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Abstract
Background: Hyaluronic acid is one of the biopolymers most commonly used by the pharmaceutical industry. Thus, 
there is an increasing number of recent works that deal with the production of microbial hyaluronic acid. Different 
properties and characteristics of the fermentation process have been extensively optimised; however, new carbon and 
protein sources obtained from by-products or cheap substrates have not yet been studied.

Results: Mussel processing wastewater (MPW) was used as a sugar source and tuna peptone (TP) from viscera residue 
as a protein substrate for the production of hyaluronic acid (HA), biomass and lactic acid (LA) by Streptococcus 
zooepidemicus in batch fermentation. Commercial medium formulated with glucose and tryptone was used as the 
control. The parametric estimations obtained from logistic equations and maintenance energy model utilized for 
modelling experimental data were compared in commercial and low-cost media. Complete residual media achieved 
high production (3.67, 2.46 and 30.83 g l-1 of biomass, HA and LA respectively) and a high molecular weight of HA 
(approximately 2500 kDa). A simple economic analysis highlighted the potential viability of this marine media for 
reducing the production costs by more than 50%.

Conclusions: The experimental data and mathematical descriptions reported in this article demonstrate the potential 
of media formulated with MPW and TP to be used as substrates for HA production by S. zooepidemicus. Furthermore, 
the proposed equations accurately simulated the experimental profiles and generated a set of interesting parameters 
that can be used to compare the different bacterial cultures. To the best of our knowledge, this is the first work in which 
a culture media formed by marine by-products has been successfully used for microbial HA production.

Background
Hyaluronic acid (HA) is a linear and high molecular mass
polymer formed by repeating disaccharide units of N-
acetyl-D-glucosamine and D-glucuronic linked by β(1-3)
and β(1-4) glycosidic bonds. Because its physicochemical
and biological properties, such as lubricity, viscoelasticity,
water holding capacity and biocompatibility, HA has
numerous and increasing applications in food, cosmetic
and clinical areas such as plastic surgery, treatment of

arthritis, major burns and intra-ocular surgery [1,2]. This
glycosaminoglycan has traditionally been extracted from
animal tissues such as synovial fluid, rooster combs, car-
tilage, vitreous humour and umbilical cords [3,4]; how-
ever, fermentative HA production by Streptococcus
generates yields with higher concentrations of HA at
lower costs and with more efficient downstream pro-
cesses [5-7]. Among the strains of this bacteria, S. zooepi-
demicus is one of the most commonly used [6,7]. The
strains of this bacteria are facultative anaerobes, but they
are also aerotolerant, catalase-negative and have fastidi-
ous nutrient requirements with respect to organic nitro-
gen [5,8].
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Although several strategies have been reported for
increasing microbial HA, including pH-gradient stress
[8], continuous culture [9], lysozyme or hyaluronidase
addition [10,11], agitation and aeration conditions [12-
14], medium optimisation [15], the type of bioreactor
[16], effect of aminoacids and mineral salts [17,18] and
fed-batch operation [19], there is almost no studies of
new sources of sugars and proteins from organic waste
materials in order to reduce both production costs and
pollution problems. More than 80% of these costs are due
to these nutrients (sugars and proteins) and commercial
formulations are not an economical resource for indus-
trial production of HA.

Peptones obtained from fish viscera residues have been
found to be an excellent substrate for different microbial
processes [20-25]. Recently, we studied the appropriate-
ness of two marine peptones for the production of lactic
and hylauronic acids [26]. Furthermore, mussel process-
ing wastewaters (MPW), a residual material rich in glyco-
gen obtained from canning companies, has been used in
several bioproductions, including the production of gib-
berellins [27], amylase [28], bacteriocins [29-31], glucose
oxidase [32] and citric acid [33]. From an environmental
point of view, both residues generate serious pollution
problems on Galician coasts (NW, Spain) as they are pro-
duced in large volumes and have a high organic load,
which makes their depuration extremely difficult. The
European Union guidelines about this problem are based
on the development and implementation of an efficient
and integral waste management and valorisation process-
ing in order to obtain zero-wastes, zero-discharges and
zero-pollution.

The main aim of this work was to investigate the fer-
mentative capacity of culture media formulated with
MPW and marine peptones, obtained from two different,
highly polluting marine by-products, in order to replace
the expensive commercial sources of carbohydrates and
proteins usually used in hyaluronic acid production by S.
zooepidemicus. The kinetic parameters obtained from a
modified logistic equation were successfully used to com-
pare accurately the corresponding metabolite produc-
tions.

Results
To study the appropriateness of marine by-product sub-
strates for the production of HA by S. zooepidemicus, glu-
cose and commercial peptone in the control medium
were replaced by MPW and peptone from tuna viscera
by-products respectively. All carbohydrate sources were
employed at a concentration of 50 g l-1. Cultures were
grown in the nutritive formulations described in Table 1.

Figures 1 and 2 show S. zooepidemicus growth over-
time, the metabolite productions (LA and HA) and the
concomitant substrate consumptions (protein and sug-

ars) during fermentation in the four media. Moreover, in
the culture broths formulated with MPW as the carbon
source, the total amylolytic activity and reducing sugar
concentration were also measured. Sigmoid profiles for
production and uptake were obtained for all cases. The
numerical values of the kinetic parameters calculated by
fitting the experimental data to the mathematical equa-
tions described previously, as well as their corresponding
statistical analysis, are summarised in Table 2. According
to these results, medium A had the highest maximum
biomass production (Xm = 5.17 ± 0.06 g l-1 h-1) maximum
growth rate (vx = 1.32 ± 0.08 g l-1) and shortest lag phase
(λx = 3.33 ± 0.14 h). In the rest of the media, 25% less bio-
mass was produced than in the control, but there were no
significant differences between media B, C or D.

Similar results were obtained for HA and LA produc-
tion. Broth A was the best option for both chemicals in
terms of the Hm, Lm, vh and vl values. However, the
residual media were excellent alternatives for producing
these compounds, and more than 30 and 2.4 g l-1 of LA
and HA respectively were obtained in medium D.  The
yields (Yx/s, Yh/x and Yl/x) in media prepared with by-
products were the same or superior to those obtained in
the commercial medium. The cultures carried out using
glycogen from MPW as the carbohydrate source showed
that S. zooepidemicus is capable of producing extracellu-
lar amylase and intake the glucose that this enzyme liber-
ates in order to be metabolised (Figure 2C and 2D).

From a statistical viewpoint, all fittings were highly sat-
isfactory (Table 2) and experimental data were adequately
described by the equations proposed (Figures 1 and 2).
The mathematical expressions were consistent (Fisher's
F-test) and the parametric estimations were significant
(Student's t-test). Furthermore, all the values predicted in
the non-linear adjustments produced high coefficients of
linear determination with the observed values (r ≥ 0.995).

Figure 3 depicts the kinetic profiles of the molecular
weight of HA. In all media tested, more than 2000 kDa of
polymer were obtained after approximately 9 h. As it can
be observed, sigmoid trends with a small drop at 12 h
were detected. This fall at the end of the time course can
be easily justified by the hyaluronidase action that cataly-
ses the hydrolysis of glycoside bonds in HA, which occurs
in the asymptotic phase when biomass production is fin-
ished. The largest HA molecules were produced in media
B and D, and the smallest glycosaminoglycan molecules
were produced in medium A.

Figure 4 represents the comparative cost of HA produc-
tion in the different media evaluated. This calculation
was carried out using the commercial prices (in €) of the
nutrients specified previously (Table 1) and the values of
Hm (calculated as the maximum total mass obtained in
each bioreactor) summarised in Table 2. It is clear that all
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media formulated with marine residues achieved lower
costs. Furthermore, it is especially remarkable that
medium D, composed with MPW as the carbon source
and TP as the organic nitrogen source, reduced the price
of producing HA by more than 50%.

Discussion
In recent years there has been increasing interest in
microbial HA production by Streptococcus and geneti-
cally modified bacteria [13,34]. The strategies and meth-
ods for improving HA fermentation have been focused
on optimising culture conditions and the associated met-
abolic fluxes [18,35]. However, the possibility of using
residual sources of carbon and organic nitrogen from
food by-products in order to reduce the price of HA pro-
duction is still unexplored. In a previous work, we con-
firmed that marine peptones from shark and ray viscera
residues could be used to obtain high molecular weight
HA using fed-batch fermentations [26]. It is well known
that Streptococcus sp. has fastidious nutrient and complex
organic nitrogen requirements [36]. The results of Hm
with tuna peptone evaluated in the present manuscript
showed that tuna peptone has similar nutritive properties
(2.46 g l-1) to those supplied by commercial tryptone. In
addition, the HA production, kinetic profiles and the Mw
characteristics of HA were similar to those reported for
batch cultures and synthetic media by Armstrong and
Johns [37] and Don et al. [38].

Zhang et al. [15] are the only authors who have studied
the potential of S. zooepidemicus growth and HA produc-
tion on a polysaccharide substrate. These authors
reported excellent yields of HA produced by a S. zooepi-
demicus mutant obtained by successive generation using

soluble starch as the carbon source. To our knowledge,
the present work is the first article that focuses on HA
production with a glycogen substrate from marine waste-
water materials (MPW). This liquid residue is generated
in great quantities in canning factories and has a negative
environmental impact on the Galician Rías (NW, Spain)
marine ecosystem, which is of great ecological wealth and
very sensitive to contamination. The results obtained for
the total amylolytic activity and the corresponding reduc-
ing sugars that are liberated confirmed that S. zooepi-
demicus produces extracellular amylase. The maximum
activity was achieved at approximately 6 h (Figure 2C and
2D).

In relation to modelling, several mathematical equa-
tions have recently been developed for fitting S. zooepi-
demicus growth, HA production and substrate
consumption [19,38,39]. The different proposals include
two-compartment models [40], neural networks [41],
empirical equations from response surfaces [15] and
unstructured mathematical models [19,38]. In most
cases, logistic and Monod equations - with or without
inhibitory terms - were chosen to describe biomass, and
growth-associated product formation was used to simu-
late HA kinetics. Our approach was based on reparame-
terised logistic models (for growth, HA and LA
productions) that consistently describe the experimental
profiles and provide a set of significant parameters (maxi-
mum productions, lag phases and maximum production
rates) for comparing the fermentation media tested. For
sugar consumption, a maintenance energy equation was
used to fit numerical data and to calculate the production
yields. Figures 1 and 2 and Table 2 show the accuracy and
statistical robustness of this proposal.

Table 1: Composition of culture media for Streptococcus zooepidemicus (g l-1).

Compounds A B C D

Glucose 50.0 50.0 - -

Glycogen (from MPW) - - 50.0 50.0

Yeast extract 5.0 5.0 5.0 5.0

Tryptone 15.0 - 15.0 -

KH2PO4 2.0 2.0 2.0 2.0

K2HPO4 2.0 2.0 2.0 2.0

MgSO4.7H2O 0.5 0.5 0.5 0.5

(NH4)2SO4 0.5 0.5 0.5 0.5

Polystyrene (Mw = 990 kDa) 0.015 0.015 0.015 0.015

Tuna-peptone protein (Lowry) - 8.0 - 8.0

A: Complex medium (used as control).
B: Medium formulated with glucose as carbohydrate-substrate and protein from tuna viscera wastes.
C: Formulation containing commercial tryptone and mussel processing wastewaters (MPW).
D: Medium with glycogen from MPW and peptone from viscera by-products of tuna.
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Table 2: Parametric estimations obtained from fitted experimental data to the equations (1-6).

VARIABLES MEDIUM A MEDIUM B MEDIUM C MEDIUM D

BIOMASS (X) values ± CI values ± CI values ± CI values ± CI

Xm (g l-1) 5.17 ± 0.06 3.81 ± 0.08 3.55 ± 0.05 3.67 ± 0.06

vx(g l-1 h-1) 1.32 ± 0.08 0.91 ± 0.09 0.93 ± 0.06 0.81 ± 0.06

λx (h) 3.33 ± 0.14 3.48 ± 0.23 3.65 ± 0.14 3.46 ± 0.18

p-value <0.001 <0.001 <0.001 <0.001

r (obs-pred) 0.999 0.999 0.999 0.999

HYALURONIC ACID (H) values ± CI values ± CI values ± CI values ± CI

Hm (g l-1) 3.07 ± 0.03 2.41 ± 0.02 2.33 ± 0.10 2.46 ± 0.09

vh (g l-1 h-1) 0.82 ± 0.04 0.63 ± 0.03 0.49 ± 0.09 0.53 ± 0.08

λh (h) 3.93 ± 0.10 4.07 ± 0.10 3.93 ± 0.48 3.90 ± 0.38

p-value <0.001 <0.001 <0.001 <0.001

r (obs-pred) 0.999 0.999 0.997 0.998

LACTIC ACID (L) values ± CI values ± CI values ± CI values ± CI

Lm (g l-1) 35.12 ± 0.56 33.04 ± 0.32 29.11 ± 0.55 30.83 ± 0.54

vl (g l-1 h-1) 8.53 ± 0.67 9.24 ± 0.49 7.12 ± 0.65 7.73 ± 0.68

λl (h) 3.69 ± 0.18 4.07 ± 0.11 4.04 ± 0.21 3.93 ± 0.20

p-value <0.001 <0.001 <0.001 <0.001

r (obs-pred) 0.999 0.999 0.999 0.998

SUBSTRATE (S) values ± CI values ± CI values ± CI values ± CI

S0 (g l-1) 45.81 ± 1.78 46.89 ± 1.74 50.63 ± 2.06 51.47 ± 1.60

Yx/s (g g-1) 0.11 ± 0.01 0.09 ± 0.01 0.11 ± 0.02 0.10 ± 0.01

me (g g-1 h-1) 0.01 (NS) 0.06 (NS) 0.58 ± 0.16 0.43 ± 0.13

p-value <0.001 <0.001 <0.001 <0.001

r (obs-pred) 0.997 0.997 0.995 0.997

YIELDS (Y) values ± CI values ± CI values ± CI values ± CI

Yh/x (g g-1) 0.58 ± 0.02 0.62 ± 0.02 0.61 ± 0.02 0.65 ± 0.02

p-value <0.001 <0.001 <0.001 <0.001

r (obs-pred) 0.995 0.997 0.988 0.995

Yl/x (g g-1) 6.61 ± 0.22 8.63 ± 0.24 7.90 ± 0.22 8.43 ± 0.24

p-value <0.001 <0.001 <0.001 <0.001

r (obs-pred) 0.996 0.998 0.995 0.999

CI: confidence intervals (α = 0.05).
p-value from F-Fisher test (α = 0.05).
r = correlation coefficient between observed and predicted data.
NS: not significant
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Conclusions
The most important economic factor in the production
of hyaluronic acid is the cost of the complex media. In
this sense, the present work demonstrates the excellent
viability of a medium formulated with mussel processing
wastewaters and peptones obtained from tuna viscera by-
products for HA produced by S. zooepidemicus. In this
medium, productions of 3.67, 2.46 and 30.83 g l-1 of bio-
mass, HA and LA respectively were achieved with a high
molecular weight of HA (approximately 2500 kDa). In
addition, the manufacturing costs were reduced by more
than 50%. Furthermore, all the equations defined not only
fit the experimental profiles well but can also be used, as
in the present assessment, for comparative purposes in
order to optimise the culture medium and experimental
conditions for HA microbial production.

Methods
Microorganism and fermentation broths
The hyaluronic acid-producing strain used was Strepto-
coccus equi subsp. zooepidemicus ATCC 35246. Stock
cultures were stored at -80°C in complex medium
(defined in Table 1) with 25% glycerol. All inocula were
prepared following the methodology reported by
Vázquez et al. [26].

MPW, produced as a by-product of the mussel-cooking
process, was firstly concentrated by means of ultrafiltra-
tion membranes with cut-off at 100 kDa until approxi-
mately 60 g l-1 of the total sugar concentration (glycogen),
according to the methods previously described in detail
[42,43]. The initial composition of MPW was: 60.54 g l-1

of total sugars, 1.54 g l-1 of Lowry protein and 0.40 g l-1

total nitrogen.
Solutions of marine peptones from yellowfin tuna vis-

cera (Thunnus albacares) were prepared following the
operations specified in [44]. The initial composition of
tuna peptone (TP) was: 48.32 g l-1 of Lowry protein, 3.11 g
l-1 of total sugars and 11.08 g l-1 total nitrogen.

Table 1 shows the composition of the culture media.
Yeast extract and tryptone were provided by Cultimed
(Panreac Química, Spain) and polystyrene and glucose by
Sigma (St. Louis, MO, USA). The protein concentration
in the residual media was established by replacing the
Lowry protein level in the tryptone (15 g l-1) used for the
commercial media. MPW was diluted with TP solution
and distilled water until approximately 50 g l-1 total sugars
and 8 g l-1 protein were obtained in the low-cost media.

In all cases, the initial pH was adjusted to 6.7 and the
media were sterilised at 121°C for 15 min. A glass 2 l-bio-
reactor with a working volume of 1.8 l was utilised for HA
production under the following conditions: agitation at
500 rpm, no aeration, temperature maintained at 37°C
and pH controlled with sterile NaOH (5 M).

Sampling and analytical determinations
Samples from the bioreactor were initially blended with a
10% volume of 5% (w/v) SDS for 10 min. The biomass was
separated by centrifugation at 5,000 g for 30 min and the
sediment washed and resuspended in distilled water to
the appropriate dilution for measuring the optical density
(OD) at 700 nm. A calibration curve was used for deter-
mining the dry weight. The total sugars, reducing sugars,
total amylolytic activity, lactic acid and proteins were
measured in a first aliquot of supernatant. In a second ali-
quot of supernatant, HA was precipitated by mixing the
supernatant with three volumes of ethanol and then cen-
trifuging it at 5,000 g for 10 min. The sediment was redis-
solved with 1 volume of NaCl (1.5 M) and 3 volumes of
ethanol and subsequently centrifuged at 5,000 g for 10
min. Finally, this last sediment was resuspended in dis-
tilled water for HA determination.

HA was analysed by the method developed by Blumen-
krantz and Asboe-Hansen [45] following the proposal
and mathematical corrections defined by Murado et al.
[46]. Other analyses for media and samples (in duplicate)
were: Total nitrogen: determined by the method of
Havilah et al. [47]; Proteins: using the method of Lowry et
al. [48]; Reducing sugars: the 3,5-dinitrosalicylic reaction
[49]; Total sugars: the phenol-sulphuric reaction [50]
according to the application developed by Strickland and
Parsons [51] with glucose as a standard; Total amylolytic
activity: the method described in Murado et al. [52]; LA:
HPLC using an ION-300 column (Transgenomic, USA)
with 6 mM sulphuric acid as the mobile phase (flow = 0.4
ml min-1) at 65°C and a refractive-index detector. The
molecular weight (Mw) of HA was determined by means
of size-exclusion chromatography on HPLC equipped
with an Ultrahydrogel linear column (Waters, USA) with
0.1 M NaNO3 as the mobile phase (flow = 0.6 ml min-1)
and a refractive-index detector. Standards of polystyrene
(Sigma) with different molecular weights (32, 77, 150,
330, 990 and 2600 kDa) were used for calibration.

Mathematical models
In order to model the kinetic profiles of S. zooepidemicus
(growth: X, HA: H, LA: L and carbohydrate-substrate
consumption: S) and to obtain comparative production
parameters, a set of reparameterised logistic equations
and a Luedeking-Piret like equation were used [26,53,54]:

X
Xm
vx
Xm

x t

=
+ + −( )⎡

⎣
⎢

⎤

⎦
⎥1 2

4
exp l

(1)
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Figure 1 Metabolic productions from Streptococcus zooepidemicus batch-cultures in the media specified in Table 1. A: complex medium with 
all commercial chemicals, B: complex medium replacing tryptone by tuna peptone from viscera residues, C: complex medium replacing glucose by 
MPW, D: medium formulated with tuna peptone and MPW. Solid lines represent the fitting functions corresponding to the experimental data (points) 
according to the equations (1-4). X: biomass (black circle); H: hyaluronic acid (black diamond); L: lactic acid (black square). The error bars showed in the 
plots are the confidence intervals of independent experiments (α = 0.05, n = 2).
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Figure 2 Substrate consumptions from Streptococcus zooepidemicus batch-cultures in the media specified in Table 1. S: carbohydrate sub-
strate (white circle); AA: total amylolytic activity (white triangle); RS: reducing sugars (white square); P: proteins (white diamond). The rest of notations 
are similar to the previously described in Figure 1.
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where, X is the biomass production (g l-1), Xm is the
maximum biomass (g l-1), vx is the maximum growth rate
(g l-1 h-1) and λx is the growth lag phase (h).

where H is the HA production (g l-1), Hm the HA pro-
duction (g l-1), vh the maximum HA production rate (g l-1

h-1) and λh the HA lag phase (h).

where, L is the LA production (g l-1), Lm is the maxi-
mum LA production (g l-1), vl is the maximum LA pro-
duction rate (g l-1 h-1) and λl is the LA lag phase (h).

where S is the concentration of the substrate that is
reducing sugars (RS) or total sugars (TS) (in g l-1), S0 the
initial concentration of substrate (g l-1), Yx/s the biomass
yield per substrate consumed (g of biomass g-1 of sub-
strate), X0 the initial biomass (g l-1) and me the mainte-
nance coefficient (g of substrate g-1 of biomass h-1).

The production yields per biomass formed were
obtained by means of the following equations [38]:

where Yh/x is the HA production yield per biomass
formed (g of HA g-1 of biomass) and Yl/x is the LA produc-
tion yield per biomass formed (g of LA g-1 of biomass).

Numerical methods
Fitting procedures and parametric estimations calculated
from the results were carried out by minimising the sum

H
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Figure 3 Molecular weight (Mw) profiles of hyaluronic acid ob-
tained in the cultures from Figure 1. Medium A (white circle), medi-
um B (black square), medium C (white square), medium D (black circle). 
The error bars showed in the plots are the confidence intervals of inde-
pendent experiments (α = 0.05, n = 2).

0

500

1000

1500

2000

2500

3000

0 3 6 9 12 15

t (h)

Figure 4 Cost of hyaluronic acid production in the media studied. 
Results are given as €-costs per g of maximum hyaluronic acid pro-
duced.

A B C D
0

1

2

3

 



Vázquez et al. Microbial Cell Factories 2010, 9:46
http://www.microbialcellfactories.com/content/9/1/46

Page 9 of 10
of quadratic differences between the observed and
model-predicted values using the non-linear least-
squares (Levenberg-Marquadt) method provided by
DataFit 9.0.59 (Oakdale Engineering, USA). This software
was also used to evaluate the significance of the parame-
ters estimated by adjusting the experimental values to the
proposed mathematical models (Student's t test with α =
0.05) and the consistency of these equations (Fisher's F
test with α = 0.05).
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