U of v will have n disconnected inverse
images V1, . . . , Vn with z j ∈ v j . Let γ ∈ U be a closed loop at p ∈ U given by a circle
centered at v. Then the inverse images of γ lie in the sets V1, . . . , Vn . If z j is a critical point
of f with order k then γ induces a full cycle on the k preimages of p in Vj .

If γ is a closed loop given by a circle centered at the origin of large enough radius then
it induces a full cycle. Indeed, if the radius of γ is larger than the modulus of all the (finite)
critical points then we can view it as a loop around the point at infinity, a critical point of
order equal to the degree of the map.

Theorem 2.1 The monodromy group of a polynomial of degree at most 5 is completely
determined by its critical portrait, that is, the number and multiplicity of its critical values.

Proof This is merely a case of checking all possibilities. We will do so for degree 5 and leave
the smaller degrees to the reader.

Since the degree is prime and MG( f ) is transitive, it must be a primitive subgroup of
S5. It is well known (see e.g. [11]) that if G is a primitive subgroup of Sn that contains a
transposition, then G = Sn , while if G contains a 3-cycle, then G contains An . Thus if f has
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a critical value that is the image of a single critical point of multiplicity 2, then MG( f ) = Sn .
Otherwise, by the Riemann-Hurwitz formula, f must have either one or two critical values.
In the former case, MG( f ) has only one generator and thus MG( f ) ∼= C5. In the latter
case, each critical value must either be the image of one critical point of multiplicity 3 or two
critical points of multiplicity 2. Thus MG( f ) may be generated by (i) two 3-cycles, (ii) one
3-cycle and one element of type (2, 2) or (iii) two elements of type (2, 2). In all three cases
we have MG( f ) ⊆ A5, and for (i) and (ii) we have that MG( f ) contains a 3-cycle, and so
MG( f ) = A5. In case (iii) after conjugation we may assume the generators are (12)(34)

and (23)(45) and we obtain MG( f ) ∼= D5. �
In degree 6 the situation is more complicated:

Theorem 2.2 There exist polynomials f, g of degree 6 with identical critical portraits but
different monodromy groups. Moreover, one can choose f and g to have real coefficients.

Remark 2.3 One can provide a short proof of Theorem 2.2 using the Riemann Existence
Theorem (see [3] for an exposition), which guarantees that there is f ∈ C[z] of degree 6
with MG( f ) = <(23)(45), (34), (12)(56)> 	= S6, and g ∈ C[z] of degree 6, with identical
critical portrait to f and MG(g) = <(23)(45), (12), (34)(56)> = S6. However, the Rie-
mann Existence Theorem is non-constructive, and for our purposes it will be advantageous
to have an explicit method to find such f and g, since in Theorem 4.6 we need to construct
a polynomial whose second iterate has prescribed monodromy. In addition, the Riemann
Existence Theorem does not guarantee that f and g can be chosen to have real coefficients.

Proof We construct f and g explicitly. Both have 5 distinct critical points that all lie on the
real line. By choosing our base point also on the real line and choosing our generator loops
close to the real line we can use the real graphs of f and g to determine the monodromy
groups. For both f and g, two critical points map to a third critical point, and this third critical
point gets mapped to a fourth critical point which is a fixed point. The fifth critical point is
also fixed. Therefore the critical portraits of f and g are identical.

We now describe f . Its critical points are 0, c1, 1, c2 and 2, where 0 < c1 < 1 < c2 <

2, f (c1) = f (c2) = 2, f (0) = f (2) = 0 and f (1) = 1. This guarantees that f has the
critical portrait described above. See Fig. 1 for the real graph of f . The existence of f can be
proved by checking the degrees of freedom, but in fact a formula for f can easily be found
as follows. Start with an even polynomial h that has critical points at 0,±1 and ±α, where

h(0) = 0 and h(1) = −h(α) (taking α =
√

(2 + √
3) works). The function f is then given

by f (z) = 1 + h(α(z−1))
h(1)

; note that c1 = 1 − 1/α, c2 = 1 + 1/α.
The critical points of g are c1, c2, 0, c3 and 1, where c1 < c2 < 0 < c3 < 1. Now we

require that g(c1) = c1, g(c2) = g(c3) = 1 and g(1) = g(0) = 0. Again the existence of g
can be proved by counting degrees of freedom.

Note that f is the composition of two polynomials of degree 3 and 2, respectively. There-
fore, one immediately sees that the monodromy group of f must have three blocks with
2 elements each. Once we determine the monodromy group of g, which has no non-trivial
blocks, this will be enough to prove the Theorem. However, since the computations of MG( f )

and MG(g) are very similar, we will discuss them both.
To determine the monodromy group of f we choose a base point 1 < p < 2 and we

denote its (real) preimages by x1 < · · · < x6. The critical values of f are 0, 1, and 2, and we
define the corresponding generating loops γ0, γ1, and γ2 as follows (see Fig. 1). The loop γ2

moves along the real axis from p to 2− ε, for ε > 0 very small, then follows a full clockwise
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p x3 x6
x5x4x1 x2

γ0 γ1 γ2

p0 1 2

Fig. 1 Real graph of f and generators of the corresponding fundamental group

circle centered at 2 and goes back to p along the real axis. When following the pre-images
of this loop the points x2 and x3 first move very close to c1 (thus moving upwards on the real
graph of f ), then switch and move back to x3 and x2, respectively. Similarly, x4 and x5 go
very close to c2, then switch and move back to respectively x5 and x4. The preimages of γ2

starting at x1 and x6 form closed loops. Hence assigning to xi the number i , we have that γ2

induces (23)(45) ∈ S6.
The loop γ1 is similar: starting at p follow the real axis to 1 + ε, then loop around 1 and

follow the real axis back to p. By checking the real graph of f one sees that γ1 induces (34).
Finally, the loop γ0 starts at p, follows the real axis to 1 + ε, follows a small semi-circle
centered at 1 and contained in the lower half plane, then follows the real axis again until very
close to 0, follows a full circle around 0 and then takes the same path back to p. The graph
of f shows that γ0 induces (12)(56).

Thus, the monodromy group of f is generated by the elements (23)(45), (34), and
(12)(56). Notice that the sets E1 = {1, 6}, E2 = {2, 5} and E3 = {3, 4} form a parti-
tion of 1, 2, 3, 4, 5, 6 that is invariant under the action γ0, γ1, and γ2, and hence for all of
MG( f ). In other words E1, E2 and E3 are MG( f )-blocks and MG( f ) 	= S6.

For the monodromy group of g we take a base point 0 < p < 1 and we denote its pre-
images by x1 < · · · < x6 as before. The critical values of g are 0, 1 and c := c1, so we
define loops γc, γ0 and γ1 again following the real axis as much as possible as for f , and we
obtain that γ0 induces (34)(56), γ1 induces (23)(45) and γc induces (12). Since the elements
(34)(56), (23)(45) and (12) generate S6 we get MG(g) = S6 	= MG( f ) which completes
the proof. �

3 Tree structure

The inverse images of p under f have a natural tree structure. Indeed, let Rn = {x ∈ C :
f ◦n(x) = p}, and note that
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Fig. 2 A basic block, left, consisting of branches of height 1 contained in a single branch of height 2. Right ,
a non-basic block

Rn =
⊔

x∈Rn−1

f −1(x).

Thus Rn may be thought of as the top level of a tree Tn , where each vertex x is connected
to f (x) in the next level down, namely Rn−1. Similarly, each element of Rn−1 is connected
to an element of Rn−2, and so on down to the level 0, which consists only of p. Note that p
connects to exactly d vertices, vertices in the top level connect to only one other vertex, and
all vertices besides p and those not in the top level connect to d + 1 other vertices. Setting
R1 = {x1, . . . , xd}, we refer to the d sets { f −(n−1)(x1)}, . . . , { f −(n−1)(xd)} as the major
branches of Rn . Note that Rn is the disjoint union of the major branches. We call a branch of
Rn any subset of the form f −m(x), where x ∈ Rn−m . We call m the height of such a branch.
Hence the major branches are simply the branches of height n − 1 and we consider the entire
tree a branch of height n.

By definition, the group MGn( f ) acts on Rn , and indeed we may think of it as acting
on Tn since any γ ∈ π1(C \ {critical values of f ◦n}) may be lifted to any vertex of the tree.
A key feature of this action is that it preserves the tree structure of Tn . Indeed, x, y ∈ Tn

are connected if and only if y = f (x) or x = f (y); assume without loss of generality that
x = f (y). If γy is the lift of γ under f ◦n that starts at y, then f (γy) is a (and hence the) lift
of γ under f ◦n−1 starting at x . Since γ (y) is the endpoint of γy and γ (x) is the endpoint of
f (γy), we have γ (x) = f (γ (y)), implying that γ (x) and γ (y) are connected. Thus the tree
structure is preserved, giving an injection MGn( f ) ↪→ Aut(Tn).

The preservation of the tree structure of Tn immediately gives that every branch of Rn is
an MGn( f )-block. It can also occur that an MGn( f )-block is not a single branch but a union
of branches of equal height, contained in a single branch of height one more. The easiest
polynomial for which this can occur is f : z �→ z4. Then we have that MG( f ) is a cyclic
group of order 4, so this group has two blocks containing two elements. From now on we
will refer to such blocks as basic blocks:

Definition 3.1 Let G be a subgroup of Aut(Tn) and let E ⊂ Rn be a G-block. If E is either
a single branch or is a union of equal-height branches that are all contained in a single branch
of height one more, then we say that E is a basic block.

See Fig. 2 for an illustration of a basic block and a non-basic block. The following example
shows that there are subgroups G < Aut(Tn) with G-blocks that are not basic blocks.

Example 3.2 Let G be the Klein 4-group acting on the complete binary tree of height 2.
It is generated by the elements (x00 x01)(x10 x11) and (x00 x10)(x01 x11). Then G is a
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subgroup of Aut(T2), yet {x00, x10} and {x01, x11} form an invariant partition. Both of these
are unions of height 0 branches that are not contained in a height 1 branch, and so are not
basic.

As noted in Sect. 2, p. 140, the monodromy group of a polynomial always contains a full
cycle. Hence the group in Example 3.2 cannot occur as the monodromy group of a polyno-
mial. In the next section we see that for many polynomials f we only need the existence of
a full cycle to deduce strong consequences for the possible structures of MGn( f )-blocks.

4 G-blocks

In this section we prove results about automorphism groups of rooted trees (Theorems 4.1
and 4.3), and then derive Corollary 1.4. We also give a negative answer to Question 1.3 in
Theorem 4.6. By slight abuse of notation we use the same notation (Tn, Rn , etc.) as the last
section to refer to abstract trees.

Theorem 4.1 Let Tn be the complete d-ary rooted tree of height n, and let Rn denote the
vertices of level n. Suppose that G ≤ Aut(Tn) contains a full dn-cycle σ . If d is a prime
power then every G-block of Rn is a basic block. If d is prime then every G-block of Rn is a
single branch.

Remark 4.2 It follows that a G-block of Rn that contains points lying in distinct major
branches must have at least 2dn−1 elements, which settles Question 1.3 for polynomials of
prime-power degrees.

Proof Let E be a G-block of Rn , and note that if g ∈ G satisfies g(E) ∩ E 	= ∅, then
g(E) = E , and it follows that the orbit under g of any subset of E is contained in E . By
choosing an ordering of the vertices at level 1 of Tn , one obtains a natural representation
of every element of Rn as a base-d string of length n. For elements v = v1 . . . vn and
w = w1 . . . wn of Rn , define the distance between v and w to be

D(v,w) =
{

n if v1 	= w1

n − m if m is such that vm+1 	= wm+1 but v1 . . . vm = w1 . . . wm

Choose v,w ∈ E such that D(v,w) is maximal. Then E is contained in a single branch
of height t := D(v,w). Let s ∈ N be such that σ s(v) = w. Then E contains the
orbit of any element in V under σ s . Moreover, s is divisible by dn−t (since σ s fixes a
branch of height t) but not by dn−t+1 (since σ s does not fix branches of height t − 1). This
gives dt−1 ≤ |σ s | ≤ dt . But since d is a power of a prime it follows that dt−1 divides the
order of σ s . Thus a power of σ s is of order dt−1 and induces a permutation of maximal order
on each of the branches of height t − 1. Since E is invariant under the action of σ it follows
that E is a union of branches of height t − 1, which completes the proof. �

Before stating our next result, we recall a group G acts primitively on a set S when the
only G-blocks of S consist of either one point or all of S. For instance, the symmetric group
on n letters acts primitively on {1, . . . , n}. Also, every doubly transitive action is primitive.

Theorem 4.3 Let Tn be the complete d-ary rooted tree of height n, and let Rn denote the
vertices of height n. Let E ⊆ Rn be any set containing points in at least two major branches.
Suppose that G ≤ Aut(Tn) contains a full dn-cycle σ . Suppose also that the restriction G1

of G to the height-1 vertices R1 acts primitively. Then the smallest G-block containing E is
all of Rn.
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Proof The idea of the proof is to use the presence of σ to show that any Gn-block of Rn

restricts to a G1-block of R1, which by primitivity must be large. Again using σ one shows
the only lift of such a block is all of Rn .

Let A be any G-block of Rn , and denote by A1 the restriction of A to R1. Let g1 ∈ G1

satisfy g1(A1)∩ A1 	= ∅, implying that for some α, β ∈ A1 we have g1(α) = β. Let g ∈ G be
any lifting of g1, and let Bα, Bβ be the major branches of Rn corresponding to α, β, whence
g(Bα) = Bβ . Note also that there are elements a ∈ Bα, b ∈ Bβ belonging to A. Now σ d

maps each major branch to itself, and acts on each as a dn−1-cycle. Thus for some m we have
σ dm g(a) = b. Since A is a block, it follows that σ dm g maps A to itself. But σ dm restricts
to the identity on R1, meaning that σ dm g restricts to g1. Thus g1 maps A1 to itself, proving
that A1 is a G1-block.

Now let E be as in the statement of the theorem, let M be the minimal G-block of Rn

containing E , and let M1 be the restriction of M to R1. By the previous paragraph, M1 is
a G1-block of R1, and since E contains points in different major branches, #M1 ≥ 2. By
the primitivity of G1, M1 = R1. In particular, if B and B ′ are major branches of Rn with
σ(B) = B ′ then M contains some a ∈ B and some b ∈ B ′. Thus for some m, σ 1+dm(a) = b.
Hence the orbit of a under σ 1+dm is contained in M . But since 1 + dm ≡ 1 mod d, σ 1+dm

acts on Rn as a dn-cycle. Therefore M = Rn . �
We note that if G := MGn( f ) is cyclic and f has non-prime power order, which occurs

for instance when f is conjugate to x pq for primes p < q , then for every n ≥ 2 there
are G-blocks that are not basic. Indeed, if σ generates G then an orbit of σ qn

is a G-block
consisting of pn elements. This cannot be a union of equal-height branches that is contained
in a branch of height one more, since each such branch has a number of elements that is a
power of pq . However, a polynomial for which the groups G := MGn( f ) are cyclic will
have only a single critical point that is also a fixed point. For such a map it is easy to see that
the answer to Question 1.3 is positive, since all preimages of the point p will lie in the same
Fatou component. To give a negative answer we have to construct a more complicated map.

As noted above, polynomials conjugate to powers of x have the strong property of having
a single critical point that is also a fixed point. As a first idea for making the map somewhat
more complicated, one could simply require that all critical points of f also be fixed points.
Such polynomials are called conservative, and they have been studied in some detail [8,10].
In particular, their conjugacy classes are determined by relatively simple combinatorial data,
and there is a natural faithful action of Gal(Q/Q) on these conjugacy classes [8]. However,
our next result shows that to answer Question 1.3 in the negative, conservative polynomials
will not do. In Theorem 4.6 we give an example of a degree-6 polynomial that does provide
a negative answer to Question 1.3.

Corollary 4.4 Suppose that f ∈ C[x] is conservative, and f has at least two critical points.
Let G = MGn( f ) act naturally on the tree Tn of preimages of a suitable point p, and let
E ⊂ Rn contain points in at least two major branches of Rn. Then the smallest G-block of
Rn containing E is all of Rn.

Corollary 4.4 is an immediate consequence of the following lemma. Recall that a group
G acts doubly transitively on a set S if for any a, b, c, d ∈ S with a 	= c and b 	= d , there
is g ∈ G with g(a) = b and g(c) = d . It is straightforward to show that a doubly-transitive
action is primitive.

Lemma 4.5 Suppose that f ∈ C[x] is conservative, and has at least two critical points.
Then MG( f ) acts doubly-transitively on the set R1 of preimages under f of a generic point.
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Proof It is enough to show that for a, b, c ∈ R1 with a 	= b, c 	= b, there is g ∈ MG( f )

with g(b) = b and g(a) = c.
By assumption the set of critical points of f coincides with the set of critical values of

f , which we write {v1, . . . , vn}. Each vi gives an element of MG( f ) that acts as a single
di -cycle, where di = 1 + (multiplicity of the critical value vi ). Call this cycle Ci , and note
that the Ci generate MG( f ). Note that

n∑

i=1

di = n +
n∑

i=1

multiplicity of vi = n + d − 1.

Consider the graph 	 whose vertex set consists of R1, and where u 	= v ∈ R1 are con-
nected by one edge for each Ci with Ci (u) = v, and also by one edge for each Ci with
Ci (v) = u. There are no edges from any vertices to themselves. Since the action of MG( f )

on R1 must be transitive (e.g. since it contains a full cycle), 	 is connected. Hence one may
think of the action of MG( f ) on R1 as an interlinked system of circular conveyor belts, with
the key property that each belt can be made to move independently of the others.

Now obtain a new graph 	′ by deleting one edge from each cycle, which preserves con-
nectedness. The number of vertices of 	′ is d , and the number of edges is

∑n
i=1(di − 1),

which is n + d − 1 − n = d − 1. Denoting by F the number of regions of the plane enclosed
by the edges of the graph (including the region containing infinity), by Euler’s formula we
have d − (d −1)+ F = 2. Thus F = 1, whence 	′ is a tree. This implies that each cycle can
have at most one point in common with any other cycle. Indeed, if Ci , C j share two distinct
points a and b, then Cr

i (a) = b and Cs
j (a) = b with Cr

i and Cs
j not the identity. This implies

that in 	 there are four distinct paths from a to b, namely those given by Cr
i , C−r

i , Cs
j , C−s

j .
Deleting any edge from Ci and any from C j thus still leaves a cycle in 	′.

Now let a, b, c ∈ R1 be given, with a 	= b, c 	= b. In the graph 	′ mentioned above,
consider a path from a to c. This path may be written as the action of

Cet
it

Cet−1
it−1

. . . Ce0
i0

(1)

where the action is on the left, each e j is a nonzero integer, and t ≤ n. Choose the path
to be non-self-intersecting, and so that t is minimized. This implies all the cycles in (1) are
distinct, since a cycle C occurring twice violates the minimality of t , as all cycles between
occurrences of C could be eliminated. Since any two cycles meet in at most one point and the
path given by (1) is non-self-intersecting, it follows that any element of R1 may be moved
by at most two of the cycles in (1). Moreover, these cycles must be consecutive. If b is left
fixed by all the cycles in (1), then we have moved a to c while fixing b and are done. If not,
we let k be maximal so that Cik does not not fix b. Suppose that b is contained in two cycles,
meaning it is the unique element moved by both Cik and Cik−1 We claim the product

Cet
it

Cet−1
it−1

. . . Cek+1
ik+1

C−ek−1
ik−1

Cek
ik

Cek−1
ik−1

. . . Ce0
i0

(2)

maps a to c and fixes b. To show (2) maps a to c, denote by a′ the image of a under
Cek−2

ik−2
. . . Ce0

i0
, and note it is enough to show

C−ek−1
ik−1

Cek
ik

Cek−1
ik−1

(a′) = Cek
ik

Cek−1
ik−1

(a′)

But Cek
ik

Cek−1
ik−1

(a′) is a point moved by Cik , and thus cannot be moved by Cik−1 unless it is a′,
which violates the non-self-intersecting property of the path corresponding to (1). To show
(2) fixes b, we need only show

C−ek−1
ik−1

Cek
ik

Cek−1
ik−1

(3)
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fixes b. To see this, note that Cek−1
ik−1

does not fix b, thus moving b away from the unique

element moved both by Cik−1 and Cik . Hence Cek
ik

fixes Cek−1
ik−1

(b), implying that (3) fixes b.
In the case where b is contained in only one cycle Cik of (1) and k 	= 0, one verifies in a

similar manner that

Cet
it

Cet−1
it−1

. . . Cek
ik

Cek−1
ik−1

C−ek
ik

Cek−2
ik−2

. . . Ce0
i0

moves a to c and fixes b. To see that b is fixed, let α denote the unique point contained in
both Cik and Cik−1 , and note that Cek

ik
(α) is either c (if k = t) or the unique point contained

in both Cik and Cik+1 . In either case, C−ek
ik

(b) 	= α, implying that C−ek
ik

(b) is fixed by Cik−1 .
If k = 0, one checks similarly that

Cet
it

Cet−1
it−1

. . . Ce2
i2

C−e0
i0

Ce1
i1

Ce0
i0

maps a to c and fixes b.
Finally, if (1) consists of only one cycle C0, then choose a cycle C ′ that moves a point α

also moved by C0. This is possible since n ≥ 2 by hypothesis. If j is such that C j
0 (b) = α,

then the element

C− j
0 C ′−1Ce0

0 C ′C j
0

maps a to c and fixes b. �

Theorem 4.6 There exists a polynomial h of degree 6 such that R2 contains an MG2(h)-
block with only four elements, two each in two different major branches of Rn. Moreover,
h can be chosen so that it provides a negative answer to Question 1.3.

Proof The construction of the polynomial h is very similar to the constructions in the proof
of Theorem 2.2. We will assume that the reader is familiar with the polynomial f from
Theorem 2.2.

Here the polynomial h will again have critical points at 0 < c1 < 1 < c2 < 2 and again
h(c1) = h(c2) = 2 and h(0) = h(2) = 0. However this time h(1) is not equal to 1 but
make sure that 0 < h(1) < c1 in such a way that h◦2(1) = 1. Hence there are 4 post-critical
values, namely 0, a, 1, and 2, where a = h(1), and the iterated monodromy group of h has
four generators.

We denote the generator loops encircling 0, a, 1, and 2, by α, β, γ, and δ, respectively.
The loops are again defined by paths that stay very close to the real axis as in the proof
of Theorem 2.2 (see Fig. 3). To determine the action of these generators on T , we use the
method of [5, Chapter 5]. For instance, consider α. We fix paths πi connecting the basepoint
p to each xi , and then for each xi we compute the lift �i of α beginning at xi . Then given
a vertex of T labeled with a word iw, α returns the word jg(w), where x j is the endpoint
of the lift of �i and g is the element corresponding to the loop πi�π

−1
j . The bottom part of

Fig. 3 illustrates this. We thus see that the action of α on T is given by
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α δ

1x x2 x6

px1 x2 x3 x4
x5 x6

x3 x4 x5

1 20

β γ

Connecting paths

p

p

Lifts of α

a

a

a

Fig. 3 Real graph of h, generating loops of the corresponding fundamental group (all loops are counterclock-
wise), and computation of the action of α on T (all connecting paths move away from p)

α · 1 = 2 · id

α · 2 = 1 · α

α · 3 = 3 · id

α · 4 = 4 · id

α · 5 = 6 · id

α · 6 = 5 · δ

Hence in wreath recursion notation, we have α = <id, α, id, id, id, δ>(1 2)(5 6). In many
cases one can read the action of an element of the fundamental group directly from the real
graph. For instance, to compute the action of γ , note that following preimages of γ is the
same as moving the xi down along the real graph of h towards 1. Since none of the xi are near
to each other when y = 1, the action of γ on the first level of T is trivial. When the y-values
of these points reaches 1+ ε, a counterclockwise loop is executed (in the complex plane, and
so not visibly on the real graph). One sees that since x2 is near a, this loop must encircle a.
For the others, the loops encircle no critical values, and so are homotopically trivial. Thus,

γ = <id, β, id, id, id, id>.
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γ

1

2

43

5

6

α

β

δ

α

α α

α α

δ

Fig. 4 Action of I MG(h) on the first two levels of T

Similar computations yield

β = <id, id, id, γ, id, id>(3 4)

δ = <id, id, id, id, id, id>(2 3)(4 5)

The action of I MG(h) on the first two levels of T is pictured in Fig. 4. Note that the action
of IMG(h) on the first level of the tree is the same as the action of the monodromy group of
f from Theorem 2.2.

Label a vertex on level two of T by xij where i denotes the major branch and j denotes
the position within the i th major branch. Consider the partition consisting of

{xi j , xi(7− j), x(7−i)(4− j), x(7−i)(3+ j)} i = 2, 3, j = 1, 2, 3

as well as {x11, x16, x62, x65}, {x12, x15, x63, x64}, and {x13, x14, x61, x66}. One checks that
all of α, β, γ, δ respect this partition, and thus we have a set of G-blocks each containing
four elements. Note that none of these blocks is basic.

To show that h provides a negative answer to Question 1.3, note that a is a super-attracting
periodic point so it is contained in a Fatou component V that is a super-attracting basin. If
N is chosen odd then p must be chosen in the Fatou component containing 1, which does
not contain a critical value. One easily sees that all preimages h◦−N (p) in V lie in the same
major branch which is a MG N (h)-block and contains 6N−1 elements.

If N = 2 and thus p ∈ V then the preimages f ◦−2(p) that lie in V correspond to the
points x32, x42 which lie in the MG2(h)-block E = {x32, x35, x42, x45}. So the smallest
MG2(h)-block containing those two points must be contained in E (and is in fact equal to
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E). E has only 4 elements which is fewer than 61 + 1 = 7. If N is even but larger than 2
then again p must be chosen in V and all preimages of p in V are also preimages of points
in E . That gives at most 4 × 6N−2 elements and thus fewer than 6N−1 + 1. This completes
the proof. �
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