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Abstract
In this paper, we introduce the new concepts of multidimensional Menger
probabilistic metric spaces and related fixed point for a pair of mappings T :
X × X × · · · × X
︸ ︷︷ ︸

n

→ X and A: X → X . Utilizing the properties of the related triangular

norm and the compatibility of A with T , some multidimensional common fixed point
problems of hybrid probabilistic contractions with a gauge function ϕ are studied.
The obtained results generalize some coupled and triple common fixed point
theorems in the corresponding literature. Finally, an example is given to illustrate our
main results.
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1 Introduction
Coupled fixed points were studied first by Bhaskar and Lakshmikantham []. Since then,
some new results on the existence and uniqueness of coupled fixed points have been pre-
sented in partially ordered metric spaces, cone metric spaces, and fuzzy metric spaces
[–]. The concept of a probabilistic metric space was initiated and studied by Menger,
which is a generalization of the metric space []. Many results for the existence of fixed
points or solutions of nonlinear equations under various types of conditions in Menger
probabilistic spaces (briefly, PM-spaces) have been extensively considered by many schol-
ars [–]. In , Jachymski established a fixed point theorem for ϕ-contractions and
gave a characterization of a function ϕ having the property that there exists a probabilistic
ϕ-contraction, which is not a probabilistic k-contraction (k ∈ [, )) []. In , Xiao et
al. obtained some common coupled fixed point results for hybrid probabilistic contrac-
tions with a gauge function ϕ in Menger probabilistic metric spaces without assuming any
continuity or monotonicity conditions for ϕ []. In , Luo et al. introduced the con-
cept of generalized Menger probabilistic metric spaces and obtained some tripled com-
mon fixed point results with a gauge function ϕ with the same properties in generalized
Menger probabilistic metric spaces [].
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The purpose of this paper is to introduce the new concepts of multidimensional
Menger probabilistic metric spaces and a related fixed point for a pair of mappings T :
X × X × · · · × X
︸ ︷︷ ︸

n

→ X and A: X → X. Utilizing the properties of the related triangular

norm and the compatibility of A with T , some multidimensional common fixed point
problems of hybrid probabilistic contractions with a gauge function ϕ are studied. The
obtained results generalize some coupled and triple common fixed point theorems in the
corresponding literature. Finally, an example is given to illustrate our main results.

2 Preliminaries
Denote by n any given positive integer which is not smaller than , �n the set {, , . . . , n},
Xn the product X × X × · · · × X

︸ ︷︷ ︸

n

, R the set of the real numbers, R+ the set of the non-

negative real numbers, and Z
+ the set of all positive integers. A mapping F : R → R

+ is
called a distribution function if it is nondecreasing left-continuous with supt∈R F(t) = 
and inft∈R F(t) = .

We will denote by D the set of all distribution functions, by D+ = {F ∈ D : F(t) = ,∀t ≤
}, while H will always denote the specific distribution function defined by

H(t) =

{

, t ≤ ,
, t > .

If ϕ: R+ →R
+ is a function such that ϕ() = , then ϕ is called a gauge function. If t ∈R

+,
then ϕn(t) denotes the nth iteration of ϕ(t) and ϕ–({}) = {t ∈R

+ : ϕ(t) = }.
First, we give PM-spaces introduced by Menger with the related triangular norm.

Definition . [] A mapping � : [, ] × [, ] → [, ] is called a triangular norm (for
short, a t-norm) if the following conditions are satisfied for any a, b, c, d ∈ [, ]:

() �(a, ) = a;
() �(a, b) = �(b, a);
() �(a, c) ≥ �(b, d) for a ≥ b, c ≥ d;
() �(a,�(b, c)) = �(�(a, b), c).

Definition . [] A triplet (X,F ,�) is called a Menger probabilistic metric space (for
short, a Menger PM-space) if X is a nonempty set, � is a t-norm, and F is a mapping from
X × X into D+ satisfying the following conditions (we denote F (x, y) by Fx,y):

(MS-) Fx,y(t) = H(t) for all t ∈ R if and only if x = y;
(MS-) Fx,y(t) = Fy,x(t) for all t ∈ R;
(MS-) Fx,y(t + s) ≥ �(Fx,z(t), Fz,y(s)) for all x, y, z ∈ X and t, s ≥ .
Then we give the generalized Menger PM-spaces introduced by Luo et al. with the re-

lated triangular norm.

Definition . [] A mapping � : [, ]× [, ]× [, ] → [, ] is called a triangular norm
(for short, a t-norm) if the following conditions are satisfied for any a, b, c, d, e, f ∈ [, ]:

() �(a, , ) = a, �(, , ) = ;
() �(a, b, c) = �(a, c, b) = �(c, b, a);
() �(a, b, c) ≥ �(d, e, f ) for a ≥ d, b ≥ e, c ≥ f ;
() �(a,�(b, c, d), e) = �(�(a, b, c), d, e) = �(a, b,�(c, d, e)).
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Definition . [] A triplet (X,F ,�) is called a generalized Menger probabilistic metric
space (for short, a generalized Menger PM-space) if X is a nonempty set, � is a t-norm,
and F is a mapping from X × X into D+ satisfying the following conditions (we denote
F (x, y) by Fx,y):

(GPM-) Fx,y(t) = H(t) for all t ∈ R if and only if x = y;
(GPM-) Fx,y(t) = Fy,x(t) for all t ∈ R;
(GPM-) Fx,w(t + t + t) ≥ �(Fx,y(t), Fy,z(t), Fz,w(t)) for all x, y, z, w ∈ X and

t, t, t ≥ .

Now, we introduce the definition of multidimensional Menger probabilistic metric
spaces with the related triangular norm.

Definition . A mapping �: [, ] × [, ] × · · · × [, ]
︸ ︷︷ ︸

n

→ [, ] is called a triangular

norm (for short, a t-norm) if the following conditions are satisfied for any a, a, . . . , an,
an+, . . . , an ∈ [, ]:

() �(a, , . . . , ) = a, �(, , . . . , ) = ;
() �(a, a, . . . , an–, an–, an) = �(a, an, . . . , an–, an–) = �(a, an, an–, . . . , an–) = · · · =

�(a, an, an–, an–, . . . , a) = �(an, an–, an–, . . . , a, a);
() �(a, a, . . . , an) ≥ �(an+, an+, . . . , an) for a ≥ an+, a ≥ an+, . . . , an ≥ an;
() �(�(a, a, . . . , an), an+, . . . , an–) = �(a,�(a, . . . , an+), an+ · · · , an–) = · · · =

�(a, . . . , an–,�(an, an+, . . . , an–)).

Two typical examples of t-norm are �M(a, a, . . . , an) = min{a, a, . . . , an} and �P(a, a,
. . . , an) = aa · · ·an for all a, a, . . . , an ∈ [, ].

Definition . A triplet (X,F ,�) is called a multidimensional Menger probabilistic met-
ric space (for short, a multidimensional Menger PM-space) if X is a nonempty set, � is a
t-norm and F is a mapping from X × X into D+ satisfying the following conditions (we
denote F (x, y) by Fx,y):

(MPM-) Fx,y(t) = H(t) for all t ∈ R if and only if x = y;
(MPM-) Fx,y(t) = Fy,x(t) for all t ∈ R;
(MPM-) Fx,xn+ (t + t + · · · + tn) ≥ �(Fx,x (t), Fx,x (t), . . . , Fxn ,xn+ (tn)) for all

x, x, . . . , xn+ ∈ X and t, t, . . . , tn ≥ .

Remark . If n = , the multidimensional Menger PM-space is a Menger PM-space.
While n = , the multidimensional Menger PM-space is a generalized Menger PM-space.

Remark . If � = �M , the multidimensional Menger PM-space is a Menger PM-space.
In fact, let x = x, x = z, . . . , xn = z, xn+ = y in (MPM-), then for any t, s, δ ≥ , (n – )δ ≤ s,
we have

Fx,y(t + s) ≥ min
{

(Fx,z(t), Fz,z(δ), . . . , Fz,z(δ), Fz,y
(

s – (n – )δ
)}

.

Thus we have

Fx,y(t + s) ≥ min
{

(Fx,z(t), Fz,y
(

s – (n – )δ
)}

.
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Taking δ → , we obtain

Fx,y(t + s) ≥ min
{

(Fx,z(t), Fz,y(s)
}

.

Therefore, if � = �M , the multidimensional Menger PM-space is a Menger PM-space.

Example . Suppose that X = [–, ]. Define F : X × X → D+ by

Fx,y(t) = Fx,y(t) =

{

t
t+|x–y| , t > ,
, t ≤ ,

for all x, y ∈ X. It is easy to verify that (X,F ,�M) satisfies (MPM-) and (MPM-). Now we
prove it also satisfies (MPM-). Assume that t, t, . . . , tn ≥  and x, x, . . . , xn+ ∈ X. Then
we have

Fx,xn+ (t + · · · + tn) =
t + · · · + tn

t + · · · + tn + |x – xn+|
≥ t + · · · + tn

t + · · · + tn + |x – x| + · · · + |xn – xn+|

≥ min

{

t

t + |x – x| , . . . ,
tn

tn + |xn – xn+|
}

= �M
(

Fx,x (t), . . . , Fxn ,xn+ (tn)
)

.

Hence (X,F ,�M) a multidimensional Menger PM-space.

Proposition . Let (X,F ,�) be a multidimensional Menger PM-space and � be a con-
tinuous t-norm. Then (X,F ,�) is a Hausdorff topological space in the (ε,λ)-topology T ,
i.e., the family of sets

{

Ux(ε,λ) : ε > ,λ ∈ (, ], x ∈ X
}

is a base of neighborhoods of a point x for F , where

Ux(ε,λ) =
{

y ∈ X : Fx,y(ε) >  – λ
}

.

Proof It suffices to prove that:
(i) for any x ∈ X , there exists an U = Ux(ε,λ) such that x ∈ U ;

(ii) for any given Ux(ε,λ) and Ux(ε,λ), there exist ε >  and λ > , such that
Ux(ε,λ) ⊂ Ux(ε,λ) ∩ Ux(ε,λ);

(iii) for any y ∈ Ux(ε,λ), there exist ε′ >  and λ′ > , such that Uy(ε′,λ′) ⊂ Ux(ε,λ);
(iv) for any x, y ∈ X , x 
= y, there exist Ux(ε,λ) and Uy(ε,λ), such that

Ux(ε,λ) ∩ Uy(ε,λ) = ∅.
It is easy to check that (i)-(iii) are true. Now we prove that (iv) is also true. In fact, suppose

that x, y ∈ X and x 
= y. Then there exist t >  and  < a < , such that Fx,y(t) = a. Let

Ux =
{

r : Fx,r

(

t

n

)

> b
}

, Uy =
{

r : Fy,r

(

t

n

)

> b
}

,
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where  < b <  and �(b, , . . . , 
︸ ︷︷ ︸

n–

, b) > a (since � is continuous and �(, . . . , ) = , such b

exists). Now suppose that there exists a point v ∈ Ux ∩ Uy, which implies that Fx,v( t
n ) > b

and Fy,v( t
n ) > b. Then we have

a = Fx,y(t) ≥ �

(

Fx,v

(

t

n

)

, Fv,v

(

t

n

)

, . . . , Fv,v

(

t

n

)

︸ ︷︷ ︸

n–

, Fv,y

(

t

n

))

≥ �(b, , . . . , 
︸ ︷︷ ︸

n–

, b) > a,

which is a contradiction. Thus the conclusion (iv) is proved. This completes the proof.
�

Definition . Let (X,F ,�) be a multidimensional Menger PM-space, � be a continu-
ous t-norm.

(i) A sequence {xm} in X is said to be T -convergent to x ∈ X if limm→∞ Fxm ,x =  for
all t > ;

(ii) a sequence {xm} in X is said to be a T -Cauchy sequence, if for any given ε >  and
λ ∈ (, ], there exists a positive integer N = N(ε,λ), such that Fxm ,xk (ε) >  – λ,
whenever m, k ≥ N ;

(iii) (X,F ,�) is said to be T -complete, if each T -Cauchy sequence in X is
T -convergent to some point in X .

Definition . A t-norm � is said to be H-type if the family of functions {�m(t)}∞m= is
equi-continuous at t = , where

�(t) = �(t, . . . , t), �m+(t) = �
(

t, . . . , t
︸ ︷︷ ︸

n–

,�m(t)
)

, m = , , . . . , t ∈ [, ].

Definition . Let X be a nonempty set, T : Xn → X and A : X → X be two mappings.
A is said to be commutative with T , if AT(x, . . . , xn) = T(Ax, . . . , Axn) for all x, . . . xn ∈ X.
A point u ∈ X is called a multidimensional common fixed point of T and A, if u = Au =
T(u, . . . , u).

Definition . Let X be a nonempty set, T : Xn → X and A : X → X be two mappings.
Let {x

m}, . . . , {xn
m} be n sequences in X and σ, . . . ,σn be n permutations of �n. A and T are

said to be compatible in (X,F ,�) if

lim
m→∞ F

AT(xσi()
m ,...,xσi(n)

m ),T(Axσi()
m ,...,Axσi(n)

m )
(t) = 

for all i = , . . . , n and t > , whenever

lim
m→∞ T

(

xσi()
m , . . . , xσi(n)

m
)

= lim
m→∞ Axi

m ∈ X

for all i = , . . . , n;
A and T are said to be compatible in (X, d) where (X, d) is a usual metric space if

lim
m→∞ d

(

AT
(

xσi()
m , . . . , xσi(n)

m
)

, T
(

Axσi()
m , . . . , Axσi(n)

m
))

= 
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for all i = , . . . , n and t > , whenever

lim
m→∞ T

(

xσi()
m , . . . , xσi(n)

m
)

= lim
m→∞ Axi

m ∈ X

for all i = , . . . , n.
Obviously, if T and A are commutative, then they are compatible, but the converse does

not hold.

The following lemmas play an important role in proving our main results in Section .

Lemma . [] Suppose that F ∈ D+. For every m ∈ Z+, let Fm : R → [, ] be nondecreas-
ing and gm : (, +∞) → (, +∞) satisfy limm→∞ gm(t) =  for any t > . If Fm(gm(t)) ≥ F(t)
for any t > , then limm→∞ Fm(t) =  for any t > .

Lemma . Let X be a nonempty set, and T : Xn → X and A : X → X be two mappings.
If T(Xn) ⊂ A(X), then there exist n sequences {x

m}∞m=, . . . , {xn
m}∞m= in X, such that Ax

m+ =
T(x

m, x
m, . . . , xn

m), Ax
m+ = T(x

m, x
m, . . . , xn

m, x
m), . . . , Axn

m+ = T(xn
m, x

m, . . . , xn–
m ).

Proof Let x
, x

, . . . , xn
 be any given points in X. Since T(Xn) ⊂ A(X), we can choose

x
, x

 , . . . , xn
 ∈ X such that Ax

 = T(x
, x

, . . . , xn
), Ax

 = T(x
, x

, . . . , xn
, x

), . . . , Axn
 =

T(xn
, x

, . . . , xn–
 ). Continuing this process, we can construct n sequences {x

m}∞m=, . . . ,
{xn

m}∞m= in X, such that

Ax
m+ = T

(

x
m, x

m, . . . , xn
m
)

, Ax
m+ = T

(

x
m, x

m, . . . , xn
m, x

m
)

, . . . ,

Axn
m+ = T

(

xn
m, x

m, . . . , xn–
m

)

. �

Lemma . [] Let (X, d) is a usual metric space. Define F : X × X → D+ by

Fx,y = H
(

t – d(x, y)
)

, for x, y ∈ X and t > .

Then (X,F ,�M) is a Menger PM-space and is called the induced Menger PM-space by
(X, d). It is complete if (X, d) is complete.

Lemma . [] Let ϕ(t) : R+ →R
+ be a function. Let a, b, t ∈R

+. Then we have

H(t – a) ≥ H
(

ϕ(t) – b
)

if and only if ϕ(b) ≤ a.

3 Main results
In this section, we shall give the main results of this paper.

Theorem . Let (X,F ,�) be a complete multidimensional Menger PM-space with � a
continuous related t-norm of H-type, ϕ: R+ →R

+ be a gauge function such that ϕ–({}) =
{}, ϕ(t) < t, and limm→+∞ ϕm(t) =  for any t > . Let T : Xn → X and A: X → X be two
mappings satisfying the following conditions:

FT(x,x,...,xn),T(y,y,...,yn)
(

ϕ(t)
) ≥ [

FAx,Ay (t)FAx,Ay (t) · · ·FAxn ,Ayn (t)
] 

n (.)
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for all x, x, . . . , xn, y, y, . . . , yn ∈ X, and t > , where T(Xn) ⊂ A(X), A is continuous and
compatible with T . Then T and A have a unique multidimensional common fixed point
in X.

Proof By Lemma ., we can construct n sequences {x
m}∞m=, . . . , {xn

m}∞m= in X, such that
Ax

m+ = T(x
m, x

m, . . . , xn
m), Ax

m+ = T(x
m, x

m, . . . , xn
m, x

m), . . . , Axn
m+ = T(xn

m, x
m, . . . , xn–

m ).
From (.), for all t > , we have

FAx
m ,Ax

m+

(

ϕ(t)
)

= FT(x
m–,x

m–,...,xn
m–),T(x

m ,x
m ,...,xn

m)
(

ϕ(t)
)

≥ [

FAx
m–,Ax

m
(t)FAx

m–,Ax
m

(t) · · ·FAxn
m–,Axn

m (t)
] 

n ,

FAx
m ,Ax

m+

(

ϕ(t)
)

= FT(x
m–,x

m–,...,x
m–),T(x

m ,x
m ,...,x

m)
(

ϕ(t)
)

≥ [

FAx
m–,Ax

m
(t)FAx

m–,Ax
m

(t) · · ·FAx
m–,Ax

m
(t)

] 
n ,

...

FAxn
m ,Axn

m+

(

ϕ(t)
)

= FT(xn
m–,x

m–,...,xn–
m–),T(xn

m ,x
m ,...,xn–

m )
(

ϕ(t)
)

≥ [

FAxn
m–,Axn

m (t)FAx
m–,Ax

m
(t) · · ·FAxn–

m–,Axn–
m

(t)
] 

n .

(.)

Denote Pm(t) = [FAx
m–,Ax

m
(t)FAx

m–,Ax
m

(t) · · ·FAxn
m–,Axn

m (t)] 
n . From (.), we have

Pm+
(

ϕ(t)
)

=
[

FAx
m ,Ax

m+

(

ϕ(t)
)

FAx
m ,Ax

m+

(

ϕ(t)
) · · ·FAxn

m ,Axn
m+

(

ϕ(t)
)] 

n

≥ [

Pm(t)Pm(t) · · ·Pm(t)
︸ ︷︷ ︸

n

] 
n = Pm(t),

which implies that

FAx
m ,Ax

m+

(

ϕm(t)
) ≥ Pm

(

ϕm–(t)
) ≥ · · ·P(t),

FAx
m ,Ax

m+

(

ϕm(t)
) ≥ Pm

(

ϕm–(t)
) ≥ · · ·P(t),

...

FAx
m ,Ax

m+

(

ϕm(t)
) ≥ Pm

(

ϕm–(t)
) ≥ · · ·P(t).

(.)

Since P(t) = [FAx
,Ax


(t)FAx

,Ax

(t) · · ·FAxn

,Axn

(t)] 

n ∈ D+ and limm→∞ ϕm(t) =  for each
t > , using Lemma ., we have

lim
m→∞ FAx

m ,Ax
m+

(t) = , FAx
m ,Ax

m+
(t) = , . . . , FAxn

m ,Axn
m+

(t) = . (.)

Thus

lim
m→∞ Pm(t) = , ∀t > . (.)
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We claim that, for any k ∈ Z
+ and t > ,

FAx
m ,Ax

m+k
(t) ≥ �k

(

Pm

(

t – ϕ(t)
n – 

))

,

FAx
m ,Ax

m+k
(t) ≥ �k

(

Pm

(

t – ϕ(t)
n – 

))

,

...

FAxn
m ,Axn

m+k
(t) ≥ �k

(

Pm

(

t – ϕ(t)
n – 

))

.

(.)

In fact, by (.) and ϕ(t) < t, we can conclude that (.) holds for k =  since
FAx

m ,Ax
m+

(t) ≥ FAx
m ,Ax

m+
(ϕ(t)) ≥ Pm(t) ≥ Pm( t–ϕ(t)

n– ) ≥ �(Pm( t–ϕ(t)
n– )). Assume that (.)

holds for some k. Since ϕ(t) < t, by the first inequality of (.), we have FAx
m ,Ax

m+
(t) ≥

FAx
m ,Ax

m+
(ϕ(t)) ≥ Pm(t). By (.) and (.), we have

FAx
m+,Ax

m+k+

(

ϕ(t)
) ≥ [

FAx
m ,Ax

m+k
(t)FAx

m ,Ax
m+k

(t) · · ·FAxn
m ,Axn

m+k
(t)

] 
n

≥ �k
(

Pm

(

t – ϕ(t)
n – 

))

.

Hence, by the monotonicity of �, we have

FAx
m ,Ax

m+k+
(t) = FAx

m ,Ax
m+k+

(

t – ϕ(t) + ϕ(t)
)

≥ �

(

FAx
m ,Ax

m+

(

t – ϕ(t)
n – 

)

, . . . , FAx
m ,Ax

m+

(

t – ϕ(t)
n – 

)

,

FAx
m+,Ax

m+k+

(

ϕ(t)
)

)

≥ �

(

Pm

(

t – ϕ(t)
n – 

)

, . . . , Pm

(

t – ϕ(t)
n – 

)

,�k
(

Pm

(

t – ϕ(t)
n – 

)))

= �k+
(

Pm

(

t – ϕ(t)
n – 

))

.

Similarly, we have FAx
m ,Ax

m+k+
(t) ≥ �k+(Pm( t–ϕ(t)

n– )), . . . , FAxn
m ,Axn

m+k+
(t) ≥ �k+(Pm( t–ϕ(t)

n– )).
Therefore, by induction, (.) holds for all k ∈ Z

+ and t > .
Suppose that λ ∈ (, ] is given. Since � is a t-norm of H-type, there exists δ >  such

that

�k(s) >  – λ, s ∈ ( – δ, ], k ∈ Z
+. (.)

By (.), there exists M ∈ Z
+, such that Pm( t–ϕ(t)

n– ) >  – δ for all m ≥ M. Hence, from (.)
and (.), we get FAx

m ,Ax
m+k

(t) >  – λ, FAx
m ,Ax

m+k
(t) >  – λ, . . . , FAxn

m ,Axn
m+k

(t) >  – λ for all
m ≥ M, k ∈ Z

+. Therefore {Ax
m}, {Ax

m}, . . . , {Axn
m} are n Cauchy sequences.

Since (X,F ,�) is complete, there exist u, u, . . . , un ∈ X, such that

lim
m→∞ Ax

m = u, lim
m→∞ Ax

m = u, . . . , lim
m→∞ Axn

m = un.
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By the continuity of A, we have

lim
m→∞ AAx

m = Au, lim
m→∞ AAx

m = Au, . . . , lim
m→∞ AAxn

m = Aun.

The compatibility of A with T implies that

lim
m→∞ FAT(x

m ,x
m ,...,xn

m),T(Ax
m ,Ax

m ,...,Axn
m)(t) = , . . . ,

lim
m→∞ FAT(xn

m ,x
m ,...,xn–

m ),T(Axn
m ,Ax

m ,...,Axn–
m )(t) = ,

where σ = (, , . . . , n),σ = (, , . . . , ), . . . ,σn = (n, , . . . , n – ).
From (.) and ϕ(t) < t, we obtain

FAAx
m+,T(u,u,...,un)(t) = FAAx

m+,T(u,u,...,un)
(

t – ϕ(t) + ϕ(t)
)

≥ �

(

FAAx
m+,T(Ax

m ,Ax
m ,...,Axn

m)

(

t – ϕ(t)
n – 

)

,

FT(Ax
m ,Ax

m ,...,Axn
m),T(Ax

m ,Ax
m ,...,Axn

m)

(

t – ϕ(t)
n – 

)

, . . . ,

FT(Ax
m ,Ax

m ,...,Axn
m),T(Ax

m ,Ax
m ,...,Axn

m)

(

t – ϕ(t)
n – 

)

,

FT(Ax
m ,Ax

m ,...,Axn
m),T(u,u,...,un)

(

ϕ(t)
)

)

= �

(

FAAx
m+,T(Ax

m ,Ax
m ,...,Axn

m)

(

t – ϕ(t)
n – 

)

, , . . . , ,

FT(Ax
m ,Ax

m ,...,Axn
m),T(u,u,...,un)

(

ϕ(t)
)

)

. (.)

From (.), we have

FT(Ax
m ,Ax

m ,...,Axn
m),T(u,u,...,un)

(

ϕ(t)
) ≥ [

FAAx
m ,Au (t)FAAx

m ,Au (t) · · ·FAAxn
m ,Aun (t)

] 
n . (.)

Combining (.) with (.) and letting m → ∞, we obtain limm→∞ AAx
m = T(u, u,

. . . , un). Hence T(u, u, . . . , un) = Au. Similarly, we can show that T(u, u, . . . , u) =
Au, T(u, u, . . . , u) = Au, . . . , T(un, u, . . . , un–) = Aun.

Next we show that Au = u, Au = u, . . . , Aun = un. In fact, from (.), for all t > , we
have

FAu,Ax
m

(

ϕ(t)
)

= FT(u,u,...,un),T(x
m–,x

m–,...,xn
m–)

(

ϕ(t)
)

≥ [

FAu,Ax
m–

(t), FAu,Ax
m–

(t), . . . , FAun ,Axn
m–

(t)
] 

n ,

FAu,Ax
m

(

ϕ(t)
)

= FT(u,u,...,u),T(x
m–,x

m–,...,x
m–)

(

ϕ(t)
)

≥ [

FAu,Ax
m–

(t), FAu,Ax
m–

(t), . . . , FAu,Ax
m–

(t)
] 

n ,

... (.)
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FAun ,Axn
m

(

ϕ(t)
)

= FT(un ,u,...,un–),T(xn
m–,x

m–,...,xn–
m–)

(

ϕ(t)
)

≥ [

FAun ,Axn
m–

(t), FAu,Ax
m–

(t), . . . , FAun–,Axn–
m–

(t)
] 

n .

Denote Qm(t) = [FAu,Ax
m

(t), FAu,Ax
m

(t), . . . , FAun ,Axn
m (t)] 

n . By (.), we have Qm(ϕ(t)) ≥
Qm–(t), and hence for all t > 

Qm
(

ϕm(t)
) ≥ Qm–

(

ϕm–(t)
) ≥ · · · ≥ Q(t).

Thus, for all t > , we have

FAu,A
m

(

ϕm(t)
) ≥ Q(t), FAu,A

m

(

ϕm(t)
) ≥ Q(t), . . . ,

FAun ,An
m

(

ϕm(t)
) ≥ Q(t).

Since Q(t) ∈ D+ and limm→∞(ϕm(t)) =  for all t > , by Lemma ., we conclude that

lim
m→∞ Ax

m = Au, lim
m→∞ Ax

m = Au, . . . , lim
m→∞ Axn

m = Aun. (.)

This shows that Au = u, Au = u, . . . , Aun = un. Hence u = T(u, u, . . . , un), u =
T(u, u, . . . , u), . . . , un = T(un, u, . . . , un–). Finally, we prove that u = u = · · · = un.

Fu,u
(

ϕ(t)
)

= FT(u,u,...,un–,un),T(u,u,...,un ,u)
(

ϕ(t)
)

≥ [

FAu,Au (t), FAu,Au (t), . . . , FAun–,Aun (t), FAun ,Au (t)
] 

n

=
[

Fu,u (t), Fu,u (t), . . . , Fun–,un (t), Fun ,u (t)
] 

n ,

Fu,u
(

ϕ(t)
)

= FT(u,u,...,un ,u),T(u,u,...,u,u)
(

ϕ(t)
)

≥ [

FAu,Au (t), FAu,Au (), . . . , FAun ,Au (t), FAu,Au (t)
] 

n

=
[

Fu,u (t), Fu,u (t), . . . , Fun–,un (t), Fun ,u (t)
] 

n ,

...

Fun ,u
(

ϕ(t)
)

= FT(un ,u,...,un–,un–),T(u,u,...,un–,un)
(

ϕ(t)
)

≥ [

FAun ,Au (t), FAu,Au (t), . . . , FAun–,Aun– (t), FAun–,Aun (t)
] 

n

=
[

Fu,u (t), Fu,u (t), . . . , Fun–,un (t), Fun ,u (t)
] 

n .

(.)

Denote R(t) = [Fu,u (t), Fu,u (t), . . . , Fun–,un (t), Fun ,u (t)] 
n . From (.), we have

R
(

ϕm(t)
) ≥ R

(

ϕm–(t)
) ≥ · · · ≥ R(t).

Since R(t) ∈ D+, by Lemma ., we get u = u = · · · = un. Hence, there exists u ∈ X, such
that u = Au = T(u, . . . , u).

Finally, we show the uniqueness of the multidimensional common fixed point of T
and A. Suppose that v is another the multidimensional common fixed point of T and A,
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i.e., v = Av = T(v, . . . , v). By (.), for all t > , we have

Fu,v
(

ϕ(t)
)

= FT(u,u,...,u),T(v,v,...,v)
(

ϕ(t)
)

≥ [

FAu,Av(t)FAu,Av(t) · · ·FAu,Av(t)
] 

n

= FAu,Av(t) = Fu,v(t), (.)

which implies that Fu,v(ϕm(t)) ≥ Fu,v(t) for all t > . Using Lemma ., we have Fu,v(t) = 
for all t > , i.e., u = v. This completes the proof. �

Remark . If n = , Theorem . generalizes Theorem . in []. While n = , Theo-
rem . generalizes Theorem . in [].

From Theorem ., we can obtain the following corollaries.

Corollary . Let (X,F ,�) be a complete multidimensional Menger PM-space with � a
continuous related t-norm of H-type, ϕ: R+ →R

+ be a gauge function such that ϕ–({}) =
{}, ϕ(t) < t, and limm→∞ ϕm(t) =  for any t > . Let T : Xn → X and A: X → X be two
mappings satisfying the following conditions:

FT(x,x,...,xn),T(y,y,...,yn)
(

ϕ(t)
) ≥ [

FAx,Ay (t)FAx,Ay (t) · · ·FAxn ,Ayn (t)
] 

n (.)

for all x, x, . . . , xn, y, y, . . . , yn ∈ X, and t > , where T(Xn) ⊂ A(X), A is continuous and
commutative with T . Then T and A have a unique multidimensional common fixed point
in X.

If ϕ : R+ → R
+ be a gauge function such that limm→∞

∑∞
m= ϕm(t) < ∞ for any t > , we

can obtain limm→∞ ϕm(t) = . Hence we have Corollary . as follows.

Corollary . Let (X,F ,�) be a complete multidimensional Menger PM-space with � a
continuous related t-norm of H-type, and � ≥ �P , ϕ: R+ → R

+ be a gauge function such
that ϕ–({}) = {}, ϕ(t) < t, and limm→∞

∑∞
m= ϕm(t) < ∞ for any t > . Let T : Xn → X and

A: X → X be two mappings satisfying the following conditions:

FT(x,x,...,xn),T(y,y,...,yn)
(

ϕ(t)
) ≥ [

�
(

FAx,Ay (t), FAx,Ay (t), . . . , FAxn ,Ayn (t)
)] 

n (.)

for all x, x, . . . , xn, y, y, . . . , yn ∈ X, and t > , where T(Xn) ⊂ A(X), A is continuous and
commutative with T . Then T and A have a unique multidimensional common fixed point
in X.

Let A = I (I is the identity mapping) in Corollary ., we can obtain the following corol-
lary.

Corollary . Let (X,F ,�) be a complete multidimensional Menger PM-space with � a
continuous related t-norm of H-type, and � ≥ �P , ϕ: R+ → R

+ be a gauge function such
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that ϕ–({}) = {}, ϕ(t) < t, and limm→∞
∑∞

m= ϕm(t) < ∞ for any t > . Let T : Xn → X be
a mapping satisfying the following conditions:

FT(x,x,...,xn),T(y,y,...,yn)
(

ϕ(t)
) ≥ [

�
(

Fx,y (t), Fx,y (t), . . . , Fxn ,yn (t)
)] 

n (.)

for all x, x, . . . , xn, y, y, . . . , yn ∈ X, and t > . Then T has a unique multidimensional fixed
point in X.

Letting ϕ(t) = αt ( < α < ) in Corollary ., we can obtain the following corollary.

Corollary . Let (X,F ,�) be a complete multidimensional Menger PM-space with � a
continuous related t-norm of H-type, and � ≥ �P . Let T : Xn → X and A : X → X be two
mappings satisfying the following conditions:

FT(x,x,...,xn),T(y,y,...,yn)(αt) ≥ [

�
(

FAx,Ay (t), FAx,Ay (t), . . . , FAxn ,Ayn (t)
)] 

n (.)

for all x, x, . . . , xn, y, y, . . . , yn ∈ X, and t > , where T(Xn) ⊂ A(X), A is continuous and
commutative with T . Then T and A have a unique multidimensional common fixed point
in X.

From the proof of Theorem ., we can similarly prove the following result.

Theorem . Let (X,F ,�) be a complete multidimensional Menger PM-space with � a
continuous related t-norm of H-type, ϕ: R+ →R

+ be a gauge function such that ϕ–({}) =
{}, ϕ(t) > t, and limm→∞ ϕm(t) = +∞ for any t > . Let T : Xn → X and A : X → X be two
mappings satisfying the following conditions:

FT(x,x,...,xn),T(y,y,...,yn)(t) ≥ min
{

FAx,Ay

(

ϕ(t)
)

, FAx,Ay

(

ϕ(t)
)

, . . . , FAxn ,Ayn

(

ϕ(t)
)}

(.)

for all x, x, . . . , xn, y, y, . . . , yn ∈ X, and t > , where T(Xn) ⊂ A(X) and A is continuous
and compatible with T . Then T and A have a unique multidimensional common fixed
point in X.

Remark . If n = , Theorem . generalizes Theorem . in []. While n = , Theo-
rem . generalizes Theorem . in [].

Letting A = I (I is the identity mapping) in Theorem ., we can obtain the following
corollary.

Corollary . Let (X,F ,�) be a complete multidimensional Menger PM-space with � a
continuous related t-norm of H-type, ϕ: R+ →R

+ be a gauge function such that ϕ–({}) =
{}, ϕ(t) > t, and limm→∞ ϕm(t) = ∞ for any t > . Let T : Xn → X be a mapping satisfying
the following conditions:

FT(x,x,...,xn),T(y,y,...,yn)(t) ≥ min
{

Fx,y

(

ϕ(t)
)

, Fx,y

(

ϕ(t)
)

, . . . , Fxn ,yn

(

ϕ(t)
)}

(.)

for all x, x, . . . , xn, y, y, . . . , yn ∈ X, and t > . Then T and A have a unique multidimen-
sional common fixed point in X.
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Theorem . Let (X, d) be a complete metric space, ϕ: R+ →R
+ be a gauge function such

that ϕ–({}) = {}, ϕ(t) > t, and limm→∞ ϕm(t) = +∞ for any t > . Let T : Xn → X and A:
X → X be two mappings satisfying the following conditions:

ϕ
(

d
(

T(x, x, . . . , xn), T(y, y, . . . , yn)
))

≤ max
{

d(Ax, Ay), d(Ax, Ay), . . . , d(Axn, Ayn)
}

(.)

for all x, x, . . . , xn, y, y, . . . , yn ∈ X, and t > , where T(Xn) ⊂ A(X), A is continuous and
compatible with T . Then T and A have a unique multidimensional common fixed point
in X.

Proof Take � = �M and Fx,y(t) = H(t – d(x, y)). Then by Lemma . and Remark .,
(X,F ,�M) is a complete multidimensional Menger PM-space (or a Menger PM-space).
From Lemma . and (.), we have

FT(x,x,...,xn),T(y,y,...,yn)(t) = H(t – d
(

T(x, x, . . . , xn), T(y, y, . . . , yn)
)

≥ H
(

ϕ(t) – max
{

d(Ax, Ay), d(Ax, Ay), . . . , d(Axn, Ayn)
})

= min
{

H
(

ϕ(t) – d(Ax, Ay)
)

, . . . , H
(

ϕ(t) – d(Axn, Ayn)
)}

= min
{

FAx,Ay

(

ϕ(t)
)

, . . . , FAxn ,Ayn

(

ϕ(t)
)}

. (.)

Hence the conclusion follows from Theorem .. �

4 An application
In this section, we will provide an example to exemplify the validity of the main result of
this paper.

Example . Suppose that X ∈ [–, ] ⊂ R, � = �M . Then �M is a t-norm of H-type and
�M ≥ �P . Define F : X × X → D by

Fx,y(t) = Fx,y(t) =

⎧

⎨

⎩

e– |x–y|
t , t > , x, y ∈ X,

, t ≤ , x, y ∈ X.

We claim that (X,F ,�M) is a multidimensional Menger PM-space. In fact, it is easy to
verify (MPM-) and (MPM-). Assume that for any t, t, . . . , tn > , and x, x, . . . , xn+ ∈ X,

�M
(

Fx,x (t), Fx,x (t), . . . , Fxn ,xn+ (tn)
)

= min
{

e– |x–x|
t , e– |x–x|

t , e– |xn–xn+|
tn

}

= e– |x–x|
t .

Then we have t|x – x| ≤ t|x – x|, t|x – x| ≤ t|x – x|, . . . , t|xn – xn+| ≤ tn|x – x|,
and so t+t+···+tn

t
|x – x| ≥ |x – x| + |x – x| + · · · + |xn – xn+| ≥ |x – xn+|. It follows that

Fx,xn+ (t + t + · · · + tn) = e– |x–xn+|
t+t+···+tn ≥ e– |x–x|

t

= �M
(

Fx,x (t), Fx,x (t), . . . , Fxn ,xn+ (tn)
)

.
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Hence (MPM-) holds. It is obvious that (X,F ,�M) is complete. Suppose that ϕ(t) = t
n ,

then it is easy to verify that ϕ–({}) = {}, ϕ(t) < t, and limm→∞
∑∞

m= ϕm(t) < ∞ for any
t > . For x, x, . . . , xn ∈ X, define T : Xn → X as follows:

T(x, x, . . . , xn) =


n –
x


n –

x


n – · · · –
x

n–
n –

|xn|
n .

Then, for each t >  and x, x, . . . , xn, y, y, . . . , yn ∈ X, we have

∣

∣

(

x
 – y


)

+ · · · +
(

x
n– – y

n–
)

+ n
(|xn| – |yn|

)∣

∣

≤ |x – y|
(|x| + |y|

)

+ · · · + |xn– – yn–|
(|xn–| + |yn–|

)

+ n
(|xn| – |yn|

)

≤ n max
{|x – y|, . . . , |xn – yn|

}

,

and so

FT(x,x,...,xn–,xn),T(y,y,...,yn–,yn)
(

ϕ(t)
)

= FT(x,x,...,xn–,xn),T(y,y,...,yn–,yn)

(

t
n

)

= e–
|(x

 –y
 )+···+(x

n––y
n–)+n(|xn|–yn)|

nt

≥ min
{

e– |x–y |
nt , e– |x–y|

nt , . . . , e– |xn–yn|
nt

}

=
[

�M
(

Fx,y (t), Fx,y (t), . . . , Fxn ,yn (t)
)] 

n .

Thus, all conditions of Corollary . are satisfied. Therefore, T has a unique fixed point
in X.
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