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Abstract When populations with similar histories of

directional selection are crossed, their offspring may differ

in mean phenotype as compared with the average for the

parental populations, often exhibiting enhancement of the

mean phenotype (termed heterosis or hybrid vigor). We

tested for heterosis in a cross of two replicate lines of mice

selectively bred for high voluntary wheel running for 53

generations. Mice were paired to produce four sets of F1

offspring: two purebred High Runner (HR) lines and the

hybrid reciprocal crosses. The purebred HR showed sta-

tistically significant, sex-dependent differences in body

mass, wheel revolutions, running duration, mean running

speed, and (controlling for body mass) organ masses (heart

ventricles, liver, spleen, triceps surae muscle). Hybrid

males ran significantly more revolutions than the purebred

males, mainly via increased running speeds, but hybrid

females ran intermediate distances, durations, and speeds,

as compared with the purebred females. In both sexes,

ventricles were relatively smaller in hybrids as compared

with purebred HR. Overall, our results demonstrate dif-

ferential and sex-specific responses to selection in the two

HR lines tested, implying divergent genetic architectures

underlying high voluntary exercise.

Keywords Artificial selection � Body size �
Complementation � Experimental evolution � Heterosis �
Hyperactivity � Voluntary exercise � Wheel running

Introduction

Breeders of crops and livestock have known for centuries

that matings between distantly related individuals often

produce better offspring than those between closely related

individuals (Darwin 1868). This phenomenon is commonly

known as heterosis (since Shull 1914), or hybrid vigor,

denoting the superiority of offspring. When inbred popu-

lations are crossed, the offspring will often exhibit mean

values higher than those of the mid-parent level for any

traits that have exhibited inbreeding depression, including

aspects of Darwinian fitness (reproductive success, e.g.,

Falconer and Mackay 1996; Birchler et al. 2006). This is

not always the case, however, as outbreeding depression

can also occur in distantly related populations due to

breakup of coadapted gene complexes that contribute to a

phenotype affected by a high degree of epistasis (Lynch

1991, 1994; Burke and Arnold 2001; Birchler et al. 2006).

As noted by Mayr (1961), independent lines (popula-

tions) experiencing apparently identical directional selec-

tion will often respond at different paces and with different

correlated traits. Although directional selection works to

increase the frequency of favorable alleles while reducing

the frequency of unfavorable alleles, the simultaneous

effects of random genetic drift are indifferent to any par-

ticular allele’s selective relevance. Therefore, drift poten-

tially fixes alleles whose effects are neutral or even counter

to what selection favors. As drift and mutation are sto-

chastic processes, their effects will, on average, cause

populations to diverge genetically, and the generation-to-

generation response to directional selection will be con-

tingent on existing genetic variation. For these reasons (and

others), identical selection may often lead to ‘‘multiple

solutions’’ in different populations (Garland and Rose

2009; Garland et al. 2011a) and when these populations are
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mixed, as during an intentional cross, heterosis for many

traits will often occur (e.g., Ehiobu and Goddard 1990; Bult

and Lynch 1996; reviews in Lynch and Walsh 1998;

Lippman and Zamir 2007).

Heterosis has been documented for many traits, within

many different species, such as high-temperature growth

rate in yeast (Steinmetz et al. 2002), post-weaning success

in pigs (Young et al. 1976), and mannose-binding lectin in

humans (Hellemann et al. 2007). In house mice, heterosis

has been observed for traits including food competition

(Manosevitz 1972), motor behavior (Guttman et al. 1980),

growth rates (Bhuvanakumar et al. 1985), body size (Lynch

et al. 1986), litter size (Peripato et al. 2004), activity

rhythms (Beau 1991), and nest-building behavior (Bult and

Lynch 1996).

The primary purpose of the present study was to test for

heterosis using two (of four) replicate lines of mice that

have been bred for high voluntary wheel-running behavior

(Swallow et al. 1998, 2005, 2009). Wheel running is a

behavior that generally will involve aspects of both moti-

vation and ability (Waters et al. 2008; Meek et al. 2009;

Garland et al. 2011b). For example, an individual rodent

that is highly motivated to run (e.g., because it is highly

rewarding in a neurobiological sense) but lacks the inherent

endurance capacity to do so simply will not be able to run

as much as another individual with both high motivation

and high ability. Rodent wheel running has been the sub-

ject of numerous studies, with goals ranging widely across

behavior, physiology, and genetics (e.g., Slonaker 1912;

de Kock and Rohn 1971; Holloszy and Smith 1987; Belke

and Garland 2007). Despite a century of study, precisely

what wheel running in laboratory rodents represents

remains controversial (Mather 1981; Sherwin 1998;

Garland et al. 2011b). Heterosis has been observed for

wheel-running behavior (and other aspects of locomotor

activity, e.g., exploratory behavior) when inbred strains of

mice were crossed (Bruell 1964a, b).

The crosses necessary to study heterosis also allowed us

to test for line differences. On average, the four replicate

High Runner (HR) lines run 2.5- to 3.0-fold more revolu-

tions/day as compared with four non-selected control (C)

lines, a differential that has been maintained from

approximately generation 16 to the time of the present

study at generation 53 (Middleton et al. 2008; Swallow

et al. 2009; Kolb et al. 2010). The nature of this selection

limit is as yet unknown, but does not appear to be simply

an exhaustion of additive genetic variance for wheel run-

ning (unpublished results). Phenotypically, the selection

limit may be related to availability of lipids to fuel the

many hours of running that occur during each 24-h period

(Gomes et al. 2009; Kolb et al. 2010; Meek et al. 2010).

Whatever the precise phenotypic characteristics that

underlie the selection limit, if a cross between two HR lines

results in hybrid vigor, then selection applied to a population

derived from such a line cross would have the potential to

break through the prevailing selection limit (e.g., Bult and

Lynch 2000). In addition to measures of wheel running, we

report data for masses of four organs, at least three of which

(heart ventricles, calf muscles, liver) may have important

roles during endurance running (e.g., see Dumke et al. 2001;

Garland et al. 2002; Swallow et al. 2005; Rezende et al.

2006c; Meek et al. 2009; and references therein).

Methods

Animals

Mice used in this study were from an ongoing selection

experiment for high voluntary wheel running. Full details

of the selection experiment are found in Swallow et al.

(1998), and only a brief synopsis is presented here. The

original progenitors were 224 mice of the outbred, genet-

ically variable (e.g., see Carter et al. 1999) Hsd:ICR strain

of house mice (Mus domesticus). This population was

randomly mated for two generations and then divided into

eight closed lines, four of which were deemed high runner

(lab designations HR 3,6,7,8) and four control (C 1,2,4,5).

A minimum of ten pairs from each line were used to

propagate the subsequent generations. Pregnant dams are

given a breeder diet (Harlan Teklad, Madison, WI, Mouse

Breeder Diet [S-2335] 7004) through weaning. At other

times, standard chow (Harlan Teklad, Madison, WI,

Rodent Diet [W] 8604) and water are available ad libitum.

Pups are weaned at 21 days of age. Each generation, at

6–8 weeks of age, mice are individually housed with

access to a Wahman-type running wheel (circumfer-

ence = 1.12 m) for 6 days, during which daily wheel

running is monitored by a computer-automated system.

The selection criterion is the mean number of revolutions

run on days 5 and 6 of the 6-day test. In the four HR lines,

the highest-running male and female from each family are

chosen as breeders (i.e., within-family selection). In addi-

tion, second-highest running males and females are chosen

to provide backup pairings. In the four control lines (C),

two males and two females are randomly chosen from each

family without regard to wheel running. Within all lines,

breeders are randomly paired, excluding sibling mating.

Selected lines 7 and 8 were chosen for this study due to

the absence of the mini-muscle allele, which affects

numerous traits, including wheel running and organ masses

(see Garland et al. 2002, Swallow et al., 2005; Rezende

et al. 2006a, c; Hannon et al. 2008; Hartmann et al. 2008;

Middleton et al. 2008; Gomes et al. 2009). All line 7 and

line 8 breeders (see previous paragraph) from generation

53 were repaired to produce mice for the present study (i.e.,
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second litters). Sires were housed individually from time of

removal from first pairing to time of second pairing. Dams

were housed 3-4 to a cage from time of weaning of first

litter to time of pairing for this experiment.

Due to the within-family selection method used to

choose breeders for the selection experiment, the breeders

for the present experiment usually had three siblings (one

of the same sex, two of the opposite sex) also included in

the experiment. Therefore, mice were repaired using the

following guidelines. Sibling mating was disallowed and

all females were mated with a novel male. Considering two

siblings of the same sex, one sibling was randomly chosen

to be mated with a mouse from the same line, while the

other sibling was mated to the other line. For families

represented by other than four (3 or 5) siblings, the odd

mouse was randomly assigned as a breeder.

This protocol produced a total of 43 breeding pairs: 11

pairs were purebred line 7 9 line 7; 10 were purebred line

8 9 line 8; 11 were male line 7 9 female line 8 hybrids;

11 were male line 8 9 female line 7 hybrids. Purebred

offspring of the replicate selected lines (7 9 7 and 8 9 8)

were used because direct comparison to parental individ-

uals could be compromised due to possible generational

effects, which can be substantial (e.g., see figures in

Swallow et al. 1998, 2009; Middleton et al. 2008; Kolb

et al. 2010). Reciprocal crosses for the hybrids were con-

ducted to test for parental effects. Eighteen days after

pairing, the male was removed if the female was visibly

pregnant; otherwise, he remained with the female until she

appeared pregnant. Mice were weaned at 21 days of age

and housed 4 per cage by sex and cross type. Total sample

sizes were 171 females and 166 males for wheel-running

traits, with the breakdown by cross type as follows: 47

female and 38 male for line 7 9 line 7; 42 female and 48

male for line 8 9 line 8; 38 female and 37 male for male

line 7 9 female line 8 hybrids; 45 female and 43 male for

male line 8 9 female line 7 hybrids. For organ masses,

total sample sizes were 177 females (176 for ventricle

mass) and 166 males (165 for ventricle mass and triceps

surae mass).

Measurement of wheel running and organ masses

F1s were wheel-tested in the same manner as in the regular

selection experiment (described above). Rooms were con-

trolled for temperature (*22�C) and photoperiod 12:12

light/dark cycle (lights on 0700). Wheels were checked

daily to ensure freedom of rotation. Wheel running was

monitored with a computer-automated system and revolu-

tions were recorded in 1-min bins (intervals). Wheel run-

ning was quantified as means for days 5 and 6 of the 6-day

test (Swallow et al. 1998). Following previous studies, we

analyzed means for total revolutions per day, the number

of 1-min intervals per day with at least one revolution

(minutes/day), the mean speed when running (revolutions/

minutes), and the highest single 1-min interval per day

(e.g., Swallow et al. 1998; Hannon et al. 2008; Kelly et al.

2010a, b). We also analyzed body mass at the start of the

wheel trial.

Following wheel testing, mice were returned to standard

cages without wheels, housed 4 per cage. Approximately

7 days following wheel testing, mice were sacrificed by

CO2 inhalation in batches to allow for harvesting of organs

and muscle tissue. Mean age at sacrifice was 69 ± 3

(± SD) days. Following sacrifice, mice were weighed and

dissected to determine masses of organs that have potential

relevance for exercise physiology. The heart was detached

and ventricles were removed from the atria and connecting

blood vessels. Ventricles were blotted to remove any

excess blood prior to weighing. The liver was excised

followed by the spleen, then the right and left triceps surae

muscles [which include the lateral and medial heads of the

gastrocnemius, soleus, and the plantaris, as described in

Carter et al. (1999)]. Wet masses of all tissues were

recorded to the nearest 0.001 g on an electronic balance

(Denver Instruments, Denver CO, USA, model M-220).

Statistical analyses

To test for differences in wheel running, body mass, and

organ masses, a two-way analysis of covariance model

(ANCOVA) was applied using the MIXED procedure in

SAS (version 9.1; SAS Institute, Cary, NC, USA). All

analyses used age as a covariate. Analyses of organ masses

used body mass as an additional covariate. Analyses of

wheel-running traits did not include body mass as a covari-

ate, but did use a measure of wheel freeness. To measure

wheel freeness, each wheel was accelerated to a constant

velocity, then the number of revolutions spun until stopping

was recorded. For analyses, wheel freeness was transformed

by raising measured values to the 0.4 power to obtain a more

homogeneous spread of values. Deviations from linearity

were not apparent in plots of the wheel-running traits versus

transformed wheel freeness, and preliminary analyses indi-

cated that the interaction between group and transformed

wheel freeness were not statistically significant (all

P [ 0.08). Therefore, this interaction term was not included

in final statistical models. Family was a random effect,

nested within cross type. Preliminary analyses combined the

sexes and tested for effects of cross type, sex, and the cross

type * sex interaction. Because we found significant inter-

actions (e.g., for revolutions/day, P = 0.0012; see Results),

subsequent analyses were done separately by sex.

The hybrid groups were expected to exhibit greater

variance than the parental types. Therefore, we considered

a range of models that allowed for different variances
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among families within types and/or among individuals

within families (i.e., the residual variance). Specifically, we

considered models with (1) a single estimate for residual

variance, (2) a single estimate for residual variance and a

single estimate for variance among families (nested ran-

dom effect), (3) a single estimate for residual variance and

separate estimates of family variance for each of the four

cross types, (4) a different residual variance for each cross

type and no variance among families, (5) a different

residual variance for each cross type and a single estimate

of variance among families, (6) a different residual vari-

ance for each cross type and separate estimates of family

variance for each cross type. We used a priori contrasts to

compare the two parental types (i.e., test for line differ-

ences), the two reciprocal hybrid crosses (test for parental

effects), and the two parental groups with the two hybrid

groups (test for heterosis). In general, significance levels

for these contrasts were similar across the six models listed

above. For simplicity and consistency, we report results

only for the most parameter-rich model, i.e., number (6)

above. In some cases, traits were transformed to improve

normality of residuals.

Because we performed a number of tests on closely

related data, our Type I error rate for the entire experiment

may exceed the nominal 5% alpha level. Therefore, we

performed a positive false discovery rate (pFDR) analysis

using the QVALUE package (Version 1.1; Storey 2002) for

R (Version 2.8.0; R Core Development Team 2008),

allowing for 5% false significant results (pFDR = 0.05).

Based on analysis of the 60 P values presented in Table 1,

those \0.016 can be considered significant, and we

emphasize those results.

Results

In preliminary analyses, we found significant sex * cross

type interactions for revolutions/day (P = 0.0012),

minutes/day (P = 0.0140), and maximum speed in any

1-min interval (P = 0.0255), but not for mean speed

Table 1 Statistical comparisons of body mass, wheel running, and organ masses (with body mass as a covariate) separated by sex

Female Male

7 9 7 vs. 8 9 8 Hybrid versus

purebred

7 9 8 vs. 8 9 7 7 9 7 vs. 8 9 8 Hybrid versus

purebred

7 9 8 vs. 8 9 7

Body mass at start

of wheel access

F(1,27) = 22.79

P \ 0.0001(-)

F(1,27) = 3.16

P = 0.0869(-)

F(1,27) = 0.18

P = 0.6754(-)

F(1,28) = 8.27

P = 0.0076(2)

F(1,28) = 2.53

P = 0.1229(-)

F(1,28) = 4.34

P = 0.0464(-)

Revolutions/day F(1,27) = 10.48

P = 0.0032a(1)

F(1,27) = 0.03

P = 0.8618a(-)

F(1,27) = 0.31

P = 0.5853a(?)

F(1,27) = 1.93

P = 0.1759(-)

F(1,27) = 12.23

P = 0.0016(1)

F(1,27) = 1.41

P = 0.2457(?)

Minutes/day F(1,27) = 0.26

P = 0.6163(?)

F(1,27) = 0.00

P = 0.9879(-)

F(1,27) = 0.53

P = 0.4735(-)

F(1,27) = 14.98

P = 0.0006(-)

F(1,27) = 3.27

P = 0.0819(?)

F(1,27) = 1.58

P = 0.2195(?)

Mean speed F(1,27) = 15.92

P = 0.0005(1)

F(1,27) = 0.03

P = 0.8666(-)

F(1,27) = 2.30

P = 0.1412(?)

F(1,27) = 4.54

P = 0.0423(?)

F(1,27) = 10.09

P = 0.0037(1)

F(1,27) = 0.65

P = 0.4263(?)

Max speed F(1,27) = 14.09

P = 0.0008(1)

F(1,27) = 0.00

P = 0.9935(-)

F(1,27) = 1.10

P = 0.3037(?)

F(1,27) = 0.77

P = 0.3877(?)

F(1,27) = 7.65

P = 0.0101(1)

F(1,27) = 0.22

P = 0.6427(?)

Body mass at

dissection

F(1,29) = 23.66

P \ .0001(-)

F(1,29) = 5.18

P = 0.0305(-)

F(1,29) = 2.87

P = 0.1012(-)

F(1,28) = 15.33

P = 0.0005(-)

F(1,28) = 6.66

P = 0.0154(-)

F(1,28) = 0.82

P = 0.3739(-)

Ventricle mass F(1,29) = 6.59

P = 0.0157(1)

F(1,29) = 10.18

P = 0.0034(-)

F(1,29) = 0.00

P = 0.9906(?)

F(1,28) = 0.61

P = 0.4402(?)

F(1,28) = 4.64

P = 0.0399(-)

F(1,28) = 0.01

P = 0.9274(-)

Liver mass F(1,29) = 3.13

P = 0.0875(-)

F(1,29) = 3.32

P = 0.0789(-)

F(1,29) = 0.65

P = 0.4263(-)

F(1,28) = 11.18

P = 0.0024(-)

F(1,28) = 1.64

P = 0.2106(-)

F(1,28) = 0.04

P = 0.8471(?)

Spleen mass F(1,29) = 10.62

P = 0.0028(-)

F(1,29) = 3.19

P = 0.0845(?)

F(1,29) = 1.52

P = 0.2274(-)

F(1,28) = 25.31

P \ .0001(-)

F(1,28) = 0.00

P = 0.9527(?)

F(1,28) = 1.13

P = 0.2966(?)

Triceps Surae mass F(1,29) = 21.53

P \ .0001(-)

F(1,29) = 0.35

P = 0.5598(-)

F(1,29) = 0.88

P = 0.3555(-)

F(1,28) = 13.76

P = 0.0009(-)

F(1,28) = 0.01

P = 0.9327(-)

F(1,28) = 0.21

P = 0.6521(-)

a Full model (#6 as described in Methods) did not converge for female revolutions/day, so results are for a reduced model (#5 in Methods)

All analyses used age as a covariate. Analyses of wheel-running traits also used a measure of wheel freeness (see Methods)

P values significant after controlling for multiple comparisons (see Methods) are in bold

Signs after P values indicate direction of effect: for purebreds, minus indicates 7 \ 8, plus indicates 7 [ 8; for reciprocal hybrids, minus

indicates 7 9 8 \ 8 9 7, plus indicates 7 9 8 [ 8 9 7; for hybrids versus purebreds, minus indicates hybrid [ purebred, plus indicates

purebred [ hybrid
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(P = 0.0850) or body mass (P = 0.7866). Therefore,

subsequent analyses were done separately by sex.

Females

After adjusting for multiple comparisons, purebred

females from line 7 ran significantly more revolutions per

day (P = 0.0032), at higher mean (P = 0.0005) and

maximum speeds (P = 0.0008), but not for more minutes

per day (P = 0.6163), as compared with line 8 females

(Tables 1, 2; Fig. 1). Line 7 females were significantly

smaller than those from line 8 (Tables 1, 2). Controlling

for variation in body mass, lines 7 and 8 differed signifi-

cantly for ventricle, spleen, and triceps sure mass, but not

liver mass (Tables 1, 2; Fig. 2).

Female hybrids were intermediate between the purebred

lines for body mass at the start of wheel access and for all

running traits (Fig. 1; Tables 1, 2). Female hybrids had

significantly smaller ventricles (P = 0.0034) than pure-

breds after adjusting for body mass. Hybrids from the two

reciprocal cross populations were not significantly differ-

ent for any trait (Tables 1, 2; Figs. 1, 2).

Males

Purebred males from HR lines 7 and 8 differed signifi-

cantly for minutes/day of wheel running, but not for rev-

olutions/day, mean speed or max speed (Tables 1, 2;

Fig. 1). Purebred males from line 8 were significantly

larger than those from line 7, and they also had signifi-

cantly larger livers, spleens, and triceps surae muscles

(Fig. 2; Tables 1, 2).

Unlike female hybrids, as compared with the mean for

purebred lines, male hybrids showed a significant increase

in revolutions per day (P = 0.0016), mean speed

(P = 0.0037), and maximum speed (P = 0.0101), but did

not differ in body mass at the start of wheel access

(Tables 1, 2). Consistent with females, male hybrids from

the reciprocal crosses (7 9 8 vs. 8 9 7) were not signifi-

cantly different for any trait (Tables 1, 2; Figs. 1, 2).

Discussion

Results of our crosses between two replicate lines bred for

high voluntary wheel running, intended primarily to

examine heterosis, also show that the two lines differ for a

number of traits, often in a sex-specific fashion. For

example, revolutions run per day—the target of selective

breeding—were higher in purebred HR line 7 than 8

for females (14,607 vs. 10,878, respectively, 2-tailed

P = 0.0032), but not for males (9,123 vs. 11,257,

P = 0.1759) (Fig. 1; Tables 1, 2). Moreover, the patterns T
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of heterosis that we identified differ between males and

females. Therefore, we separate much of the subsequent

discussion by sex. It is important to note that the higher

wheel running of females than males in line 7 is not

peculiar to this generation (e.g., see Garland et al. 2011a

for results from generation 43).

Males

For males, examination of the two components of wheel

revolutions/day indicates that the two HR lines have

responded differently to artificial selection (Fig. 1;

Tables 1, 2). Line 8 males ran substantially more minutes/

day as compared with line 7 (542 vs. 441 min/day), but the

direction of this differential was reversed for mean running

speed (18.17 vs. 20.02 revolutions/min). The end result was

no statistical difference in revolutions/day (10,086 vs.

9,123), thus demonstrating approximate functional equiv-

alence achieved by ‘‘multiple solutions’’ in response to

selective breeding (e.g., Endler et al. 2001; Spitschak et al.

2007; see also Swallow et al. 2009; Garland et al. 2011a).

Line 7 males were smaller than those of line 8, and also had

significantly smaller body-mass adjusted spleens, livers,

and triceps surae muscles (Tables 1, 2; Fig. 2), but whether

this is causally related to the differences in running

behavior is unclear (see also Garland et al. 2002).

Consistent with the partial evolutionary independence of

average running speed and duration found in the present

study, within an advanced intercross mapping population of

HR line #8 and inbred C57BL/6J, two statistically significant

QTL were detected for average running speed on days 5 plus

6, and a different QTL was detected for time spent running on

days 5 and 6 (Kelly et al. 2010b), although a formal test for

epistasis was not performed. Similarly, a QTL analysis of an

F2 population from a cross between relatively high-running

C57L/J and low-running C3H/HeJ inbred strains found two

QTL for wheel-running speed, one of which did not colo-

calize with the single QTL identified for duration (Lightfoot

et al. 2008), although a subsequent paper detected consid-

erable epistasis by use of a full genome epistasis scan for all

possible interactions of QTL between each pair of 20 chro-

mosomes (Leamy et al. 2008).

Hybrid males showed a significant increase in revolu-

tions/day over purebred males (hybrid vigor), caused

mainly by higher running speed, with a trend also for more

time spent running (Fig. 1). This result demonstrates that

Fig. 1 Wheel-running activity during days 5 and 6 of a 6-day

exposure to wheels (1.12 m circumference) attached to standard

housing cages. Values are least squares means ? SEs from analysis

of covariance models in SAS Procedure Mixed (see text and Table 1

for statistical results). 7 9 7 and 8 9 8 denote purebred mice from

two different HR lines bred for high voluntary wheel running

(Swallow et al. 1998). Values in between these are for reciprocal

crosses. See Table 2 for numerical values

Fig. 2 Triceps surae muscle mass, adjusted for body mass. Values

are least squares means ? SEs from analysis of covariance models in

SAS Procedure Mixed (see Table 1 for statistical results and Table 2

for numerical values). Note broken Y-axis to emphasize differences

among groups. 7 9 7 and 8 9 8 denote purebred mice from two

different HR lines bred for high voluntary wheel running (Swallow

et al. 1998). Values in between these are for reciprocal crosses
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the underlying genetic architecture of high wheel running

in males differs between these two HR lines (e.g., Bult and

Lynch 1996). In contrast to the results for wheel running,

hybrids were intermediate to the parental groups for rela-

tive liver, spleen, and triceps surae muscle masses. It is

interesting that these lower-level traits do not follow the

same pattern of heterosis as the target of selection, which

could be explained by their not being functionally neces-

sary to support the higher levels of wheel running and/or by

a change in their genetic correlation with wheel running in

the cross populations (e.g., see Eisen 1975). In previous

publications that reported masses for these organs, no

consistent, statistically significant differences were found

in comparisons of the four High Runner and four control

lines (Dumke et al. 2001; Garland et al. 2002; Swallow

et al. 2005; Rezende et al. 2006c; Meek et al. 2009).

Females

Unlike males, purebred line 7 females ran significantly more

revolutions/day than line 8 females, almost entirely because

the former ran faster, with no statistical difference in duration

of running (Fig. 1; Tables 1, 2). Also unlike males, hybrid

females were intermediate between the two parental phe-

notypes for both revolutions/day and speed. In spite of the

differences from males, overall these comparisons again

indicate different genetic responses to selection.

As with males, females of line 7 were smaller than line 8

and had smaller size-adjusted spleens and triceps surae. In

contrast to males, line 7 females had relatively larger hearts

than their line-8 counterparts (Tables 1, 2), which could

contribute to their higher running speeds via positive

effects on endurance (Meek et al. 2009) or maximal aer-

obic capacity (Rezende et al. 2006b, c, 2009). Arguing

against this, however, hybrid females had relatively smaller

heart ventricles (P = 0.0034) than either purebred line, but

exhibited intermediate levels of wheel running (Fig. 1;

Tables 1, 2).

Parental effects

In a reciprocal cross between HR line 8 and a control line,

we found parent-of-origin effects in the F1 for both body

mass and wheel running (R. M. Hannon, S. A. Kelly,

B. K. Keeney, J. L. Malisch, and T. Garland, Jr., unpub-

lished results). Similarly, in a cross between HR line 8 and

inbred C57BL/6J, we found parent-of-origin effects on

body composition and wheel-running traits in a fourth-

generation intercross population (Kelly et al. 2010a). In the

present cross, however, we found no such effects that were

statistically significant. The lack of such effects in the

present cross may reflect the fact that the two replicate HR

lines studied here are more similar, both phenotypically

and genetically, than for a control line or C57BL/6J vs. HR

line 8.

Summary and future directions

The line crosses presented here demonstrate different

responses to selection for high voluntary wheel running in

two (of four total) replicate HR lines, as well as sex-by-line

interactions in the response to selection. In addition, the

two HR lines not studied here have shown an increase in

the frequency of a Mendelian recessive allele that causes a

50% reduction in hindlimb muscle mass and increased

wheel-running speed, among many other identified pleio-

tropic effects (Garland et al. 2002; Swallow et al. 2005;

Rezende et al. 2006a; Hannon et al. 2008; Middleton et al.

2008; Gomes et al. 2009). The ‘‘mini-muscle’’ phenotype

was never detected in the two lines studied here, again

demonstrating different genetic responses to selection.

Thus, overall, results of the long-term selection experiment

reinforce the concept that directional selection favoring a

particular phenotype, and hence altering the frequencies of

alleles that affect the phenotype, will occur simultaneously

with other evolutionary processes, especially random

genetic drift in the relatively small populations used for

rodent selection experiments (e.g., Eisen 1975; Swallow

et al. 2009).

Hormonal differences may contribute to the line (or sex:

Lightfoot 2008) differences we observed. For example, it

has been shown previously that HR lines have higher cir-

culating corticosterone (CORT) concentrations than C, and

that differences among replicate lines are also statistically

significant (Malisch et al. 2007, 2009). As suggested

elsewhere (Malisch et al. 2008), organisms with elevated

corticosterone levels could have higher available energy

and/or motivation to perform during exercise such as wheel

running (Dallman et al. 1993; Pecoraro et al. 2006).

However, whether HR lines 7 and 8 show consistent dif-

ferences in baseline CORT or in levels during wheel run-

ning is not yet known (see Malisch et al. 2007, 2009).

Our results show some clear examples of sex-specific

heterosis, as has occasionally been reported in the litera-

ture. White et al. (1970) report heterosis involving body

mass in mice, with both sexes experiencing heterosis, but

one sex showing it to a greater degree. Line crosses

involving body mass in beef cattle and poultry (Stonaker

1963), fecundity in Drosophila (Brown and Bell 1960), and

survival in swine (Cox 1960) also showed one sex to

exhibit a greater degree of heterosis. However, the pattern

of sex-specific heterosis reported in this study seems to be

rare. Unlike the examples cited, we show cases (Fig. 1) in

which the F1 of one sex exhibits clear heterosis, whereas

the F1 of the other is intermediate between the phenotypic

means of the parental populations.
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The mechanisms underlying the cases of sex-specific

heterosis that we observed are not yet apparent. Using a

backcross between a different HR line (#3) and inbred

C57BL/6J, Nehrenberg et al. (2010) reported several sex-

specific QTL, including for aspects of wheel running. That

study probably underestimates the magnitude of such

effects, because the cross design used did not allow

examination of markers on the sex chromosomes. Kelly

et al. (2010b) included markers on the X chromosome in a

QTL study that used a large advanced intercross line (G4)

population originated from a reciprocal cross between HR

line #8 (one of the two used here) and C57BL/6J, but did

not any detect any QTL on the X chromosome nor any sex-

specific QTL. As noted in the Introduction, Leamy et al.

(2008) detected a large amount of epistasis using a full

genome scan of SNP markers in an F2 population of mice

derived from a cross of two inbred strains, and some of the

epistatic interactions involved markers on the X chromo-

some. To date, no study of mouse wheel-running QTL

has included markers on the Y chromosome. Molecular

imprinting is widespread in the mouse genome (Searle and

Beechey 1978; Cattanach and Kirk 1985; Cattanach 1986),

and sex-specific molecular imprinting (Hager et al. 2008)

could potentially account for the differential heterosis we

see between the sexes in the F1 hybrids.

Experimental evidence has shown that both dominance

and over-dominance play a role in heterosis, with some

involvement of epistasis, although the relative contribution

of each of these mechanisms is still unclear (Birchler et al.

2006; Lippman and Zamir 2007) and is likely to vary

among organisms, strains, and traits. Additionally, epistatic

interactions among loci can also play a significant role in

heterosis. For example, in an F2 population of mice derived

from a cross of two strains exhibiting large differences in

wheel running (C57L/J, high active; C3H/HeJ, low active),

a full-genome epistasis scan for all possible interactions of

QTL between each pair of 20 chromosomes indicated that

epistatic interactions contributed an average of 26% of the

total genetic variation for the three measures of daily wheel

running (total distance, duration, and average speed)

(Leamy et al. 2008). As with most other studies of heterosis

in rodent behavior (e.g., Bruell 1964a, b; Lynch et al. 1986;

Bult and Lynch 1996, 2000), the present study provides no

evidence as to which mechanism(s) account(s) for the

observed instances of heterosis. Nonetheless, our results do

indicate that crossing of replicate selected lines can yield

offspring that exceed what was an apparent selection limit,

as in Bult and Lynch (1996). Given that heterosis for wheel

running was only observed in male hybrids, it raises the

interesting possibility that female mice might be closer to a

true selection limit as compared with males. This suggests

that further selection on a population descended from the

hybrids (Bult and Lynch 2000) might be able to break the

limit for males but not females.
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