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Abstract
In this paper, we establish the relationship between the Cauchy type problem for
interval-valued fractional differential equations with the Riemann-Liouville
gH-fractional derivative and the corresponding interval-valued integral equation.
Moreover, we also consider the existence of the solutions to the interval-valued
integral equation. Furthermore, we obtain the solutions to the Cauchy type problem
under certain conditions.
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1 Introduction
Fractional calculus can be regarded as a generalization of ordinary differentiation and in-
tegration to any real or complex order. In the past few decades, the subject has gained
considerable popularity and importance due mainly to its demonstrated applications in
many fields, such as rheology, viscoelasticity, electrochemistry, electromagnetism, diffu-
sion processes, and so on. It does indeed provide several potentially useful tools for solving
differential and integral equations, and various other problems involving special functions
of mathematical physics. For more details, the reader can refer to several important mono-
graphs, such as Oldham and Spanier [], Miller and Ross [], Podlubny [], Kilbas et al.
[], Laksmikantham et al. [], etc.

In practice, many problems are often associated with different types of imprecision,
for instance, randomness and uncertainty. Accordingly, it is necessary to take into ac-
count imprecision to study some dynamical systems. Interval numbers and fuzzy num-
bers are two important tools to deal with uncertainty problems. In , Agarwal et al.
[] first introduced the concept of solution for fractional differential equations in the
space of fuzzy numbers. In the following year, Arshad and Lupulescu [] defined the
concepts of fuzzy fractional integral and fuzzy fractional derivative by means of level
sets of fuzzy numbers. Meantime, they also proved the existence and uniqueness to the
initial value problem for fuzzy fractional differential equations. Hereafter, Allahviran-
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loo et al. [] introduced the notion of fuzzy Riemann-Liouville fractional derivative (or
Riemann-Liouville H-derivative) based on the Hukuhara difference (or H-difference) of
fuzzy numbers. In essence, this definition is based on the strongly generalized derivative
(G-derivative) of fuzzy number-valued functions introduced by Bede and Gal []. Sub-
sequently, Salahshour et al. [] considered the solutions of fuzzy fractional differential
equations under Riemann-Liouville H-derivative by using the fuzzy Laplace transform
method. In the same year, they together with Baluanu [] defined the concept of Caputo
H-derivative in a similar way, and further studied the existence, uniqueness and approx-
imate solutions of fuzzy fractional differential equations. Later, Malinowski [] studied
the existence and uniqueness of the solutions of two types of random fuzzy fractional
integral equations. Meantime, the author established the boundedness of solutions and
the insensitivity to small changes of parameters. Unlike previous methods, Takači et al.
[] analyzed fractional differential equations with fuzzy coefficients by Mikusińki fuzzy
operators. Recently, Allahviranloo et al. [] and Hoa [] independently introduced the
concept of Caputo gH-derivative by using the generalized Hukuhara difference (or gH-
difference). In fact, the gH-difference is considered as an improvement of the H-difference
of fuzzy numbers. But the gH-difference of two fuzzy numbers does not always exist. How-
ever, the gH-difference for interval numbers is well defined. Interval analysis emerged as a
special case of set-valued analysis has a long history []. To a certain degree, interval anal-
ysis was introduced as an effective method to deal with interval uncertainty that appears
in many practical problems. For this reason, it is very necessary to study interval-valued
differential equations.

In a recent paper [], the author introduced fractional calculus for interval-valued func-
tions based on gH-difference of interval numbers. Based on these concepts, Lupulescu and
Hoa [] considered the solvability of the interval Abel integral equation. However, the
purpose of the present paper is to establish the relationship between the Cauchy type prob-
lem for interval-valued fractional differential equations and the corresponding interval-
valued integral equation. Furthermore, we shall characterize the solutions to the Cauchy
type problem by the interval-valued integral equation under certain conditions.

2 Preliminaries
Let N, R, and K denote the set of all natural numbers, the set of all real numbers and the
set of all nonempty compact convex subsets of the real line R, respectively. Moreover, let
T = [a, b], –∞ < a < b < ∞, denote a finite interval on the real line R.

For A = [a–, a+], B = [b–, b+] ∈K, λ ∈R, the Minkowski addition A + B and scalar multi-
plication λ · A (or λA) can be defined by

A + B =
[
a–, a+]

+
[
b–, b+]

=
[
a– + b–, a+ + b+]

and

λ · A = λ · [a–, a+]
=

[
min

{
λa–,λa+}

, max
{
λa–,λa+}]

,

respectively. Then the opposite –A := (–) ·A = [–a+, –a–]. However, in general, A + (–A) �=
{}, which implies that the opposite of A is not the inverse of A with respect to the
Minkowski addition, unless A is a singleton.
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Let A, B ∈ K. If there exists C ∈ K such that A = B + C, then C is called the Hukuhara
difference (H-difference for short) of A and B, and it is denoted by C := A�B. Note that the
H-difference is unique, but it does not always exist. A necessary condition for A�B to exist
is that A contains a translation of B, i.e., there exists an element c such that {c} + B ⊆ A. To
overcome this shortcoming, a generalized Hukuhara difference (gH-difference for short)
is introduced by Stefanini [].

Definition . The generalized Hukuhara difference (or gH-difference) of two intervals A
and B is defined as follows:

A �g B =

⎧
⎨

⎩
(i) A = B + C ⇔ A � B = C,

or (ii) B = A + (–C) ⇔ B � A = –C.

For A = [a–, a+], B = [b–, b+] ∈K, it is easy to verify that the following equalities hold:

A �g B =
[
a–, a+] �g

[
b–, b+]

=
[
min

{
a– – b–, a+ – b+}

, max
{

a– – b–, a+ – b+}]

=

⎧
⎨

⎩
[a– – b–, a+ – b+], w(A) ≥ w(B),

[a+ – b+, a– – b–], w(A) < w(B),

where w(·) denotes the width of the interval, that is, w(A) = a+ – a–.
Now we define a functional ‖ · ‖ : K → [,∞) by ‖A‖ = max{|a–|, |a+|} for every A =

[a–, a+] ∈ K. It can easily be shown that ‖ · ‖ is a norm on K, and thus the quadruple
(K, +, ·,‖ · ‖) is a normed quasilinear space [].

Given two intervals A = [a–, a+], B = [b–, b+] ∈ K, the Hausdorff-Pompeiu metric be-
tween A and B is defined by H(A, B) = max{|a– – b–|, |a+ – b+|}. It is well known that (K, H)
is a complete and separable metric space. Furthermore, the following relationships exist
between the Hausdorff-Pompeiu metric H and the norm ‖ · ‖:

‖A‖ = H
(
A, {}), H(A, B) = ‖A �g B‖.

Throughout this paper, we denote by AC([a, b],K) the set of all absolutely continuous
interval-valued functions from [a, b] to K. For  ≤ p ≤ ∞, we denote by Lp([a, b],K)
the set of all interval-valued functions F : [a, b] → K such that ‖F(t)‖ ∈ Lp[a, b]. The
space Lp([a, b],K) is a complete metric space with respect to the metric Hp defined by
Hp(F , G) := ‖F �g G‖p, where

‖F‖p :=

⎧
⎨

⎩

∫ b
a (‖F(t)‖p)


p dt,  ≤ p < ∞,

ess supt∈[a,b] ‖F(t)‖, p = ∞.

In particular, when p = , L([a, b],K) = L([a, b],K). Moreover, for F , G ∈ L([a, b],K), we
can obtain

H(F , G) = ‖F �g G‖ =
∫ b

a

∥∥F(t) �g G(t)
∥∥dt =

∫ b

a
H

(
F(t), G(t)

)
dt.
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Let F : T → K be an interval-valued function. We say that F is w-increasing
(w-decreasing) on T if w(F(t)) is increasing (decreasing) on T . Especially, we call F is
w-monotonic on T if w(F(t)) is increasing or decreasing on T .

Definition . (See Stefanini []) Let F : T → K be an interval-valued function and let
t ∈ T such that t + h ∈ T . If the limit

lim
h→

F(t + h) �g F(t)
h

exists, written as F ′(t), we say that F is generalized Hukuhara differentiable (gH-
differentiable for short) at t. Meantime, F ′(t) is referred to as the generalized Hukuhara
derivative (or gH-derivative) at t. At the endpoints of the interval T , we consider only the
one sided gH-derivatives.

Definition . (See Allahviranloo et al. [], Lupulescu []) Let F = [f –, f +] ∈ L([a, b],K)
and α > . The interval-valued Riemann-Liouville fractional integral of order α is defined
as follows:

J α
a+F(t) =

[
Iα

a+f –(t), Iα
a+f +(t)

]
, t > a,

where

Iα
a+f ∓(t) :=


�(α)

∫ t

a
(t – s)α–f ∓(s) ds

denote the classical Riemann-Liouville fractional integrals of orders α of the real valued
functions f –(t) and f +(t), respectively. Here, �(·) stands for the Gamma function.

Definition . (See Allahviranloo et al. [], Lupulescu []) Let F = [f –, f +] ∈ L([a, b],K)
and α ∈ [, ]. Define the interval-valued function F–α : T →K by

F–α(t) = J –α
a+ F(t) :=


�( – α)

∫ t

a
(t – s)–αF(s) ds, t ∈ [a, b].

If F–α(t) is gH-differentiable for almost everywhere (i.e., a.e.) t ∈ [a, b], then the gH-
derivative F ′

–α(t) is called the interval-valued Riemann-Liouville gH-fractional derivative
of order α and it is denoted by

Dα
a+F(t) = F ′

–α(t) =
(
J –α

a+ F
)′(t)

for a.e. t ∈ [a, b].
In particular, when α =  and α = , we have D

a+F(t) = F(t), D
a+F(t) = F ′(t).

Lemma . (See Markov []) Let f : T → R be a differentiable real valued function
and let C ∈ K. Then the interval-valued function f · C : T → K is gH-differentiable and
(f (t) · C)′ = f ′(t) · C.
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Lemma . (See Lupulescu []) The interval-valued Riemann-Liouville fractional inte-
gration operator J α

a+ with α >  is a bounded operator from Lp([a, b],K) into Lp([a, b],K),
 ≤ p ≤ ∞. More precisely, we have

∥∥J α
a+F

∥∥
p ≤ (b – a)α

�(α + )
‖F‖p.

Based on Lemma . in [], we can obtain the following characterization of the space
AC([a, b],K).

Lemma . The space AC([a, b],K) consists of those and only those interval-valued func-
tions F = [f –, f +] that can be represented in the form

F(t) =
∫ t

a
�(s) ds + C,

where � = [ϕ–,ϕ+] ∈ L([a, b],K), C = [c–, c+] ∈K.

Proof By Proposition  in [] and Lemma . in [], we can obtain

F ∈ AC
(
[a, b],K

) ⇔ f –, f + ∈ AC[a, b]

⇔ f ∓(t) =
∫ t

a
ϕ∓(s) ds + c∓

⇔ F(t) =
[
f –(t), f +(t)

]
=

[∫ t

a
ϕ–(s) ds + c–,

∫ t

a
ϕ+(s) ds + c+

]

⇔ F(t) =
[∫ t

a
ϕ–(s) ds,

∫ t

a
ϕ+(s) ds

]
+

[
c–, c+]

⇔ F(t) =
∫ t

a
�(s) ds + C. �

Lemma . Let f ∈ L[a, b] with f (t) ≥  or f (t) ≤  and let C = [c–, c+] ∈ K. If α >  and
 < β ≤ , then

(i) J α
a+

(
f (t) · C

)
= Iα

a+f (t) · C,

(ii) Dβ
a+

(
f (t) · C

)
= Dβ

a+f (t) · C,

where Dβ
a+ denotes the classical Riemann-Liouville fractional differential operator of or-

der β .

Proof (i) If f (t) ≥ , by Definition ., we have

J α
a+

(
f (t) · C

)
=

[
Iα

a+
(
c–f (t)

)
, Iα

a+
(
c+f (t)

)]

=
[
c–Iα

a+f (t), c+Iα
a+f (t)

]

= Iα
a+f (t) · [c–, c+]

= Iα
a+f (t) · C.
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Similarly, if f (t) ≤ , then we can obtain

J α
a+

(
f (t) · C

)
=

[
Iα

a+
(
c+f (t)

)
, Iα

a+
(
c–f (t)

)]

=
[
c+Iα

a+f (t), c–Iα
a+f (t)

]

= Iα
a+f (t) · [c–, c+]

= Iα
a+f (t) · C.

(ii) According to Definition . and Lemma ., we get

Dβ
a+

(
f (t) · C

)
=

(
J –β

a+
(
f (t) · C

))′

=
(
I–β

a+ f (t) · C
)′

=
(
I–β

a+ f (t)
)′ · C

= Dβ
a+f (t) · C. �

Lemma . Let C = [c–, c+] ∈ K and let α ∈ (, ]. Define the interval-valued function
G(t) := (t–a)α–

�(α) C on (a, b]. Then w(G–α(t)) = c+ – c– is a constant function on [a, b].

Proof By Definition ., we get

G–α(t) =


�( – α)

∫ t

a
(t – s)–αG(s) ds.

Substituting G(t) into the above equality gives

G–α(t) =


�(α)�( – α)

∫ t

a
(t – s)–α(s – a)α– ds · C.

Setting M(t) =
∫ t

a (t – s)–α(s – a)α– ds. Make the substitution s = a + θ (t – a), we obtain

M(t) =
∫ 


θα–( – θ )–α dθ = B(α,  – α),

where B(·, ·) denotes the Beta function. This implies that M(t) is constant function on
(a, b]. Using the relation B(α,β) = �(α)�(β)

�(α+β) , we get

G–α(t) =


�(α)�( – α)
B(α,  – α) · C = C.

Since C is a constant interval, it is easy to know that w(G–α(t)) is a constant function on
(a, b]. �

3 The Cauchy problem for interval-valued fractional differential equations
This section is devoted to deriving the relationship between the solutions to the Cauchy
type problem for interval-valued differential equations of fractional order and the solu-
tions to the corresponding interval-valued integral equation.
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Let F ∈ L([a, b] × K,K). Consider the following interval-valued fractional differential
equation of order α ∈ (, ]:

Dα
a+Y (t) = F

(
t, Y (t)

)
, t ∈ T , ()

with the initial condition

Dα–
a+ Y (a+) = lim

t→a+
J –α

a+ Y (t) = B ∈K ( < α < );

D
a+Y (a+) = Y (a) = B ∈K (α = ).

()

In particular, if α = , then, according to Definition . and (), the problem in ()-() is
reduced to the Cauchy problem for the interval-valued differential equation:

Y ′(t) = F
(
t, Y (t)

)
, Y (a) = B ∈K. ()

Therefore, the problem ()-() is referred to as a Cauchy type problem for the interval-
valued fractional differential equation.

First we introduce the following interval-valued integral equation in order to discuss the
solution of the Cauchy type problem ()-():

Y (t) �g
(t – a)α–

�(α)
B =


�(α)

∫ t

a
(t – s)α–F

(
s, Y (s)

)
ds. ()

Theorem . Let G be an open set in K and let F : [a, b] × G → K be an interval-valued
function such that F(t, Y (t)) ∈ L([a, b],K) for any Y ∈ G. If Y (t) ∈ L([a, b],K) satisfies a.e.
the relations () and () (i.e., Y (t) is a solution of the problem ()-()), and it satisfies either
d
dt w(Y–α(t)) ≥  for a.e. t ∈ [a, b] or d

dt w(Y–α(t)) ≤  for a.e. t ∈ [a, b], then Y (t) is also a
solution of the integral equation ().

Proof Suppose that Y (t) satisfies a.e. equations () and (). Since F(t, Y ) ∈ L([a, b],K), it
follows that the interval-valued fractional gH-derivative Dα

a+Y (t) ∈ L([a, b],K) exists a.e.
on [a, b]. By Definition ., we have

Dα
a+Y (t) =

(
J –α

a+ Y
)′(t), J 

a+Y (t) = Y (t).

Then, by Lemma ., we obtain J –α
a+ Y (t) = Y–α(t) ∈ AC([a, b],K). Using Theorem  in

[], we can infer that

J α
a+Dα

a+Y (t) = Y (t) �g
(t – a)α–

�(α)
Y–α(a) ()

for a.e. t ∈ [a, b]. According to Definition ., we know that

Y–α(t) = J –α
a+ Y (t) = Dα–

a+ Y (t).

Using the above equality and (), equation () can be rewritten as follows:

J α
a+Dα

a+Y (t) = Y (t) �g
(t – a)α–

�(α)
B. ()
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Applying the operator J α
a+ to both sides of () and using Definition . and (), we can

obtain the integral equation (). �

Theorem . Let G be an open set in K and let F : [a, b] × G → K be an interval-valued
function such that F(t, Y (t)) ∈ L([a, b],K) for any Y ∈ G. Assume that Y (t) ∈ L([a, b],K)
is w-monotonic and satisfies a.e. the interval-valued integral equation () with w(Y (t)) –
(t–a)α–

�(α) w(B) has a constant sign on [a, b]. If Y–α(t) is w-monotonic, then Y (t) is also a solu-
tion of the problem ()-().

Proof Assume that Y (t) ∈ L([a, b],K) satisfies the integral equation (). Applying the op-
erator Dα

a+ to both sides of () gives

Dα
a+

(
Y (t) �g

(t – a)α–

�(α)
B
)

= Dα
a+J α

a+F
(
t, Y (t)

)
.

According to Theorems  and  in [] and using Lemma ., we can obtain the following
two possible equalities:

Dα
a+Y (t) �g Dα

a+

(
(t – a)α–

�(α)
B
)

= F
(
t, Y (t)

)

or

Dα
a+Y (t) +

(
–Dα

a+

(
(t – a)α–

�(α)
B
))

= F
(
t, Y (t)

)
.

Further, in accordance with (..) in [] and Lemma ., the second term on the left side
of the previous two equalities are equal to {}. Thus, we arrive at the equation ().

Now we show that equation () also holds. Applying the operator J –α
a+ to both sides of

() gives

J –α
a+

(
Y (t) �g

(t – a)α–

�(α)
B
)

= J –α
a+ J α

a+F
(
t, Y (t)

)
.

By Theorem  and Remark  in [], we can infer that

J –α
a+ Y (t) �g J –α

a+

(
(t – a)α–

�(α)
B
)

= J 
a+F

(
t, Y (t)

)
.

Using Lemma . and Definition ., it follows that

J –α
a+ Y (t) �g


�(α)

(
I–α

a+ (t – a)α–) · B =
∫ t

a
F
(
s, Y (s)

)
ds.

In accordance with (..) in [], we get

J –α
a+ Y (t) �g B =

∫ t

a
F
(
s, Y (s)

)
ds.

Taking the limit as t → a+, we have Dα–
a+ Y (a+) �g B = {}, and hence equation ()

holds. �
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Remark  Theorems . and . show that, in general, the Cauchy type problem ()-()
for interval-valued fractional differential equations and the corresponding interval-valued
integral equation () are not equivalent in the sense that, if Y (t) ∈ L([a, b],K) satisfies one
of these relations, then it also satisfies the other, unless the solutions satisfy some strict
conditions.

Next we shall establish an important result related to the existence of a solution to the
interval-valued integral equation (), and then we can obtain the existence of a solution
to the Cauchy type problem ()-() under certain conditions.

Theorem . Let G be an open set in K and let F : [a, b] × G → K be an interval-valued
function such that F(t, Y ) ∈ L([a, b],K) for any Y ∈ G. Let M >  such that w(F(t, Y (t))) ≤ M
for any t ∈ [a, b]. Assume that F satisfies the Lipschitz condition

H
(
F(t, Y), F(t, Y)

) ≤ LH(Y, Y) (L > ) ()

for all t ∈ [a, b] and all Y, Y ∈ L([a, b],K). Then there exist two unique solutions Ỹ , Ŷ to
the interval-valued integral equation () in the space Lα([a, t∗],K), where

Lα
([

a, t∗],K
)

=
{

Y ∈ L
([

a, t∗],K
)|Dα

a+Y ∈ L
([

a, t∗],K
)}

t∗ = min{t, α
M w(B), b} if w(B) >  and t∗ = min{t, b} if w(B) = , while t ∈ (a, b] is chosen

such that L (t–a)α
�(α+) < .

Proof In essence, it follows from Definition . that the two cases of the existence of gH-
difference imply that the interval-valued integral equation () is a unified formulation for
one of the following integral equations:

Y (t) � (t – a)α–

�(α)
B =


�(α)

∫ t

a
(t – s)α–F

(
s, Y (s)

)
ds ()

and

(t – a)α–

�(α)
B � Y (t) = –


�(α)

∫ t

a
(t – s)α–F

(
s, Y (s)

)
ds. ()

Setting Y(t) = (t–a)α–

�(α) B. If w(B) = , then Y(t) is an ordinary real valued function. This
implies that the integral equation () is a classical single-valued integral equation. In this
case, the integral equations () and () are identical. Without loss of generality, we assume
that w(B) > . First, we choose t = min{a + α

M w(B), b}, then we can obtain  ≤ t – a ≤
α
M w(B) for any t ∈ [a, t]. Further, we can infer that

(t – a)α–w(B) ≥ M(t – a)α

α
()
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for any t ∈ [a, t]. Therefore, it follows from () that

w
(

–


�(α)

∫ t

a
(t – s)α–F

(
s, Y (s)

)
ds

)

=


�(α)
w

(∫ t

a
(t – s)α–F

(
s, Y (s)

)
ds

)

≤ M
�(α)

∫ t

a
(t – s)α– ds

=


�(α)
M(t – a)α

α

≤ 
�(α)

(t – a)α–w(B)

= w
(
Y(t)

)
. ()

Next, we choose t ∈ (a, b] such that the inequality

L
(t – a)α

�(α + )
<  ()

holds. Take t∗ = min{t, t}. Then we shall prove the existence of two unique solutions
Ỹ , Ŷ ∈ L([a, b],K) to the integral equations () and () on the interval [a, t∗], respec-
tively.

Using the form of the integral equation () and (), we define the operators P, Q :
L([a, t∗],K) → L([a, t∗],K), where

(PY )(t) = Y(t) +


�(α)

∫ t

a
(t – s)α–F

(
s, Y (s)

)
ds ()

and

(QY )(t) = Y(t) �
(

–


�(α)

∫ t

a
(t – s)α–F

(
s, Y (s)

)
ds

)
. ()

Notice that the operator P is always well defined, while the operator Q is also well defined
by the inequality ().

To apply the Banach contraction principle, we have to prove the following:
(i) if Y ∈ L([a, t∗],K), then (PY )(t), (QY )(t) ∈ L([a, t∗],K);

(ii) for any Y, Y ∈ L([a, t∗],K), the following estimates hold:

H(PY, PY) ≤ ωH(Y, Y), ()

H(QY, QY) ≤ ωH(Y, Y), ()

where ω = L (t∗–a)α
�(α+) .

Obviously, Y(t) ∈ L([a, t∗],K). By Lemma ., we know that the interval-valued in-
tegrals in the right-hand side of () and () belong to L([a, t∗],K), since F(t, Y (t)) ∈
L([a, t∗],K).



Shen Advances in Difference Equations  (2016) 2016:102 Page 11 of 13

By the Lipschitz condition () and Lemma . in [], we can from equations () and ()
infer that

H(PY, PY)

=
∫ t∗

a
H

(
Y(t) +


�(α)

∫ t

a
(t – s)α–F

(
s, Y(s)

)
ds,

Y(t) +


�(α)

∫ t

a
(t – s)α–F

(
s, Y(s)

)
ds

)
dt

=
∫ t∗

a
H

(


�(α)

∫ t

a
(t – s)α–F

(
s, Y(s)

)
ds,


�(α)

∫ t

a
(t – s)α–F

(
s, Y(s)

)
ds

)
dt

=
∫ t∗

a
H

(
J α

a+F
(
t, Y(t)

)
,J α

a+F
(
t, Y(t)

))
dt

≤
∫ t∗

a
Iα

a+H
(
F
(
t, Y(t)

)
, F

(
t, Y(t)

))
dt

≤
∫ t∗

a
LIα

a+H
(
Y(t), Y(t)

)
dt

≤ L
(t∗ – a)α

�(α + )

∫ t∗

a
H

(
Y(t), Y(t)

)
dt

= L
(t∗ – a)α

�(α + )
H(Y, Y).

Using the same argument, we can obtain

H(QY, QY) ≤ L
(t∗ – a)α

�(α + )
H(Y, Y).

Therefore, the inequalities () and () hold. In accordance with (), we know that  <
ω < . So the Banach contraction principle implies that there exist a unique solution Ỹ ∈
L([a, t∗],K) and a unique solution Ŷ ∈ L([a, t∗],K) to the integral equations () and (),
respectively. This completes the proof of the theorem. �

Remark  Actually, we can apply the method of successive approximations to obtain a
unique solution Ỹ (t) and Ŷ (t) to the integral equations () and () on the interval [a, t∗],
respectively. According to the Banach contraction principle, the solutions Ỹ and Ŷ can be
obtained as a limit of the convergent sequences PmY ∗

 and QmY ∗
 , respectively. Specifically,

we have

lim
m→∞H

(
PmY ∗

 , Ỹ
)

= , ()

lim
m→∞H

(
QmY ∗

 , Ŷ
)

= , ()
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where Y ∗
 is any interval-valued function in L([a, t∗],K). By equations () and (), the

iterative sequences {(PmY ∗
 )(t)} and {(QmY ∗

 )(t)} are defined by

(
PmY ∗


)
(t) = Y(t) +


�(α)

∫ t

a
(t – s)α–F

(
s,

(
Pm–Y ∗


)
(s)

)
ds, m ∈N,

(
QmY ∗


)
(t) = Y(t) �

(
–


�(α)

∫ t

a
(t – s)α–F

(
s,

(
Qm–Y ∗


)
(s)

)
ds

)
, m ∈N.

Combining Theorem . with Theorem ., we can formulate the following result asso-
ciated with the existence of the solutions to the Cauchy type problem ()-().

Theorem . Let G be an open set in K and let F : [a, b] × G → K be an interval-valued
function such that F(t, Y (t)) ∈ L([a, b],K) for any Y ∈ L([a, b], G). Let M >  such that
w(F(t, Y (t))) ≤ M for any t ∈ [a, b]. Assume that F satisfies the Lipschitz condition () for
all t ∈ [a, b] and all Y, Y ∈ L([a, b],K). Then there exist two unique solutions Ỹ , Ŷ to the
interval-valued integral equation () in the space Lα([a, t∗],K).

Furthermore, if Y (t) ∈ L([a, b],K) is w-monotonic and w(Ỹ (t)) – w(B) and w(Ŷ (t)) – w(B)
has a constant sign on [a, t∗], Ỹ–α(t) and Ŷ–α(t) are w-monotonic, then Ŷ (t) and Ŷ (t)
are also two unique solutions to the Cauchy type problem ()-(), where t∗ is given as in
Theorem ..

Remark  According to Lemma . in [], when  < α ≤ , the result of Theorem .
remains true for the following weighted Cauchy type problem:

Dα
a+Y (t) = F

(
t, Y (t)

)
, lim

t→a+
(t – a)–αY (t) = B ∈K.

4 Conclusions
Usually, the existence of the solutions to the Cauchy problem (or initial value problem)
for a differential equation is characterized by the existence of the solutions to the equiv-
alent integral equation. Accordingly, it also becomes a fundamental way to construct the
successive approximation sequence by means of the integral equation. In this paper, we
note that, in general, the Cauchy type problem for interval-valued fractional differential
equations and the corresponding integral equation are not equivalent. However, under
certain conditions, we have derived the relationship between the solutions to the Cauchy
type problem and the ones to the interval-valued integral equation. Therefore, these re-
sults provide the possibility for us to solve the Cauchy type problem for interval-valued
fractional equations by the corresponding integral equation.
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