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Abstract We review the basic principles of quasi-Monte Carlo (QMC) methods, the
randomizations that turn them into variance-reduction techniques, the integration er-
ror and variance bounds obtained in terms of QMC point set discrepancy and vari-
ation of the integrand, and the main classes of point set constructions: lattice rules,
digital nets, and permutations in different bases. QMC methods are designed to es-
timate s-dimensional integrals, for moderate or large (perhaps infinite) values of s.
In principle, any stochastic simulation whose purpose is to estimate an integral fits
this framework, but the methods work better for certain types of integrals than others
(e.g., if the integrand can be well approximated by a sum of low-dimensional smooth
functions). Such QMC-friendly integrals are encountered frequently in computational
finance and risk analysis. We summarize the theory, give examples, and provide com-
putational results that illustrate the efficiency improvement achieved. This article is
targeted mainly for those who already know Monte Carlo methods and their appli-
cation in finance, and want an update of the state of the art on quasi-Monte Carlo
methods.
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1 Introduction

1.1 Monte Carlo

Monte Carlo (MC) simulation is the primary method for pricing complex finan-
cial derivatives, such as contracts whose payoff depends on several correlated as-
sets or on the entire sample path of an asset price. The option price μ is written
as an integral that represents the mathematical expectation of the discounted pay-
off under a so-called risk-neutral probability measure. This expectation is usually
with respect to a non-uniform density over the real space, but with a change of
variables, it can be rewritten as an integral over the s-dimensional unit hypercube
(0,1)s = {u = (u1, . . . , us) : 0 < uj < 1 for all j}, i.e.,

μ = μ(f ) =
∫ 1

0
· · ·
∫ 1

0
f (u1, . . . , us) du1 · · ·dus =

∫
(0,1)s

f (u) du

= E
[
f (U)

]
, (1.1)

for some function f : (0,1)s → R, where u represents a point in (0,1)s , and
U ∼ U(0,1)s is a random point with the uniform distribution over the unit hy-
percube [24, 44]. For example, if the discounted payoff is a function g of s

independent standard normal random variables Z1, . . . ,Zs , we can write
f (u) = g(Φ−1(u1), . . . ,Φ

−1(us)) where Φ is the distribution function of a standard
normal random variable.

In this paper, we assume that the integral is already written in the form (1.1) for a
fixed positive integer s, and we want to estimate μ. This s represents the number of
calls to the underlying random number generator used in our simulation. In situations
where this number of calls is random and unbounded, s can be taken as infinite, with
the usual assumption that with probability one, only a finite number of coordinates of
U need to be explicitly generated.

In the Monte Carlo method, the estimator is

μ̂n = 1

n

n−1∑
i=0

f (Ui ), (1.2)

where U0, . . . ,Un−1 are independent random vectors uniformly distributed over
(0,1)s and n is the number of replications (a constant). This estimator is unbiased
and has variance σ 2/n, where

σ 2 := Var
[
f (Ui )

]=
∫

(0,1)s
f 2(u) du − μ2.

If σ 2 < ∞, then μ̂n obeys a central limit theorem, and we can rely on it to compute
a confidence interval on μ, whose width converges roughly as O(σn−1/2). The use
of MC for pricing financial options was first proposed by Boyle [6]. The techniques
have evolved tremendously since then. Recent accounts can be found in [24, 44].
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In this paper, we assume that the reader is already familiar with MC methods in
finance, and our discussion is focused on the use of QMC as an alternative. Much
of what we say applies (in principle) to any MC simulation model, and not only to
models encountered in finance.

1.2 Quasi-Monte Carlo

Quasi-Monte Carlo replaces the independent random points Ui in (1.2) by a set of
n deterministic points, Pn = {u0, . . . ,un−1}, which cover the unit hypercube (0,1)s

more evenly (uniformly) than a typical set of random points [79, 98]. The point set
Pn is called a design by some statisticians. The estimator μ̂n is replaced by the deter-
ministic approximation

μ̄n = 1

n

n−1∑
i=0

f (ui ). (1.3)

The two main classes of constructions for Pn, to be discussed later, are integration
lattices and digital nets. QMC methods can also be designed for integrals over other
areas than the unit cube, by constructing point sets directly in those areas, but trans-
forming the integral to the form (1.1) is usually more convenient.

There are many ways of measuring the uniformity of Pn; this is usually done via
measures of non-uniformity called discrepancies [17, 18, 28–31, 73, 79]. Many of
them are defined as the worst-case integration error, with Pn, over all functions f of
unit norm in some Hilbert (or Banach) space H [17, 29, 37, 102, 113]. In this type of
setting, there holds a general worst-case error bound of the form

|μ̄n − μ| ≤ D(Pn)V (f ) (1.4)

for all f ∈ H, where V (f ) = ‖f − μ‖H, the norm of f − μ in H, can be interpreted
as a measure of variation of the function f , and D(Pn) is the discrepancy of Pn.
When H is a Hilbert space, the discrepancy can be identified with the norm of some
“worst-case” function in H, and (1.4) is a form of Cauchy–Schwarz inequality. The
right-hand side is the product of two terms: one depends only on f and the other
depends only on Pn. Thus, if the function f that we want to integrate has bounded
variation V (f ), for a sequence of point sets {Pn, n ≥ 1}, the integration error con-
verges to 0 at worst at the same rate as D(Pn). If this rate beats O(n−1/2), then we
are doing asymptotically better than MC in two ways: the convergence is faster and
we have a worst-case bound instead of just a confidence interval.

Important questions of interest are then: For a given Hilbert space H and a given
f ∈ H, how can we make sure that V (f ) < ∞? Can we compute or bound this vari-
ation? How easily? Can we easily compute D(Pn) for large point sets? Can we con-
struct point sets Pn with small discrepancy D(Pn)? What is the best rate of conver-
gence we can achieve for D(Pn) when n → ∞? Do we know how to construct ex-
plicit sequences of point sets {Pn, n ≥ 1} that achieve this optimal rate? What about
the dependence on the dimension s? We shall partly address these questions.

A classic instance of (1.4), often used to justify QMC, is the Koksma–Hlawka
inequality [79]

|μ̄n − μ| ≤ D∗(Pn)VHK(f ), (1.5)
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where VHK(f ) denotes the variation of f in the sense of Hardy and Krause (see [90]
for the definition and a discussion), and D∗(Pn) is the star discrepancy, defined as
follows. For each point u ∈ (0,1)s , we consider the absolute difference between the
volume of the box [0,u) with corners at the origin and at u, and the fraction of Pn that
fall in that box, and let D∗(Pn) be the supremum of this quantity over all u ∈ (0,1)s .

There are explicit constructions of sequences u0,u1, . . . , in any dimension s, for
which D∗(Pn) = O(n−1(lnn)s) when Pn contains the first n points of the sequence.
Thus, for a function f with VHK(f ) < ∞, a QMC approximation based on such a se-
quence gives a worst-case error bound in (1.5) that converges as O(n−1(lnn)s). From
the practical viewpoint, however, this classical theory is deceptive. First, as soon as
the dimension s exceeds 7 or 8, to have n−1(lnn)s < n−1/2 for all n ≥ n0, we need
an n0 that is much too large to be practical. For s = 8, for example, we already need
n0 ≈ 1.79 × 1029. Second, the bound in (1.5) is typically much too hard to compute
to be useful for error assessment. Third, whenever f is unbounded or has a disconti-
nuity not aligned with the faces of the unit hypercube, VHK(f ) is infinite [90]. This
is quite common in financial applications. For example, the payoff of a standard call
option under the Black–Scholes model is unbounded. In the case of an average over
multiple assets or multiple observation times (such as for a Bermudan–Asian option),
it also has a kink not aligned with the axes. Barrier options have a discontinuous pay-
off. Discontinuity also arises when estimating sensitivities (the Greeks) for options
whose payoff is otherwise continuous but not everywhere differentiable [24].

In the last decade, researchers have turned their attention to variants of (1.4) based
on other types of discrepancies and variations, for which V (f ) < ∞ under less re-
strictive assumptions (in some cases) and for which D(Pn) can be computed effi-
ciently. Popular settings include Sobolev classes of functions for which the partial
derivatives up to a given order are assumed to be square-integrable, and which are
also defined as reproducing kernel Hilbert spaces. The square variation is defined as a
weighted sum, over all subsets of coordinates, of the integrated squared partial deriva-
tives over the subspace determined by these coordinates. A nice feature of this setting
is that by a clever choice of weights, and for standard types of point set constructions,
there are efficient algorithms for computing the corresponding discrepancy, existence
results for point sets with discrepancy below a given value, and concrete methods for
constructing such point sets. Moreover, for any constant α ≥ 1/2, by making strong
enough assumptions on the smoothness of f (via the square-integrability of high-
order partial derivatives), and by assuming that f is periodic with period 1 with
respect to each coordinate, we can obtain a convergence rate of O(n−α+δ) for any
δ > 0 [18, 79, 98].

Convergence of the worst-case error can be characterized from the complexity the-
ory viewpoint as follows [17, 37, 101, 104]. For a given family of function spaces Hs

indexed by their dimension s, for s ≥ 1 and any ε ∈ (0,1), let n(ε, s) be the minimal
number of points in a QMC integration rule such that

sup
f ∈Hs ,‖f ‖≤1

|μ̄n − μ| ≤ ε sup
f ∈Hs ,‖f ‖≤1

|μ|.

The family is said to be QMC-tractable if n(ε, s) increases only polynomially fast
in 1/ε and s; that is, if there are non-negative constants C, p and q , such that
n(ε, s) ≤ Cε−psq . If this holds with q = 0 (so the required number of points does not
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depend on the dimension), then the family is called strongly QMC-tractable. For fam-
ilies of weighted Sobolev spaces, where the coordinates, or subsets of coordinates,
have non-negative weights indicating their importance in the function f , necessary
and sufficient conditions on the weights for tractability and strong tractability are
given for example in [17, 18, 37, 100–102]. These conditions show that tractability
occurs (roughly) if the integrand depends mostly on a small number of coordinates,
or can be well approximated by a sum of low-dimensional functions. This is related
to the notions of low effective dimension and variance ratio discussed in Sect. 1.4.

Instead of the worst-case error, one may also study the average integration error
for a random function f in a given class F . Under mild conditions on F , one can
construct a reproducing kernel Hilbert space H for which the average error over F
equals the worst-case error over functions f ∈ H with variation V (f ) ≤ 1. So average
error and worst-case error are equivalent in some sense [34] (see Sect. 2.2).

These error bounds and convergence rates are nice, but they nevertheless have
practical limitations. For typical applications in finance, V (f ) is too hard to compute,
and may be infinite. Yet, despite the fact that the worst-case error bounds are not
practical, QMC happens to give much more accurate estimates than MC, for certain
types of integrands encountered in finance, sometimes in hundreds of dimensions
or more [1, 9, 43, 57, 94]. Some explanation of this success will be given in the
following. The integration error can be estimated by using randomized versions of
QMC, as we now explain.

1.3 Randomized quasi-Monte Carlo

The difficulty to obtain reliable error estimates with QMC can be addressed by
switching to randomized QMC (RQMC), which turns QMC into a variance-reduction
technique [4, 64, 65, 86–88]. The idea is to randomize Pn so that

(a) it retains its high uniformity when taken as a set, and
(b) each individual point is a random vector with the uniform distribution over

(0,1)s .

An RQMC point set is one that satisfies these two conditions. One simple random-
ization that satisfies these conditions, for an arbitrary point set Pn, is a random shift
modulo 1 [13, 64, 98]: Generate a single point U uniformly over (0,1)s and add it to
each point of Pn, modulo 1, coordinate-wise. Another one is a random digital shift
in base b [63, 65, 73]: Generate again U uniformly over (0,1)s , expand each of its
coordinates in base b, and add the digits, modulo b, to the corresponding digits of
each point of Pn.

Let μ̂n,rqmc denote the estimator (1.2) in which U0, . . . ,Un−1 are the n random-
ized points of an RQMC point set. Under these two conditions, it is easily seen that
E[μ̂n,rqmc] = μ, and we hope to have the inequality

σ 2
n,rqmc := nVar[μ̂n,rqmc] = nE

[
(μ̂n,rqmc − μ)2]< nVar[μ̂n] = σ 2. (1.6)

Because the RQMC estimator is unbiased, this variance is the mean square error. The
worst-case variance over a Banach space H,

sup
V (f )≤1

Var[μ̂n,rqmc],
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is the square of the so-called random-case error [33, 38]. The square worst-case
error, on the other hand, is defined as [33, 38]

E

[
sup

V (f )≤1
(μ̂n,rqmc − μ)2

]
.

In the situation where f is a random function with some probability measure over
H such that E[V 2(f )] = 1, the square average-case error is E[Var [μ̂n,rqmc]] [38],
where E is with respect to both the randomization of Pn and the random function.
For the worst-case error, we randomize the rule first, then a devil selects a worst-case
function f for the realized randomization. For the random-case error, the devil first
selects f , then we randomize the rule. The random-case error can be smaller and may
converge faster than the worst-case error. In fact, for the Sobolev space of functions
with square-integrable mixed partial derivatives up to order α, it is known that opti-
mal RQMC rules give O(n−α+δ) worst-case error and O(n−α−1/2+δ) random-case
error [33]. However, explicit RQMC rules that achieve this random-case rate are still
unknown, except for α = 1, where scrambled nets achieve the optimal rate [86, 87].

To estimate σ 2
n,rqmc and compute a confidence interval on μ, we can apply m in-

dependent randomizations to Pn and compute X̄m and S2
x,m, the sample mean and

sample variance of the m independent realizations X1, . . . ,Xm of μ̂n,rqmc. Then,
E[X̄m] = μ and E[S2

x,m] = mVar [X̄m] = σ 2
n,rqmc/n [64, 65]. If we assume that Xj is

approximately normally distributed, then
√

m(X̄m − μ)/Sx,m has approximately the
Student distribution with m − 1 degrees of freedom, and this can be used to compute
a confidence interval on μ in a standard way.

How should we select m? For a fixed total number mn of evaluations of f , a larger
m gives a more accurate variance estimator while a larger n usually provides a more
accurate estimator of μ. If our main target is really to estimate μ, we should normally
select m somewhere between 5 and 25. But if it is important to obtain a good variance
estimator, for example to compare the efficiencies of RQMC and MC, it makes sense
to take a larger m.

For certain Hilbert spaces of (smooth) functions f and specific classes of (uni-
form) point sets Pn, variance bounds and asymptotic variance expressions (as a func-
tion of n, for either the worst-case f or an average f in the Hilbert space) can
be found in [17, 18, 27, 38, 87, 89, 113], for example. These variance bounds are
typically of the form σ 2

n,rqmc = O(n−2α+δ) for some α > 0 and any δ > 0, often for

α ≥ 1/2. Note that this gives Var [X̄m] = O(m−1n−2α+δ). There are many interest-
ing situations where σ 2

n,rqmc is bounded by an expression that converges to zero faster
than the squared worst-case error of the corresponding deterministic QMC method.
This gives another important justification for the randomization.

In (1.2) and (1.3), the n points are given equal weights, and one may ask if we
could do better with unequal weights. For a fixed f and a fixed deterministic point set
Pn, this is indeed generally the case. However, it is shown in [4] that for RQMC, under
mild conditions satisfied by typical RQMC point sets, equal weights are optimal.

Two important classes of RQMC point sets are lattice rules with a random shift
modulo 1, and digital nets with a random digital shift. For these two cases, the lat-
tice or digital net structure of the point set is preserved by the shift, and explicit
expressions for the variance are available in terms of the squared Fourier or Walsh
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coefficients of f [64, 65]. Then, by considering classes of functions for which these
coefficients satisfy appropriate convergence conditions, one can obtain an arbitrary
convergence rate for the variance as a function of n [64, 65]. However, such condi-
tions are difficult to verify in practice (except for special cases). The ANOVA decom-
position discussed in the next subsection is a more aggregated decomposition that is
often more convenient to work with.

Numerical illustrations where RQMC is really effective (empirically) are given
in [7, 24, 43, 56, 64], and in Sect. 8.

1.4 Variance decomposition and effective dimension

In finance applications, integrands f typically have several dozen or even several
hundred dimensions, and (1.4) does not seem practically useful. In fact, a little think-
ing immediately reveals that filling evenly (say) the 100-dimensional unit hypercube
would require an excessive number of points: just to have one point near each corner,
we already need n = 2100 points! Then, how can we justify our hope for a substantial
variance reduction in (1.6) when s is large?

The explanation is that in many cases, f can be well approximated by a sum
of low-dimensional functions that depend only on a small number of coordinates
of u. In those cases, for QMC or RQMC to be effective, it suffices that these low-
dimensional functions are integrated with small error. For example, if s = 100 and f

can be well approximated by a sum of two-dimensional functions fu, where each u

satisfies u = {i, j} ⊂ {1, . . . , s} =: S and the corresponding fu depends only on the
two coordinates {ui, uj }, then it suffices to construct Pn so that for each function fu

in the approximation, the projection of Pn over the unit square in which fu is defined
covers that square very evenly.

For RQMC, this argument can be made rigorous using a functional ANOVA de-
composition of f , as follows [71, 88, 110]. If σ 2 < ∞, there is a unique decomposi-
tion of f of the form

f (u) = μ +
∑

u⊆S,u �=φ

fu(u) (1.7)

where each fu : (0,1)s → R depends only on {ui, i ∈ u}, the fu integrate to
zero and are orthogonal, and the variance decomposes as σ 2 =∑

u⊆S σ 2
u where

σ 2
u = Var[fu(U)] for U uniformly distributed over (0,1)s . The fu are defined re-

cursively by fφ = μ (a constant function) and

fu(u) =
∫

(0,1)s−|u|
f (u) duū −

∑
v⊂u

fv(u)

for φ �= u ⊆ S , where the first integral is with respect to the coordinates of u whose
indexes are not in u, denoted by uū. For each set of coordinates u, let Pn(u) denote
the projection of Pn over the subspace determined by u. For a given function f , if

∑
u∈J

σ 2
u ≥ ρσ 2 (1.8)
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for a class J of small subsets of S and some ρ close to 1, and if we can construct
Pn so that the projections Pn(u) are highly uniform for all u ∈ J , then the important
variance terms σ 2

u can be reduced significantly, thus reducing the overall variance.
If (1.8) holds for J = {u : |u| ≤ d}, the set of all projections of dimension d or

less, we say that f has effective dimension d in proportion ρ in the superposition
sense [88]. If it holds for J = {u ⊆ {1, . . . , d}}, we say that f has effective dimension
d in proportion ρ in the truncation sense [9]. The latter can sometimes be achieved by
redefining the function f without changing the expectation μ, via a change of vari-
ables, in a way that the first few uniforms account for most of the variance in f [2, 9,
43, 56, 74, 112]. In other words, we change the way the uniforms are used to generate
the estimator in the simulation. We shall give examples of this in Sect. 8. In the con-
text of financial applications, this can be achieved for example by bridge sampling
techniques, principal component analysis, generating the random numbers in a dif-
ferent order, and replacing certain random variables by their conditional expectations
[1, 2, 24, 43, 57, 76].

The truncation variance ratio of order d is
∑

u⊆{1,...,d} σ 2
u/σ 2, and the superpo-

sition variance ratio of order d is
∑

u:|u|≤d σ 2
u/σ 2. This is the fraction of variance

explained by the first d coordinates, and by the d-dimensional (or less) projections,
respectively.

Another decomposition used in this paper is the Fourier expansion of f , written
as

f (u) =
∑
h∈Zs

f̂ (h) exp(2πιh · u), (1.9)

with Fourier coefficients

f̂ (h) =
∫

(0,1)s
f (u) exp(−2πιh · u) du,

where ι = √−1. The Fourier expansion refines the ANOVA decomposition in the
sense that if f has ANOVA expansion (1.7) and Fourier expansion (1.9), then
the Fourier coefficient f̂v(h) of fv is f̂ (h) if u(h) = v, and 0 otherwise, where
u(h) = {j : hj �= 0} for h = (h1, . . . , hs) ∈ Z

s .
QMC point sets are usually constructed by making sure that certain types of

projections have good uniformity. One basic desirable property is that all pro-
jections contain n distinct points, the same number as in Pn. The point set is
then called fully projection-regular [64, 98]. Rectangular grids do not satisfy this
property. Constructions for which several projections are identical are also inter-
esting, because this makes their analysis easier. We say that Pn is dimension-
stationary [68] if whenever 1 ≤ i1 < · · · < iη < s and 1 ≤ j ≤ s − iη , we have
Pn({i1, . . . , iη}) = Pn({i1 + j, . . . , iη + j}). This means that Pn(u) depends only on
the spacings between the indices in u.

1.5 Outline

The remainder of this paper is organized as follows. The next section explains the de-
finition of discrepancies, variations, error bounds, and variance bounds, defined via



Quasi-Monte Carlo methods 315

reproducing kernel Hilbert spaces. We see that QMC can provide much faster conver-
gence (asymptotically) than MC, especially for smooth periodic functions. In Sects. 3
and 4, we summarize the main properties of the two principal types of point sets
constructions: lattice rules and digital nets. Other types of constructions are briefly
mentioned in Sect. 5. In Sect. 6, we outline some ways of transforming the function
f to reduce its variability or to increase its truncation or superposition variance ratio
of a given order. This includes changes of variables, bridge sampling, and princi-
pal component sampling (for Brownian processes). In Sect. 8, we provide numerical
illustrations with option pricing models based on geometric Brownian motion and
variance-gamma processes. The concluding section mentions other extensions not
covered in the paper, and some topics worthy of further investigation.

2 Error and variance bounds via reproducing kernel Hilbert spaces

2.1 RKHS theory and discrepancies

We start with a symmetric and positive semi-definite function K : [0,1]2s → R,
called the kernel. Symmetric and positive semi-definite means that for any
v1, . . . ,vm ∈ [0,1]s and m ≥ 0, the m × m matrix whose (i, j) entry is K(vi ,vj )

is symmetric and positive semi-definite. For each u ∈ [0,1]s , let
Ku = K(u, ·) : [0,1]s → R. Consider the space of functions

HK,0 =
{

f =
m∑

i=1

aiKvi
: vi ∈ [0,1]s , ai ∈ R, m ≥ 0

}
,

together with the inner product

〈f,g〉K =
〈

m∑
i=1

aiKvi
,

�∑
j=1

bjKwj

〉

K

=
m∑

i=1

�∑
j=1

aibjK(vi ,wj ),

and let HK be HK,0 to which we have added all limits of Cauchy sequences in HK,0.
This HK is a reproducing kernel Hilbert space (RKHS) with kernel K [106]. The
norm of a function f in this space is ‖f ‖K = 〈f,f 〉1/2

K . The kernel has a reproducing
property in the sense that f (u) = 〈f,Ku〉K for all f ∈ HK .

RKHS theory tells us that for any point set Pn, there is an explicit function ξ ∈ HK

representing the error functional

ξ(u) = 〈ξ,Ku〉 + K = Err(Ku,Pn) = 1

2

n−1∑
i=0

K(u,ui ) −
∫

[0,1)s
K(u,v) dv,

where

Err(f,Pn) = 1

n

n−1∑
i=0

f (ui ) − μ(f )
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is the QMC error for f with Pn. Moreover,

∣∣Err(f,Pn)
∣∣= ∣∣〈ξ, f − μ〉K

∣∣≤ ‖ξ‖K · ‖f − μ‖K = D(Pn)V (f ), (2.1)

where the inequality is just Cauchy–Schwarz’s, V (f ) = ‖f − μ‖K is the variation
of f , D(Pn) is the discrepancy of Pn, and both depend on K . See [29, 31] for fur-
ther details. Thus, the discrepancy is the worst-case error over the class of functions
f ∈ HK for which V (f ) ≤ 1. The (square) discrepancy can be written more explic-
itly as

D2(Pn) = ‖ξ‖2
K = Err 2(ξ,Pn)

= 1

n2

n−1∑
i=0

n−1∑
j=0

K(ui ,uj ) − 2

n

n−1∑
i=0

∫
[0,1]s

K(ui ,v) dv

+
∫

[0,1]2s

K(u,v) dudv, (2.2)

which can be computed in O(n2s) time if we assume that K and its integral are avail-
able in constant time. The inequality (2.1) can be generalized further, for example by
using Hölder’s inequality instead of Cauchy–Schwarz’s [31].

Specific RKHS constructions are examined, for example, in [16–18, 29, 31, 32,
34, 113].

2.2 Random function f

Suppose now that f is a random function in a space G of functions f : [0,1]s → R

endowed with some probability measure, and that the kernel is defined as

K(u,v) = Cov
[
f (u), f (v)

]= E
[
f (u)f (v)

]− μ2(f ), (2.3)

where the expectation is with respect to the probability law of f and μ = μ(f )

depends on f . In this case, it can be shown that the expected square error equals
the square discrepancy that corresponds to K ; i.e., E[Err 2(f,Pn)] = Err 2(ξ,Pn) =
D2(Pn). That is, the root mean square error over G is the same as the worst-case
error over {f ∈ HK : V (f ) ≤ 1}, and both are equal to D(Pn). As a special case, if
f is generated from the Brownian sheet measure, then the corresponding discrep-
ancy turns out to be the classical L2 star discrepancy in (2.14) below, without the
weights [114].

2.3 Random points

In RQMC, we have a fixed f but Pn is randomized and we are interested in the
variance Var[μ̂n,rqmc] = E[Err 2(f,Pn)], where the expectation is with respect to the
randomization of Pn. We have

Var[μ̂n,rqmc] ≤ E
[
D2(Pn)V

2(f )
]= V 2(f ) · E

[
D2(Pn)

]
,
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where

E
[
D2(Pn)

]= 1

n2

n−1∑
i=0

n−1∑
j=0

E
[
K(Ui ,Uj )

]−
∫

[0,1]2s

K(u,v) dudv. (2.4)

If both f and Pn are random, one simply takes the kernel (2.3) in (2.4) to define the
discrepancy.

2.4 Korobov spaces

In one important class of RKHS, the kernel has the form

K(u,v) =
∑
h∈Zs

w(h)e2πιht(u−v) (2.5)

where the w(h) are non-negative weights such that
∑

h∈Zs w(h) < ∞. The corre-
sponding inner product is

〈f,g〉K =
∑
h∈Zs

[
w(h)

]−1
f̂ (h)ĝ∗(h),

where the f̂ (h) are the Fourier coefficients of f and the ĝ∗(h) are the complex con-
jugate Fourier coefficients of g. (When w(h) = 0 we put 1/w(h) = ∞ and we use the
convention that 0 × ∞ = 0.) This gives a Hilbert space of functions whose Fourier
expansion converges absolutely, named a Korobov space. The corresponding square
discrepancy and square variation are

D2(Pn) = 1

n2

∑
0�=h∈Zs

w(h)

n−1∑
i=0

n−1∑
j=0

e2πιht(ui−vj ) =
∑
u⊆S

D2
u(Pn) (2.6)

and

V 2(f ) =
∑

0�=h∈Zs

|f̂ (h)|2
w(h)

=
∑
u⊆S

V 2(fu), (2.7)

where D2
u(Pn) is the sum of the terms in (2.6) for the vectors h whose set of non-zero

coordinates is exactly u. That is, the (square) discrepancy and variation are decom-
posable in accordance with the ANOVA decomposition. Note that

D2
u(Pn) �= D2(Pn(u)) =

∑
v⊆u

D2
v(Pn).

If ξ(u) represents the error functional with Pn(u), then D2(Pn(u)) = ‖ξ(u)‖2
K and

D2
u(Pn) = ‖ξu‖2

K for each u, where ξu is defined by the ANOVA decomposition of ξ .
A key issue now is the choice of weights. Different choices give rise to various

discrepancies [18, 31]. In general, the weights may depend on s, even if this is not
explicit in our notation. The weights must be selected so that the discrepancy is not
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too hard to compute, low-discrepancy point sets can be constructed, and the corre-
sponding variation V (f ) is under control for the functions f of interest in our appli-
cations. In view of (2.7), this means that appropriate weights should depend on the
behavior of the squared Fourier coefficients of f .

Unfortunately, we rarely know how the Fourier coefficients behave in applications,
so there is no simple and definitive way of selecting the weights. It is more convenient
if V (f ) is expressed in terms of quantities that are easier to compute or to bound. In
certain applications, one can bound the partial derivatives of f , for example, and this
has motivated choices of weights for which V (f ) can be written in terms of those
partial derivatives [17, 29, 97, 98, 101].

In [18], the weights w(h) are assumed to have the form

w(h) = w(s,h) = γs,u(h)

∏
j∈u(h)

|hj |−2α = γs,u(h)

s∏
j=1

min
(
1, |hj |−2α

)

for α > 1/2, where w(0) = 1. These authors provide necessary and sufficient con-
ditions on the weights γs,u(h) for tractability and strong tractability, and prove the
existence of lattice rules for which the worst-case error converges as O(n−α+δ) for
any δ > 0, where the hidden constant generally depends on α (and perhaps polyno-
mially on s, unless we have strong tractability). Convergence rate results of this type
have been known for a long time for fixed s [79, 98] and also for special choices of
the weights [17, 101]. However, there are no explicit constructions available for those
lattice rules; they must be found by computer searches for each n and s. When α is
an integer, the corresponding kernel can be written as

Kα(u,v) = 1 +
∑

φ �=u⊆S
γs,u

[−(−4π2)α

(2α)!
]|u|∏

j∈u

B2α

(
(uj − vj ) mod 1

)
(2.8)

where B2α is the Bernoulli polynomial of degree 2α (see [98] for the definition; in
particular, B1(u) = u − 1/2 and B2(u) = u2 − u + 1/6), and the square variation is

V 2(f ) =
∑

φ �=u⊆S
γ −1
s,u

(
4π2)−α|u|

∫
[0,1]|u|

∣∣∣∣
∫

[0,1]s−|u|
∂α|u|f
∂uα

u

(u) duū

∣∣∣∣
2

duu, (2.9)

where uu represents the coordinates of u whose indices are in u and uū represents
those whose indices are not in u. The corresponding RKHS is comprised of periodic
functions f of period 1 with respect to each coordinate, because the Bernoulli poly-
nomials of even degree have this property. Note that the kernel (2.8) and the square
variation (2.9) are already decomposed in the same way as the ANOVA decomposi-
tion of f .

With these general weights, the kernel and the discrepancy are too difficult to com-
pute in general. The sum in (2.5) is infinite, and the number of terms in (2.8) grows
exponentially with s. For this reason, more restricted classes of weights, for which
simplified and more easily computable expressions for the kernel are available, have
been examined in the literature. In particular, the weights are said to have the product
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form if γs,u =∏
j∈u γs,j for some nonnegative constants γs,1, . . . , γs,s , which may

depend on s. This gives

w(h) =
∏

j∈u(h)

γs,j |hj |−2α. (2.10)

Then, the RKHS HK is a tensor product of s one-dimensional Hilbert spaces, and
the kernel becomes

Kα(u,v) =
s∏

j=1

[
1 − γj

(−4π2)α

(2α)! B2α

(
(uj − vj ) mod 1

)]
, (2.11)

which can be computed in O(s) time, so the discrepancy can be computed in O(n2s)

time. Thus, things simplify nicely from the computational viewpoint. For product
weights, we have strong tractability if and only if sups≥1(γs,1 + · · · + γs,s) < ∞,
and tractability if and only if sups≥1

∑s
j=1 ln(1 + γs,1)/ ln(s + 1) < ∞ [18]. That

is, the weights γs,j must decrease fast enough with j or s. Note that these con-
ditions do not guarantee fast convergence in n. Under the stronger condition that
sups≥1

∑s
j=1

√
γs,j < ∞, there exist point sets Pn such that D(Pn) = O(n−1+δ) uni-

formly in s.
The weights are said to be order-dependent if γs,u depends only on the cardinality

of u (and perhaps on s). They are finite-order weights if there is an integer q indepen-
dent of s such that γs,u = 0 whenever |u| > q . Finite-order weights can be appropriate
for function spaces of low effective dimension in the superposition sense: If the effec-
tive dimension does not exceed q , then we can disregard the quality of the projections
of Pn over the subspaces of dimension larger than q , by putting their weights γs,u to
zero. There are important applications in financial derivative pricing where the effec-
tive dimension does not exceed 2 or 3 in proportion 0.99 or more [110–113], and for
which finite-order weights make sense. For order-dependent and finite-order weights,
if the weights are bounded, tractability holds and lattice rules can be constructed that
yield an O(n−α+δ) discrepancy [18, 96, 100] for smooth functions.

2.5 Periodic smooth functions

For periodic smooth functions f with period 1 with respect to each coordinate, and
whose partial derivatives up to some (integer) order α ≥ 1 are all square integrable,
we can achieve an O(n−α+δ) convergence of the worst-case error in a RKHS strongly
related to that obtained from (2.8), and defined as follows [29, 31]. We select a pe-
riodic function g : [0,1] → R, with g(0) = g(1), whose derivative g(α) of order α is
essentially bounded over [0,1], and with

∫ 1
0 g(ν)(u) du = 0 for ν = 0,1, . . . , α. Let

M = ∫ 1
0 [g(α)(u)]2 du and define the kernel

K(u,v) = 1 +
∑

φ �=u⊆S
γs,u

∏
j∈u

[
M + g(uj ) + g(vj )

− (−1)α

(2α)! B2α

(
(uj − vj ) mod 1

)]
. (2.12)
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The corresponding discrepancy can be written easily via (2.2).
If g(u) = 0, the kernel (2.12) is equivalent to the Korobov kernel (2.8) (the factor

4π2 can be incorporated in the weights γs,u).
As another special case, if we take α = 1 and g(u) = −B2(u)/2, we obtain a

weighted L2-unanchored discrepancy which can be interpreted as follows. For each
subset u of coordinates and u,v ∈ [0,1]|u|, let D(Pn(u),u,v) be the local discrep-
ancy for the |u|-dimensional box [u,v) (with opposite corners at u and v), defined as
the absolute difference between the volume of this box and the fraction of the points
that fall in it. The square weighted L2-unanchored discrepancy can be written as

[
D2(Pn)

]2 =
∑

φ �=u⊆S
γs,u

∫
[0,1]|u|

∫
[0,v]

D2(Pn(u),u,v
)
dudv.

2.6 Spaces of non-periodic smooth functions

A class of discrepancies for smooth functions (not necessarily periodic) can be de-
fined by selecting an arbitrary function g : [0,1] → R, whose first derivative g′ is es-
sentially bounded over [0,1], and for which

∫ 1
0 g(u)du = 0. Let M = ∫ 1

0 [g′(u)]2 du

and define the kernel

K(u,v) = 1 +
∑

φ �=u⊆S
γs,u

∏
j∈u

[
M + g(uj ) + g(vj )

+ (1/2)B2
(
(uj − vj ) mod 1

)+ B1(uj )B1(vj )
]
. (2.13)

As a special case, by taking g(u) = 1/6 − u2/2, the product in (2.13) becomes∏
j∈u min[1 − uj ,1 − vj ], and this kernel gives a weighted L2-star discrepancy

whose square can be written as

[
D∗

2(Pn)
]2 =

∑
φ �=u⊆S

γs,u

∫
[0,1]|u|

D2(Pn(u),0,u
)
du. (2.14)

By taking g(u) = 0 for all u, we obtain a discrepancy for which the corresponding
square variation is

V 2(f ) =
∑

φ �=u⊆S
γ −1
s,u

∫
[0,1]|u|

∣∣∣∣ ∂
|u|

∂uu

fu(uu)

∣∣∣∣
2

duu.

For these two choices of g, regardless of the weights, it is known how to construct
infinite sequences for which D∗

2(Pn) converges as O(n−1+δ) where the hidden con-
stant generally depends on s, and may increase exponentially with s. For product
weights, strong tractability holds if and only if sups≥1

∑s
j=1 γs,j < ∞ [17]. Under

the stronger condition sups≥1
∑s

j=1 γ
1/2
s,j < ∞, it is known how to make concrete

constructions that achieve the rate O(n−1+δ) with a hidden constant that does not
depend on s [49].
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2.7 Hilbert spaces based on the Walsh expansion

In Sect. 2.4, we constructed the RKHS based on a Fourier expansion of f . Similar
constructions can be made for expansions with respect to other types of orthogonal
bases. There are many possibilities, yielding a large collection of discrepancies. One
of them, the Walsh expansion, is interesting because it goes along very nicely with
the digital net constructions.

Select a prime integer base b ≥ 2. Let N0 = {0,1, . . . }. For h = (h1, . . . , hs) ∈ N
s
0

and u = (u1, . . . , us) ∈ [0,1)s , where

hj =
�j −1∑
i=0

hj,ib
i, uj =

∑
�≥1

uj,�b
−� ∈ [0,1),

the digits hj,i and uj,� are in Zb, and uj,� �= b − 1 for infinitely many �, define

〈h,u〉 =
s∑

j=1

�j −1∑
�=0

hj,�uj,�+1 mod b. (2.15)

The Walsh expansion in base b of f : [0,1)s → R is

f (u) =
∑

h∈N
s
0

f̃ (h)e2πι〈h,u〉/b,

with Walsh coefficients

f̃ (h) =
∫

[0,1)s
f (u)e−2πι〈h,u〉/b du.

In analogy with the Korobov spaces, we can adopt the kernel

K(u,v) =
∑

h∈N
s
0

w(h)e2πι〈h,(u�bv)〉/b

for some weights w(h), where �b denotes the digit-wise subtraction modulo b. If∑
h∈N

s
0
w(h) < ∞, this gives a Hilbert space of functions f whose Walsh expansion

converges absolutely. The square discrepancy is

D2(Pn) =
∑
u⊆S

D2
u(Pn) = 1

n2

∑
0�=h∈N

s
0

w(h)

n−1∑
i=0

n−1∑
j=0

e2πι〈h,(ui�buj )〉/b (2.16)

and the square variation of f is

V 2(f ) =
∑
u⊆S

V 2(fu) =
∑

0�=h∈N
s
0

|f̃ (h)|2
w(h)

.

Again, the choice of weights is a key issue. We can consider similar types of weights
as for the Korobov spaces, and obtain similar discrepancies and error bounds. For



322 P. L’Ecuyer

product weights, the discrepancy simplifies as in (2.11), for example. These spaces
are convenient for the analysis of digital nets. We shall return to this in Sect. 4.6.

2.8 Random shifts for RQMC

For RQMC, in the case of the random shift modulo 1, E[D2(Pn)] is obtained with
E[K(Ui ,Uj )] = E[K(ui + U,uj + U)] = E[K(ui − uj + U,U)] =: Ksh(ui ,uj ),
which depends only on the difference (ui − uj ) mod 1 (it is shift-invariant) [30, 31].
But any such shift-invariant kernel has a Fourier expansion of the form

Ksh(u,v) =
∑
h∈Zs

w(h)e2πιht(u−v)

with non-negative Fourier coefficients K̂sh(h) = w(h) (because the kernel is non-
negative definite). We recover the Korobov kernel (2.5). The corresponding mean
square discrepancy can then be written as

E
[
D2(Pn)

]= 1

n

∑
0�=h∈Zs

w(h)

n−1∑
i=0

e2πιhtui . (2.17)

With product weights as in (2.10), we end up with the kernel (2.11).
For a random digital shift in base b, a similar expression can be obtained, but

with the Fourier expansion replaced by a Walsh expansion in base b. In that case, we
have E[K(Ui ,Uj )] = E[K(ui �b uj ⊕b U,U)] =: Kdsh(ui ,uj ), which depends only
on ui �b uj , where ⊕b denotes the digit-wise addition modulo b. Thus, this kernel
has a Walsh expansion of the form

Kdsh(u,v) =
∑

h∈N
s
0

w(h)e2πι〈h,u�bv〉/b

with non-negative Walsh coefficients K̃dsh(h) = w(h). The corresponding mean
square discrepancy can be written as

E
[
D2(Pn)

]= 1

n

∑
0�=h∈N

s
0

w(h)

n−1∑
i=0

e2πι〈h,ui 〉/b. (2.18)

2.9 Periodizing the function

We saw that better convergence rates can be achieved in spaces of periodic smooth
functions than for non-periodic functions. It seems like a good idea, then, to look
for changes of variables that can periodize a smooth non-periodic function [32, 98].
For convenience, this is usually achieved by applying a one-dimensional change of
variable one coordinate at a time (more general changes of variables are discussed in
Sect. 6). A general class of such transformations change the integrand f (u1, . . . , us)

into f (ϕ(u1), . . . , ϕ(us))|ϕ′(u1) · · ·ϕ′(us)|, for some appropriate smooth one-to-one
transformation ϕ : [0,1] → [0,1], such that ϕ(�)(0) = ϕ(�)(1) = 0 for � = 1, . . . , α.
The new function has the same integral over [0,1]s as the original one. Specific
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choices of ϕ proposed in the literature include polynomial and trigonometric func-
tions whose degrees or frequencies increase with α [7, 40, 98]. A major problem with
this type of transformation is that while making the function periodic, it can also in-
crease its variation V (f ). In particular, we have to be careful that |ϕ′(u)| does not
become too large.

A variant of this is to select a continuous transformation ϕ : [0,1] → [0,1] (not
necessarily one-to-one) with the property that

∫ b

a
ϕ(u)du = b − a for every interval

[a, b] ⊆ [0,1], and ϕ(0) = ϕ(1). Then,∫
[0,1]s

f (u) du =
∫

[0,1]s
f
(
ϕ(u)

)
du,

where ϕ(u) = (ϕ(u1), . . . , ϕ(us)). Note that this can be conveniently implemented
by transforming the points Pn by applying ϕ to each coordinate, and keeping f un-
changed (so the simulation program that computes f needs no change). This means
in particular that if we are in a RKHS with kernel K , then the discrepancy of the
transformed points is obtained simply by replacing K(u,v) by K(ϕ(u), ϕ(v)) in the
discrepancy formula [32]. This applies to either deterministic or randomized points.
When the points are randomized (RQMC), this transformation must be applied after
the randomization.

Perhaps the simplest such transformation takes ϕ(u) = 2u for u ≤ 1/2 and
ϕ(u) = 2(1 − u) for u > 1/2. It stretches each coordinate of each point ui by a factor
of two, then folds back the coordinates that become larger than 1. It is known as the
baker’s transformation. Equivalently, this transformation can be visualized as con-
tracting the graph of f (for any given coordinate) horizontally by a factor of two, so
the function is now defined over the interval [0,1/2] only, and then making a mirror
copy over the interval [1/2,1], so the transformed function is now symmetric with
respect to 1/2, and its periodic continuation of period 1 is continuous.

By replacing the kernel K(u,v) with K(ϕ(u), ϕ(v)) in the appropriate discrep-
ancy expressions, Hickernell [32] obtains explicit discrepancy expressions for an ar-
bitrary point set randomized by a random shift followed by a baker’s transforma-
tion, for a Hilbert space of (non-periodic) functions with square integrable partial
derivatives of order 2. He also provides a simplified expression for the case of a
randomly shifted lattice, and uses it to show the existence of lattice rules for which
this discrepancy is O(n−2+δ) for fixed s. In other words, adding the baker’s trans-
formation to the random shift reduces the variance from O(n−2+δ) to O(n−4+δ) for
non-periodic smooth functions. A similar result applies to a digital net with a random
digital shift [14]. Empirical results showing significant variance reductions provided
by the baker’s transformation can be found in [57, 62], for example.

A natural question to ask at this point is: To what extent do the integrands en-
countered in finance fit the function spaces examined here? The truth is that these
integrands rarely belong to the smooth Sobolev spaces of functions with square-
integrable partial derivatives of high order. In fact, these integrands are often non-
differentiable at some points. Nevertheless, RQMC with point sets constructed along
the lines discussed in this paper often provides significant variance reduction (and
efficiency improvement), as illustrated in Sect. 8. The links between this success and
the convergence results discussed here have yet to be clarified. It seems that the main
explanation of RQMC effectiveness in finance is the fact that integrands are often
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of very low effective dimension in the superposition sense, and can often be trans-
formed to have low effective dimension in the truncation sense. The important low-
dimensional functions of the ANOVA decomposition are often non-differentiable on
a lower-dimensional manifold (e.g., at one point in the one-dimensional case), but are
smooth elsewhere, and RQMC appears to work well for these types of functions.

3 Lattice rules

3.1 Definition

An integration lattice is a vector space of the form

Ls =
{

v =
s∑

j=1

hj vj such that each hj ∈ Z

}
,

where v1, . . . ,vs ∈ R
s are linearly independent over R and where Ls contains Z

s ,
the set of integer vectors. The QMC approximation of μ with Pn = Ls ∩ [0,1)s is
a lattice rule [98]. The matrix V whose rows are the basis vectors vt

1, . . . ,vt
s is a

generator matrix of Ls . The columns of its inverse W = V−1 form a basis for the
dual lattice, defined as

L∗
s = {

h ∈ R
s : htv ∈ Z for all v ∈ Ls

}
.

It turns out that Ls contains Z
s if and only if all entries of W are integers. In this case,

one has n = det (W) (the determinant of W) and all coordinates of all points of Pn

are multiples of 1/n. Each projection of Ls over a subset u of coordinates is also an
integration lattice L(u), with dual L∗(u), and which determines a lower-dimensional
lattice rule based on the point set Pn(u).

The rank of Ls is the smallest r such that one can find a basis of the form
v1, . . . ,vr , er+1, . . . , es , where ej is the j th unit vector in s dimensions. Most lat-
tice rules used in practice are of rank 1 [64]; their corresponding point set can be
written as

Pn = {
v = iv1 mod 1, i = 0, . . . , n − 1

}
= {

(ia1 mod n)/n, i = 0, . . . , n − 1
}
,

where a1 = (a1, . . . , as) and v1 = a1/n. The set Pn is fully projection-regular if and
only if r = 1 and gcd(aj , n) = 1 for each j , and in that case there is no loss of gener-
ality in assuming that a1 = 1.

A Korobov rule is a lattice rule of rank 1 for which

a1 = (
1, a, a2 mod n, . . . , as−1 mod n

)

for some a ∈ Zn. Its point set can be written as

Pn = {
(x0/n, . . . , xs−1/n) such that x0 ∈ Zn and

xj = axj−1 mod n for all j > 0
}
.
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This is the set of all vectors of s successive values produced by a linear congruen-
tial generator (LCG) with modulus n and multiplier a, from all possible initial states
(including 0) [64]. The equivalent recurrence xj /n = uj = auj−1mod 1 offers a con-
venient way to enumerate the points, especially when this recurrence has full period
n − 1, i.e., when n is prime and a is a primitive element modulo n. For the ith point,
we can start with u1 = i/n and apply the recurrence to obtain the successive coor-
dinates u2, . . . , us . Korobov point sets are actually infinite-dimensional, because an
unlimited number of coordinates are defined by this recurrence.

Sequence of embedded lattices L
(1)
s ⊂ L

(2)
s ⊂ L

(3)
s ⊂ · · · , constructed so that each

lattice contains the previous one, have been studied in [11, 13, 35, 47]. They permit
one to increase the cardinality of Pn sequentially, until a given accuracy has been
achieved, for example. A simple (and practical) case where L

(j)
s is a Korobov lat-

tice with n = n(j) = 2j and multiplier a = a(j) = a(j+1)mod 2j is proposed in [35].
An infinite sequence can be defined simply by specifying an infinite sequence of
multipliers that satisfy this condition.

3.2 Randomization, discrepancies, and parameters selection

Lattice point sets are usually randomized simply by a random shift modulo 1, as
proposed in [13]. The lattice structure of the points is preserved by the shift, in the
sense that we have a shifted lattice. L’Ecuyer and Lemieux [64] have shown that
with a randomly shifted lattice rule, whenever σ 2 < ∞, the variance of the RQMC
estimator is exactly

Var[μ̂n,rqmc] =
∑

0�=h∈L∗
s

∣∣f̂ (h)
∣∣2, (3.1)

where the f̂ (h) are the Fourier coefficients of f . The same expression was obtained
earlier by Tuffin [105] under stronger conditions. Given that the goal is to minimize
the variance, this expression tells us that for a given f , the most relevant discrepancy
is exactly the expression (3.1). This suggests a general class of discrepancies (or
figures of merit) for lattice rules, of the form [28, 64, 65]

Mw(Pn) =
∑

0�=h∈L∗
s

w(h), (3.2)

where the weights w(h) try to mimic the anticipated behavior of |f̂ (h)|2. If
F (w, c) is the class of functions f whose squared Fourier coefficients satisfy
|f̂ (h)|2 ≤ cw(h) for all h ∈ Z

s , for some constant c, then we have the variance bound
Var[μ̂n,rqmc] ≤ c Mw(Pn) for any integrand f ∈ F (w, c). With no randomization,
the integration error μ̄n − μ is also given by (3.1), but with the square removed, and
under the restrictive condition that the Fourier expansion converges absolutely. We
also had the latter condition for the Korobov spaces earlier. It is important to un-
derline that the variance expression (3.1) holds under a much weaker condition than
that. Only the sum of squared Fourier coefficients needs to converge. The function f

does not have to be bounded, for example. Owen [91] studies QMC for unbounded
integrands from another viewpoint.
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In the case of an integration lattice, it turns out that
∑n−1

i=0 e2πιhtui = n if h ∈ L∗
s ,

and 0 otherwise [98, Lemma 2.7], and therefore the criterion (3.2) is exactly equiva-
lent to both (2.6) and (2.17). We are back to the same weight selection problem. The
square discrepancy for the kernel (2.11) simplifies to

D2(Pn) = −1 + 1

n

n−1∑
i=0

s∏
j=1

(
1 + γj

(−4π2)α

(2α)! B2α(uj )/2

)
, (3.3)

which can be computed in time O(ns), and is also a weighted version of a criterion
known as P2α [29]. (Several authors name it Pα [98]; their α corresponds to our 2α.
The weights used in [29] are β̃2

j = 4π2γ
1/α
j .) The unweighted case of this criterion,

where γj = 1 for all j , with α = 1, was examined long ago [98] and specific parame-
ters were proposed. Good lattices for more general weights can be found in [83, 84,
99], for example. For the same Hilbert space as in (3.3), a discrepancy that takes into
account the random shift modulo 1 followed by a baker’s transformation, computable
in O(ns) time, is given in [32], (16).

There has been strong interest recently in a technique called component-by-
component (CBC) construction, for rank-1 lattices [11, 17, 49, 50, 83, 96, 99]. The
idea, for a given n, is to select the components aj of the vector a1 = (a1, . . . , as) it-
eratively: Start with a1 = 1, and at step j , with the previously selected components
a1, . . . , aj−1 fixed, select aj to optimize a given figure of merit (discrepancy) for
the j -dimensional lattice with generating vector (a1, . . . , aj ). This greedy technique
drastically reduces the number of possibilities that need to be examined for a1. A re-
markable result is that by restricting the search in this way, one still obtains lattice
rules that achieve the same theoretical rate of convergence for the discrepancy as
for the best provable bounds. This has been established for several Hilbert spaces
of functions by various authors. Fast computational algorithms have also been de-
signed to speed up this search [11, 83, 84]. These CBC algorithms can compute
the vector a1 in O(n log(n)s) time using O(n) memory for product weights, and
in O(n[log(n)s + s2]) time using O(ns) memory for order-dependent weights. They
are fast enough to allow on-request (just-in-time) construction of lattice rules for para-
meters s, n, and weights that are relevant for a given application and can be provided
by the user, e.g., from a simulation program.

Most of the (square) discrepancies mentioned so far can be written as sums over
the projections u and/or over the points ui or the pairs (ui ,uj ). Several other types of
discrepancies proposed in the literature are written as a supremum over similar terms
(or a minimum, with the terms inverted). The idea is that in view of (3.1), we may
want to use a criterion of the form

M′
w(Pn) = sup

0�=h∈L∗
s

w(h) (3.4)

or equivalently

1/M′
w(Pn) = min

0�=h∈L∗
s

1/w(h) (3.5)
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instead of (3.2). Two figures of merit of the form (3.5), proposed long ago, are the
Zaremba index, where 1/w(h) =∏

j∈u(h) |hj |, and the trigonometric degree (plus 1),
where 1/w(h) =∑

j∈u(h) |hj | [12, 98]. The second one represents the minimal num-
ber of hyperplanes to cover all the points of Pn, minus 1 in some cases [48]. If we
take 1/w2(h) =∑

j∈u(h) h
2
j instead, then the criterion (3.4) corresponds to the spec-

tral test, used to assess the quality of random number generators [28, 48, 55], and
which represents the largest distance between equidistant parallel hyperplanes that
cover all the points. Note that all these criteria measure the length of the shortest
non-zero vector h in the dual lattice, using a different notion of length. Other def-
initions of lengths could be used as well. In each case, all the functions f whose
Fourier expansion can be written only in terms of vectors h whose length is smaller
than the criterion are integrated exactly (with zero error, or zero variance in the case
of a randomly shifted rule) by the lattice rule.

These criteria based on worst-case length can be generalized by weighting the
lengths in some way, for example as a function of u(h). This is often done by using
a theoretical upper bound w∗

d(n) on the length of the shortest non-zero vector in
the dual lattice for an integration lattice of density n in d dimensions. The length
1/w(h) is divided by w∗

|u(h)|(n) to provide a standardized number between 0 and
1 [54, 55, 64, 68]. More generally, we might divide 1/w(h) by w̃u(h)(n), for some
numbers w̃u(n) ≥ w∗|u|(n), to reduce the weights of the projections (or coordinate
subsets) deemed less important. When s is large, to speed up the computations, we
may restrict ourselves to a subclass J of the sets of indices u ⊆ S , and put w(h) = 0
whenever u(h) �∈ J . This gives a criterion of the general form

min
u∈J

min
0�=h∈L∗

s ;u(h)=u

[
w(h)w̃u(n)

]−1
. (3.6)

This type of criterion, with 1/w(h) taken as the Euclidean norm of h, has been pro-
posed in [64, 68] and used to compute tables of parameters for Korobov rules [64].
Simplified versions of it have been used for a long time to measure the quality of
random number generators [48, 54, 58]. One advantage of this type of criterion is
that for certain choices of length (including the Euclidean one), its computation time
is pretty much independent of n, so it can be convenient for large values of n. On the
other hand, its computing time is generally exponential in d̃ = sup{|u| : u ∈ J }, and
also linear in |J |. Values of d̃ of up to a few dozen can nevertheless be handled [54,
55, 64].

With all these potential selection criteria for lattice rules, one would certainly won-
der which one should be used in practice for typical finance applications, and what
is the difference of RQMC variance between the rules selected via different crite-
ria. There is still no clear and complete answer to these questions. Partial results, for
simplified models, can be found in [108, 110–113].



328 P. L’Ecuyer

4 Digital nets and sequences

4.1 Definition and constructions

The following digital method, introduced by Niederreiter [77, 79], provides the sec-
ond main class of construction methods of low-discrepancy point sets and sequences.
Let b ≥ 2 be an arbitrary integer, usually a prime, called the base. A net of n = bk

points in s dimensions is defined by selecting s generator matrices C1, . . . ,Cs , where
each Cj is (in theory) an ∞ × k matrix with elements in Zb = {0, . . . , b − 1}. The
matrix Cj determines the coordinate j of all the points. To define the ith point ui ,
for i = 0, . . . , bk − 1, we write the digital expansion of i in base b and multiply the
vector of its digits by Cj , modulo b, to obtain the digits of the expansion of ui,j , the
j th coordinate of ui . That is,

i =
k−1∑
�=0

ai,�b
�,

⎛
⎜⎜⎜⎝

ui,j,1

ui,j,2

...

⎞
⎟⎟⎟⎠ = Cj

⎛
⎜⎜⎜⎜⎜⎜⎝

ai,0

ai,1

...

ai,k−1

⎞
⎟⎟⎟⎟⎟⎟⎠

mod b, (4.1)

ui,j =
∞∑

�=1

ui,j,�b
−�, and ui = (ui,1, . . . , ui,s). (4.2)

The resulting point set is a digital net in base b. In practice, the expansion (4.2)
is truncated to r digits for some r , so each Cj is an r × k matrix. Typically, r is
equal to k, or is slightly larger, or is selected so that br is near 231. We assume
that the first k rows of each Cj form a non-singular k × k matrix; in this case, each
one-dimensional projection Pn({j}) of Pn over the j th coordinate, truncated to the
first k digits in base b, is equal to the set Zn/n = {0,1/n, . . . , (n − 1)/n}. However,
these numbers are enumerated in a different order for the different coordinates. In
other words, the first k rows of Cj implement a permutation of Zn/n. The choice of
these permutations is the key factor for the uniformity of Pn and of its projections
Pn(u). If all the permutations were the same, all the points would fall along the main
diagonal of the unit hypercube. More generally, each projection Pn(u) of a digital net
(or sequence) is also a digital net (or sequence), with generator matrices Cj1, . . . ,Cjd

if u = {i1, . . . , id}.
What we just gave is a somewhat simplified definition of a digital net. It covers

the most popular constructions. The setting of [79] is more general; one can apply
bijections (or permutations) to the digits of Zb before and after the multiplication
by Cj . This is done by taking an arbitrary ring R of cardinality b, and defining bi-
jections ψ� : Zb → R for � = 0, . . . , k − 1, and ηj,� : R → Zb for � = 1, . . . , r and
j = 1, . . . , s. In (4.1), each digit ai,� is replaced by ψ�(ai,�), and the multiplications
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by Cj are done in the ring R. Then, in (4.2), each ui,j,� is replaced by ηj,�(ui,j,�).
These bijections give additional opportunity for improving the uniformity. If R = Zb ,
they are equivalent to permuting the digits of Zb . If b is a power of a prime, then R

can be taken as a finite field, so the multiplications by Cj are performed in the finite
field (allowing this was the original reason for introducing the bijections).

If each Cj has an infinite number of columns, then we have an infinite sequence
of points, called a digital sequence in base b. The first k columns determine the
first bk points, for any k. Well-known examples are the sequences of Sobol’ [103] in
base 2, of Faure [20] in prime base b, of Niederreiter [77], and of Niederreiter and
Xing [82]. With an infinite sequence of matrices Cj , we have an infinite-dimensional
digital net. These infinite sequences of columns and matrices are typically defined
via recurrences (each column and matrix being a function of the previous ones).

When n is fixed, we can enumerate the points in any order, so one (simple) pos-
sibility is to use the identity permutation for the first k digits of the first coordinate.
That is, the points are enumerated by their first coordinate. To do that, the first k rows
of C1 must form the reflected identity matrix, with a 1 in row k − c + 1 of each col-
umn c and zeroes everywhere else. If the first k rows of Cj form the identity instead,
then the corresponding output (looking at the first k digits only) is the first n elements
of the van der Corput sequence in base b, defined as ψb(0),ψb(1),ψb(2), . . . , where
ψb : N → [0,1) is the radical inverse function in base b, i.e.,

ψb(i) = a0b
−1 + a1b

−2 + · · · + ak−1b
−k

if i is a k-digit integer in base b which has the digital b-ary expansion
i = a0 + a1b + · · · + ak−1b

k−1. The first n elements of a van der Corput sequence
fill up the unit interval quite uniformly for any large enough n. The uniformity is
better when n is a power of b. When n is not fixed in advance, for example if we
add points until we think the estimate is sufficiently accurate, then we need a digital
sequence and the best constructions typically take C1 (truncated to its first k rows)
equal to the identity.

4.2 Measures of uniformity via equidistribution

For a vector q = (q1, . . . , qs) with non-negative integer coordinates, and a base b ≥ 2,
if we partition the j th axis into bqj equal parts for each j , we obtain a partition of
[0,1)s into bq1+···+qs rectangular boxes of the same size and shape. We call it a q-
equidissection in base b. A point set Pn of cardinality n = bk (usually a digital net in
base b) is q-equidistributed in base b if each box of this equidissection contains the
same number of points of Pn, i.e., exactly bt points where t = k − q1 − · · · − qs . For
a digital net in base b, this property is easy to verify: It holds if and only if the set of
k − q = q1 + · · · + qt rows that comprise the first qj rows of Cj , for j = 1, . . . , s, is
linearly independent in the finite ring R (regardless of the bijections ψ� and ηj,�).

The point set Pn is called a (t, k, s)-net in base b if it is (q1, . . . , qs)-equidistributed
whenever q1 +· · ·+qs ≤ k − t [79]. We call the smallest such t the t-value of the net.
A digital sequence {u0,u1, . . . } in s dimensions is a (t, s)-sequence in base b if for
all integers k > 0 and ν ≥ 0, the point set Q(k, ν) = {ui : i = νbk, . . . , (ν + 1)bk − 1}
is a (t, k, s)-net in base b. The t-value is the most widely used figure of merit for
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digital nets. Its justification is that for a fixed s, for (t, k, s)-nets or (t, s)-sequences
with bounded t-value, the star discrepancy D∗(Pn) converges as O(n−1(logn)s−1).

Ideally, we should like the t-value to be zero, but there are theoretical bounds on
the best that can be achieved. In particular, a (0, k, s)-net in base b can exist only if
b ≥ s − 1, and a (0, t)-sequence in base b can exist only if b ≥ t . Lower bounds for
general pairs (b, s), together with the best values achieved by known constructions,
are tabulated in [95]. As an illustration, for b = 2, s = 20, and k = 16, so n = 216, we
know that the t-value cannot get below 9. Reaching this optimal value only guarantees
equidistribution when there are at most 27 = 128 boxes that contain at least 29 = 512
points each.

The difficulty is that a small t-value would require equidistribution for a very rich
family of partitions into rectangular boxes, and this becomes impossible when t is too
small. This explains the large lower bounds on the t-value. One alternative is to con-
sider a smaller family of partitions; for example, only cubic boxes [53, 63, 65]. The
largest � for which Pn is (�, . . . , �)-equidistributed is called the s-dimensional resolu-
tion of Pn. This value cannot exceed �k/s� and we call the difference δ = �k/s� − �

the resolution gap of Pn.
These definitions also apply to the projections Pn(u) of Pn, for

u = {i1, . . . , id} ⊂ S . Let tu and δu denote the t-value and the resolution gap associ-
ated with Pn(u), and t∗|u| the lower bound on tu. Simple measures of non-uniformity
for digital nets can be defined by [56, 65, 69, 92]

max
u∈J

γuδu, or
∑
u∈J

γuδu, or

max
u∈J

γu

[
tu − t∗|u|

]
, or

∑
u∈J

γu

[
tu − t∗|u|

]
,

for some non-negative weights γu, where J is a preselected class of index sets u. The
choice of J and of the weights γu is a matter of compromise. If J contains too many
sets, the selection criterion is more costly to compute, and its best possible value is
larger, which means that the criterion is generally less demanding for the important
projections. The weights are sometimes taken all equal to 1.

4.3 Classical constructions

The oldest and most popular type of digital sequence, introduced by Sobol’ [103], is
in base 2 and uses upper triangular binary matrices Cj with 1 s on the diagonal. These
matrices have an infinite number of rows and columns. In each column, the bits above
the diagonal are taken from the binary expansion of some real number which Sobol’
calls direction number. These direction numbers obey a bitwise recurrence across
columns. Their choice determines the quality of the net. The original values pro-
posed by Sobol’ were selected to provide (1, . . . ,1)- and (2, . . . ,2)-equidistribution
only (i.e., by considering only the first two bits of each coordinate). In particular, no
attention was paid to the quality of the projections Pn(u) in two or more dimensions,
and the uniformity of these projections often turns out to be quite bad [75]. Differ-
ent direction numbers, based on stronger equidistribution properties, are proposed
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in [46, 67]. Generator matrices can be defined easily for arbitrary additional coordi-
nates without modifying the previous ones, so the dimension is virtually infinite.

Faure [20] proposed digital sequences with generator matrices Cj = Pj−1 mod b,
where the base b is prime and P is a k × k upper triangular matrix whose entry (�, c)

is the number of ways of choosing � − 1 elements among c − 1 for � ≤ c and is 0 for
� > c. This gives C1 = I (the identity) and Cj = PCj−1 mod b. Faure [20] proved that
if b is prime and b ≥ s, this sequence is a (0, s)-sequence in base b. Unfortunately,
the condition b ≥ s is a practical limitation when the dimension s is large. Moreover,
since the choice of b depends on s, the dimension must be fixed a priori.

Niederreiter [77] and Niederreiter and Xing [82] proposed sequences and nets for
arbitrary prime power bases and nets in base 2 with better t -value than those of Sobol’.
The sequence of [77] can be viewed as infinite-dimensional, but not that of [82].

For all these sequences, if we fix the number of points n = bk , we can take C1
equal to the reflected identity, so the first coordinate of point i is i/n, and we move
up all other coordinates by one position. In a sense, we save one coordinate. From a
(t, s)-sequence, we can then obtain a (t, k, s + 1)-net for any k.

Other types of digital net constructions can be found in [5, 19, 63, 69, 80, 92, 95]
and the references given there.

4.4 Polynomial lattice rules

Polynomial integration lattices are a special case of digital nets. They are similar
to the ordinary integration lattices, except that they are defined in different spaces.
Let b be an arbitrary integer larger than 1, Zb the residue ring of integers modulo b

(the base), Zb[z] the ring of polynomials with coefficients in Zb , and Lb the ring
of formal Laurent series with coefficients in Zb , of the form

∑∞
�=ω x�z

−�, where
x� ∈ Zb . A polynomial integration lattice is defined as

Ls =
{

v(z) =
s∑

j=1

qj (z)vj (z) such that each qj (z) ∈ Zb[z]
}

,

where v1(z), . . . ,vs(z) ∈ L
s
b are defined by vj (z) = aj (z)/P (z), where

P(z) = zk + α1z
k−1 + · · · + αk ∈ Zb[z] and each aj (z) is a vector of polynomials

of degree less than k. Note that (Zb[z])s ⊆ Ls .
An output mapping ϕ : Lb → R is defined by

ϕ

( ∞∑
�=ω

x�z
−�

)
=

∞∑
�=ω

x�b
−�.

The polynomial lattice rule uses the node set Pn = ϕ(Ls) ∩ [0,1)s = ϕ(Ls ∩ Lb,0),
where Lb,0 = Lb mod Zb[z]. Polynomial lattice rules of rank 1 were introduced
in [78]. They were generalized to rules of arbitrary rank over a finite field in [66,
69] and over the ring Zb in [56]. Most of the properties of ordinary lattice rules have
counterparts for the polynomial rules [56]. In particular, figures of merit similar to
(3.4), (3.5), and (3.6) can be defined in terms of shortest vectors in the dual lattices,
and CBC constructions can provide good parameters for discrepancies based on the
Walsh expansion, of the general form (2.16), with product weights [14–16].
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4.5 Randomizations and scramblings

It was pointed out in [63, 64, 66] that for a polynomial integration lattice, a random
shift of Ls in the space of formal series is equivalent to a random digital shift in
base b, already introduced in Sect. 1.3 and appropriate for digital nets in general:
Generate U = (U1, . . . ,Us) uniformly over (0,1)s , write the digital expansion in base
b of each of its coordinates, say Uj =∑∞

�=1 dj,�b
−�, then add dj,� modulo b to the

�th digit of the digital expansion in base b of the j th coordinate of each ui ∈ Pn. For
b = 2, the digit-wise addition modulo b is a bitwise exclusive-or; it can be computed
very quickly on a computer. For a digital net, this digital shift, and all the scrambles
that we discuss below, preserve the q-equidistribution properties for all vectors q, as
well as the (t, k, s)-net properties. That is, if Pn is q-equidistributed before the shift
or the scramble, it remains so after it, regardless of its realization.

The random digital shift provides an unbiased estimator of μ with a small amount
of work. However, a deeper scrambling (more randomization) sometimes gives more
variance reduction because the average point set over the class in which we randomize
can have better uniformity in the larger class (with more randomization) than in the
restricted class (with the random shift only).

Owen [85] proposed a nested uniform scrambling, for digital nets, which ran-
domly permutes the values {0, . . . , b − 1} used for the digits ui,j,�, independently
across the coordinates and across the digits. He showed in [87] that for functions
whose mixed partial derivatives satisfy a Lipschitz condition, with a (t, k, s)-net
scrambled in this way, the RQMC estimator has a variance of O(n−3(logn)s). Un-
fortunately, this method requires (1 + b + · · · + b�−1)s independent permutations to
scramble the first � digits, so it is very time-consuming. For b = 2 and � = 20, for
example, we would need more than one million permutations for each coordinate.
A simplified (and faster) implementation is proposed in [23]. In practice, one can
take � = k − 1 and then apply an independent random digital shift to the remaining
bits ui,j,k, ui,j,k+1, . . . for each (i, j). This is equivalent to the full scrambling.

A class of less expensive approaches that perform well, for digital nets, are the lin-
ear scrambles [21, 39, 73, 89], which multiply each matrix Cj by a random invertible
matrix Mj , modulo b. Usually, Mj is a w × w lower triangular matrix, with invert-
ible elements modulo b on its diagonal, and it multiplies Cj on the left. Each Mj

can be generated at random in some class, or can be constructed to minimize some
measure of discrepancy. In a version proposed in [39, 73], the diagonal entries are
generated uniformly over {1, . . . , b − 1}, and the entries below the diagonal are gen-
erated uniformly over {0, . . . , b − 1}, all independently. A linear scramble alone does
not provide an unbiased estimator, but its combination with a random digital shift
modulo b does. The striped matrix scramble proposed by [89] adds the constraint
that in any given column, all entries below the diagonal are equal to the diagonal
entry, which is generated randomly over {1, . . . , b − 1}. In base 2, all entries on or
below the diagonal are equal to 1. With this scramble, the points enjoy global and
local antithetic properties in each dimension, and yields O(n−4) variance for smooth
one-dimensional integrands (and therefore for the smooth one-dimensional compo-
nents of the ANOVA decomposition).
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4.6 Variance and error analysis via Walsh expansions

Digital nets have a dual space

C∗
s = {

h ∈ N
s
0 : 〈h,u〉 = 0 for all points u ∈ Pn

}

that plays a similar role as the dual lattice L∗
s for integration lattices [56, 65, 66, 69,

81]. This space is closed with respect to digital addition in base b and multiplication
by an integer modulo b, so it is actually a lattice, even though the digital net itself
is not necessarily the intersection of a lattice with the unit hypercube [56]. The dual
space C∗

s indicates which digits of the points are equidistributed, in the following
sense. The non-zero digits hj,� of any given h ∈ N

s
0 form a bit mask that selects

a set of digits uj,�+1 of the points via (2.15). The vector of these selected digits
is equidistributed, i.e., each possibility appears the same number of times for this
vector, if and only if h is not in C∗

s . In other words, each vector h corresponds to
a given partition of [0,1)s , and the point set is equidistributed for a given class of
such partitions if and only if no h from that class belongs to C∗

s . Uniformity criteria
can be defined in terms of the length of a shortest non-zero vector in C∗

s , for some
definition of length on the vectors h [56, 69, 81]. The resolution gap and the t-value,
for example, can be expressed in this way.

Recently, Dick [16] introduced a generalization of the t-value, named the t (α)-
value, based on a length of h defined as the sum of the α most significant non-zero
digits of each coordinate of h, for a given integer α ≥ 1. This definition of length
is a way to select which vectors h should be kept out of C∗

s . He constructs explicit
digital sequences with bounded t (α)-value, and proves that for such sequences, for
the Sobolev space of functions with square-integrable mixed partial derivatives up to
order α, the worst-case error converges as O(n−α+δ). With a random digital shift, the
root mean square error converges at the same rate. Dick’s remarkable result provides
the first explicit construction that achieves this optimal rate for this Sobolev class.

It is proved in [65, 66] that whenever σ 2 < ∞, the variance of the RQMC estima-
tor of μ(f ) for a digital net with a random digital shift modulo b is exactly

Var[μ̂n,rqmc] =
∑

0�=h∈C∗
s

∣∣f̃ (h)
∣∣2, (4.3)

where the f̃ (h) are the coefficients of the Walsh expansion of f . This expression is
the ultimate discrepancy measure for a given f , for this RQMC scheme.

As for lattice rules, this suggests a general class of discrepancies of the form [65]

Mw(Pn) =
∑

0�=h∈C∗
s

w(h), (4.4)

with weights w(h) that should match the behavior of |f̃ (h)|2. If F (w, c) is the class
of functions f whose squared Walsh coefficients satisfy |f̃ (h)|2 ≤ cw(h) for all
h ∈ N

s
0, then Var[μ̂n,rqmc] ≤ c Mw(Pn) for any f ∈ F (w, c). Without the randomiza-

tion, the integration error μ̄n − μ is also given by (4.3), but with the square removed,
and under the restrictive condition that the Walsh expansion converges absolutely.
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In the case of a digital net,
∑n−1

i=0 e2πι〈h,ui 〉/b = n if h ∈ C∗
s , and 0 otherwise, and

then (4.4) is equivalent to both (2.16) and (2.18).
Much of what applies to lattice rules has a counterpart for digital nets (or at least

to their polynomial lattice subclass) [15, 16, 56, 65, 69].

5 Other types of constructions

5.1 Hammersley point sets and Halton sequence

Digital nets and sequences can be further generalized by allowing different bases
for the different coordinates, say bj for coordinate j . For example, the point sets
introduced long ago by Hammersley [26] have

ui = (
i/n,ψb1(i),ψb2(i), . . . ,ψbs−1(i)

)
,

for i = 0, . . . , n − 1, where the basis bj used for coordinate j is the j th smallest
prime number. Here, C0 is the reflected identity and Cj is the identity for all j > 0.
The corresponding infinite sequence, proposed by Halton [25], takes

ui = (
ψb1(i),ψb2(i), . . . ,ψbs (i)

)

for all i ≥ 0, where bj is again the j th smallest prime. One drawback is that bj

becomes quite large for large j . In any case, the identity matrices Cj could also be
replaced by more general generating matrices, which may give room to improve the
uniformity.

In [109], the Halton sequence is randomized simply by selecting the starting point
u0 randomly over (0,1)s , truncating its coordinates to a finite digital expansion, and
exploiting the fact that there is a simple way of getting ψb(i + 1) directly from ψb(i),
so the successive points can be generated without knowing their indices i in the origi-
nal sequence. They show that this method satisfies conditions (a) and (b) of Sect. 1.3.
In their numerical experiments, it performs much better than randomly shifting (mod-
ulo 1) the Halton sequence.

5.2 Recurrence-based point sets

Infinite-dimensional point sets can be defined in a similar way as random number
generators by selecting a state space S = {s0, . . . , sn−1} of cardinality n, a tran-
sition function ϕ : S → S , and an output function g : S → [0,1). The n points
Pn = {u0, . . . ,un−1} are defined by ui = (g(si), g(ϕ(si)), g(ϕ2(si)), . . . ). Often,
ϕ defines a recurrence of period n − 1 (it visits all the states except one, which is
usually s0 = 0, for which ϕ(s0) = s0). Then the points are easy to enumerate with
very little storage; one can just run the recurrence over its full cycle and take all
overlapping vectors of successive values produced by that recurrence, plus the addi-
tional vector whose coordinates are all g(0). One example of this is to use a small
linear congruential generator with prime modulus n and primitive multiplier a; this
is equivalent to a Korobov lattice rule [55, 64]. Another example is to use a small
linear feedback shift register generator in base 2, with primitive characteristic poly-
nomial [63, 66]. Point sets are implemented in this way in SSJ [60], for example.
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6 Transforming the integrand

6.1 Change of variables

Improving the uniformity of the point set Pn is not the only way to reduce the error
or variance. Another way is to change the function f to reduce its variability or its
effective dimension without changing its mean. The primary technique for reducing
the variability is a change of variable. Define a differentiable one-to-one function
ϕ : [0,1]s → [0,1]s , where ϕ(v) = (ϕ1(v), . . . , ϕs(v)) for v = (v1, . . . , vs) ∈ [0,1]s ,
and write

μ =
∫

(0,1)s
f (u) du =

∫
(0,1)s

f
(
ϕ(v)

)
J (v) dv =

∫
(0,1)s

g(v) dv,

where J (v) is the Jacobian of the transformation ϕ at v, defined as the determinant of
the s × s matrix whose element (i, j) is ∂ϕi(u)/∂uj . To estimate μ by MC or QMC
or RQMC, we compute the function g (instead of f ) at each point, and average.
Note that this is exactly equivalent to applying a change of measure as in importance
sampling; the uniform density of u is replaced by the density 1/J (v) obtained for
u = ϕ(v) when v is uniform. The aim is to select ϕ so that g has smaller variation
than f . Another reason for using a change of variables is to periodize the function
(see Sect. 2.9 and [98]). Other standard variance-reduction techniques, such as control
variate and conditional Monte Carlo, for example, can be applied to smooth out the
integrand f before applying RQMC.

In theory, there is always a way of reducing the effective dimension to 1, as fol-
lows: Replace f by g where g(u) = g(u1) = G−1(u1), where G is the distribution
function of the random variable f (U), i.e., G(x) = P[f (U) ≤ x] where U is uniform
over (0,1)s . However, finding this g is usually much too difficult, except in a few
special cases (for example, if f (U) can be easily written as a function of a linear
combination of normal random variables).

6.2 Bridge sampling and principal component sampling

In the context of financial applications, techniques for reducing the effective dimen-
sion have been proposed based on bridge sampling and principal component analysis
[1, 22, 24, 43, 57, 76]. To illustrate these ideas, suppose that the integrand of in-
terest can be written as a function of a multivariate normal vector Y = (Y1, . . . , Ys),
with mean zero and covariance matrix �. That is, μ = E[g(Y)] for some computable
function g, and g(Y) is the estimator. For example, g(Y) can be the payoff of a fi-
nancial option that depends on the sample path of a multivariate geometric Brownian
motion observed at a finite set of epochs. There are many ways of generating the
normal vector Y in this setting. The usual approach is to decompose � = AAt for
some matrix A, generate a vector Z = (Z1, . . . ,Zs)

t where the Zj are independent
standard normal random variables, and return Y = AZ. The Zj are easily generated
via Zj = Φ−1(Uj ) where Φ is the standard normal distribution function and the Uj

are independent uniform random variables over (0,1). A fast and accurate approx-
imation method for Φ−1, based on rational Chebyshev approximation, is available
in [60], for example.
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Now, there are many possibilities for the choice of A. The most common method,
the Cholesky factorization, takes A to be lower triangular. A second possibility is an
eigen-decomposition, for which A = PD1/2 where D is a diagonal matrix that con-
tains the eigenvalues of � in decreasing order and P is an orthogonal matrix whose
columns are the corresponding unit-length eigenvectors. This is the decomposition
used in standard principal component analysis (PCA), and was proposed in [1] to
reduce the effective dimension in the truncation sense, in the context of simulating
a geometric Brownian motion for option pricing via QMC. It selects the matrix A
so that the maximum amount of variance of Y comes from Z1, then the maximum
amount of variance conditional on Z1 comes from Z2, and so on. Thus, the method
concentrates the variance in the first coordinates of Z as much as possible. If the Zj

are generated by inversion as Zi = Φ−1(Uj ), then this method minimizes the effec-
tive dimension in the truncation sense if we consider the variance of Y.

On the other hand, the PCA technique does not take into account the function g. It
may turn out that with the PCA sampling scheme, g(Y) depends very little on Z1 and
very much on Z25, for example, even if Z1 has more influence on the variance of Y.
In such a situation, PCA will miss its target. Ideally, one would like to find a decom-
position AAt that minimizes the effective dimension of the integrand f (U) = g(Y)

(in some sense), which depends on g. For example, the goal could be to maximize
the fraction of Var [g(Y)] that comes from Z1, then maximize the fraction that comes
from Z2 given Z1, and so on. For non-linear functions g, this is a difficult problem.
Imai and Tan [41–43] propose to use a linear approximation g̃ of g, obtained via a
first-order Taylor expansion around some “representative” point in the unit cube, to
compute each new column of A so that the corresponding Zj accounts for the maxi-
mal amount of residual variance of the linear approximation. A distinct representative
point must be selected for each new column of A. The main problem, however, is to
find a good linear approximation. This can be difficult (and impractical) in general
(e.g., if g is highly non-linear).

In financial applications, Y frequently corresponds to the observations of a c-
dimensional Brownian process {W(t) = (W1(t), . . . ,Wc(t)), t ≥ 0} at times
0 = t0 < t1 < · · · < td = T . Then we have s = cd and

Y = (
W1(t1), . . . ,Wc(t1), . . . ,W1(td), . . . ,Wc(td)

)t
.

For example, we may have a basket of c financial assets whose values evolve as
(potentially correlated) geometric Brownian motions (GBMs), and the net payoff at
time T is a function g of the c asset values at the fixed observation times.

The standard approach for simulating the Brownian process {W(t), t ≥ 0}
at times t1, . . . , td is to generate (independent) increments W(t1) − W(t0), . . . ,

W(td) − W(td−1) sequentially, in that order. We call it sequential or random walk
sampling.

Another way is to write the covariance matrix � of the s-dimensional vector Y
and decompose it as � = AAt as we saw earlier. One can take advantage of the fact
that � can be written as a Kronecker product in this case, and use this to speed up the
computations, especially for PCA [24]. If c = 1 and the decomposition is done with
Cholesky, this is equivalent to sequential sampling.
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Brownian Bridge sampling (BBS) was proposed in [76] as a tool to reduce the ef-
fective dimension for QMC, for this situation (with c = 1), by concentrating the vari-
ance (or importance) to the first few random numbers. See also [9, 24]. For notational
simplicity, we assume that d is a power of two, but the method applies more generally.
The idea is to first generate the vector W(td) = (W1(td), . . . ,Wc(td))t from the appro-
priate c-dimensional normal distribution. Then, we generate W(td/2) conditional on
(W(0), W(td)), then, W(td/4) conditional on (W(0), W(td/2)), and W(t3d/4) condi-
tional on (W(td/2), W(td)), and so on, until the whole vector Y has been generated.
In general, given ta < t < tb , the distribution of W(t) conditional on (W(ta), W(tb))

is multivariate normal with mean and covariance matrix

E
[
W(t)

∣∣W(ta) = x,W(tb) = y
] = W(ta) + (

W(tb) − W(ta)
) t − ta

tb − ta
,

Var
[
W(t)

∣∣W(ta) = x,W(tb) = y
] = (t − ta)(tb − t)

tb − ta
�,

where μ and � are the drift vector and the covariance matrix of W, i.e.,
E[W(t) − W(0)] = tμ and Var [W(t) − W(0)] = t�. When c > 1, we must again
decompose the (c × c) conditional covariance matrix at each step to generate W(t)

from the conditional distribution. These decompositions can be computed before-
hand, either via Cholesky, or PCA, or another method. When the observation points
are equally spaced, many of these covariance matrices are the same. Intuitively, BBS
reduces the effective dimension in the truncation sense, because the first few random
numbers already sketch the general shape of the trajectory, whereas the last ones are
only making minor adjustment to it. It is just another (implicit) way of decompos-
ing the matrix �. Like for PCA, the overall impact of BBS on an estimator depends
on the function g, and one can construct instances of g for which it increases the
effective dimension and the RQMC variance [93, 113].

In one generalization of BBS, one can sample W(t1), . . . ,W(td) in an arbitrary
order, i.e., according to any given permutation of t1, . . . , td . Lin and Wang [70] show
that sampling first at the tj closest to 3td/4 maximizes the variance explained by Z1.
This rule applies recursively: If t� < td is the farthest point already sampled, then
the next best point to sample in {t�+1, . . . , td} is the one nearest t� + 3(td − t�)/4. If
tj < t� have been sampled but no other point in between, the next best point to sample
in this interval (if any) is the one nearest (t� − tj )/2. So in the case of equidistant
observation times, the optimal permutation differs from BBS essentially only by not
starting immediately at td when sampling to the right of the rightmost point already
sampled. In empirical experiments, the new permutation improves by a few percent
the variance explained by Z1, and its impact on the other projections is very small.

Wang [107] examines the effect of BBS and PCA sampling on the effective dimen-
sion in the superposition and truncation senses, in the context of Asian option pricing
models based on the geometric average, zero strike price, and a geometric Brownian
motion. He finds explicit formulas for the proportion of variance explained by various
subsets of projections, and shows that if T is fixed while � = tj+1 − tj = T/d → 0,
the effective dimension remains bounded. This does not hold, however, if � is fixed
and T = d� → ∞. This model is certainly much simpler than the ones for which we
want to use MC or QMC, but it gives some idea of the potential effective dimension
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for more elaborate models. Numerical experiments suggest that adding a non-zero
strike price and replacing the geometric average by an arithmetic one does not change
the behavior of the effective dimension significantly (this may not be true if the strike
price is very large, so a positive payoff becomes a rare event, or if the time horizon is
long, in which case the geometric and arithmetic averages may differ much more). In
representative numerical examples with d = 64 and d = 256, Wang [107] observed
that the variance ratio explained by the first two coordinates Z1 and Z2 (the trunca-
tion variance ratio of order 2) was very small for standard sequential sampling, over
90% for BBS, and more than 99% with PCA. On the other hand, the variance ratio
explained by the one- and two-dimensional projections (the superposition variance
ratio of order 2) was more than 99.99% already with the sequential sampling, and
even more with BBS and PCA. This means that for this type of application, Pn could
be constructed based on a discrepancy with large weights γu for |u| ≤ 2, and small
(or zero) weight to the higher-dimensional projections. Wang and Sloan [110–113]
define and discuss such discrepancies, show how to construct shifted lattice rules with
small discrepancy, and obtain bounds of the convergence rate of the error when these
rules are used with BBS or PCA.

6.3 Extensions

The BBS methodology applies not only to Brownian processes, but to any Lévy
process (a process with stationary and independent increments). However, we need
an efficient algorithm to sample from the conditional distribution. We know how to
do that for the Poisson and gamma processes, for example [2, 22]. In [2], the tech-
nique is applied to the simulation of a variance gamma process, where the underlying
gamma processes are simulated by bridge sampling.

PCA sampling can also be applied to generate a Lévy process at times
0 = t0 < t1 < · · · < td = T , in the following way. Suppose the increment over the
time interval (tj−1, tj ] has distribution function Gj . We can first generate a stan-
dard Brownian motion W at times 0 = τ0 < τ1 < · · · < τd via PCA, then return
G−1

j (Φ([W(τj ) − W(τj−1)]/√τj − τj−1)) as the increment of the Lévy process
over (tj−1, tj ]. The times τ1 < · · · < τd are free parameters that can be selected in
some optimal way (to try minimizing the variance of the RQMC estimator).

7 Software

Software implementations of QMC point sets and sequences can be found in [8, 39,
45, 60, 61, 67] and the references given there.

Modern simulation software often provides multiple streams and substreams of
random numbers, and facilities to create new streams and to rewind a stream to its
starting point, or to the beginning of the current substream, or the next substream [59–
61]. These tools facilitate the implementation of variance-reduction methods.

Ideally, one should be able to replace the streams of random numbers by QMC
or RQMC point sets or sequences, with no internal modification to the simulation
program. This is the philosophy behind the implementation found in SSJ [60, 61],
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which offers several types of point sets and sequences. Some are infinite-dimensional.
Available constructions include lattice rules, Hammersley point sets and Halton se-
quences, Sobol’, Faure, and Niederreiter sequences, recurrence-based digital nets,
and digital nets constructed by other techniques. Randomizations provided include a
random shift, a digital random shift, and several matrix scrambles. Randomizations
and transformations (such as the baker’s transformation, for example) are imple-
mented via container classes that act as filters. For example, to obtain a randomly
shifted lattice with a baker’s transformation, one can create a point set P for the
underlying integration lattice, then a randomly shifted point set P ′ that contains P ,
then a baker transformed point set P ′′ that contains P ′, and P ′′ is the desired point
set. To enumerate the points of a point set, and the successive coordinates of a point,
one uses an iterator similar to iterators used to enumerate the elements of lists and
other types of collections in Java. For randomized or transformed point sets, the
randomizations and transformations are applied automatically when the points and
coordinates are enumerated. An important feature of those iterators is that they are
interchangeable with the random number streams (they have the same interface). This
means that wherever a simulation program needs a stream of random numbers, we
can simply provide an iterator to an RQMC point set instead, and this will replace
MC by RQMC. For examples of this, see [60, 61].

8 Examples

The following examples are similar to those in [57]. We consider a vector of c GBMs,
{Si(t), t ≥ 0}, 1 ≤ i ≤ c, where Si has drift parameter r and volatility parameter σi .
That is,

Si(t) = Si(0) exp
[(

r − σ 2
i /2

)
t + σiBi(t)

]= Si(0) exp
[
Xi(t)

]

where Xi(t) = (r − σ 2
i /2)t + σiBi(t) and Bi is a standard Brownian motion. We as-

sume that the Bi are correlated as follows:

Cov
[
Bi(t + δ) − Bi(t),Bj (t + δ) − Bj (t)

]= ρi,j δ

for all δ > 0. We have an option whose discounted payoff is e−rT max[S̄ − K, 0],
where

S̄ =
c∑

i=1

d∑
j=1

wi,j Si(tj ) (8.1)

(a weighted arithmetic average), for fixed observation times 0 < t1 < · · · < td = T .
In our numerical examples, we take tj = jT /d , and wi,j = 1/(cd) unless indicated
otherwise. Denoting

Y = (
X1(t1), . . . ,Xc(t1),X1(t2), . . . ,Xc(t2), . . . ,X1(td), . . . ,Xc(td)

)t
,

the element ((i − 1)c + j), (i′ − 1)c + j ′) of � is ρi,i′σiσi′ min(tj , tj ′). In this con-
text, we can use the payoff based on the geometric average

∏c
i=1

∏d
j=1 Si(tj )

wi,j in

place of S̄ as a control variate (CV) to reduce the variance. The expectation of this
payoff is known exactly [24].
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We use the following point sets:

(a) Sobol’ nets with a random digital shift only (Sob-S),
(b) Sobol’ nets with a left matrix scramble followed by a digital shift (Sob-LMS-S),
(c) Korobov lattice rules with a random shift modulo 1 (Kor-S), and
(d) Korobov lattice rules with a random shift modulo 1 followed by a baker transfor-

mation (Kor-S-B).

The primitive polynomials and the direction numbers for the Sobol’ sequence were
taken from [67]. The lattice rule parameters are from [64]. These point sets are rather
standard; better ones could certainly be constructed based on discrepancies adapted
to the specific examples, or to a larger class of target applications that contains these
examples. Constructing such better point sets and making them available is on our
agenda. All non-uniform random variables (mostly normal) were generated by inver-
sion.

The variance reduction factor (VRF) is defined as the Monte Carlo variance (per
observation) divided by n times the variance of μ̂n,rqmc for the randomized QMC
method. The RQMC variance was estimated by making m = 100 independent repli-
cations of the randomization. These VRFs are noisy, with a standard error of about
20 percent or more. The simulations were written in Java using SSJ [60].

Example 1 For our first numerical illustration, we take c = 10 independent assets
with a single observation time (d = 1), and the following parameters: ρi,j = 0.4 for
i �= j , T = 1, σi = 0.5, r = 0.05, Si(0) = 100, and K = 100. We consider the pay-
off based on the arithmetic average (8.1). The exact value and the MC variance per
observation are μ ≈ 15.77 and σ 2 ≈ 674.

Table 1 gives the empirical variance reduction factors for the selected point sets.
We compare two ways of sampling the vector Y by transforming a 10-dimensional
vector of independent standard normals: the usual Cholesky factorization (left num-
ber in each table entry) and PCA (right number in each table entry). PCA definitely
outperforms the Cholesky factorization, and the combination of PCA with random-
ized Sobol’ nets gives the largest VRFs. As expected, the VRFs (i.e., efficiency gains)
increase with n. For the Korobov rules, the baker transformation helps significantly,
but the Sobol’ nets are doing even better. The left matrix scramble also brings some

Table 1 Variance-reduction factors for Example 1, for Cholesky (left number) and PCA (right number)

Sobol’ nets

n = 214 n = 216 n = 218

Sob+S 289 882 508 3567 1033 10299

Sob+LMS+S 381 4931 491 11452 593 39831

Korobov lattice rules

n = 16381, a = 5693 n = 65521, a = 944 n = 262139, a = 21876

Kor+S 106 737 30 1614 193 4218

Kor+S+B 185 6820 217 6864 684 20984
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Table 2 Variance-reduction factors for Example 2 (250 dimensions)with Cholesky (left) and PCA (right)

Sobol’ nets

n = 214 n = 216 n = 218

Sob+S 10 1299 17 3184 32 6046

Sob+LMS+S 6 4232 4 9219 35 16557

Korobov lattice rules

n = 16381, a = 5693 n = 65521, a = 944 n = 262139, a = 21876

Kor+S 18 878 18 1504 9 2643

Kor+S+B 50 4553 46 3657 43 7553

Table 3 Estimates of μ, σ 2,
and the VRF σ 2/σ 2

cv, for
Example 3

d D1 K μ σ 2 VRF

10 111 90 13.008 105 1.53 × 106

10 111 100 5.863 61 1.07 × 106

10 12 90 11.367 46 5400

10 12 100 3.617 23 3950

120 1 90 11.207 41 5050

120 1 100 3.367 20 4100

variance improvements. All methods require approximately the same CPU time for a
given value of n.

Example 2 We modify an example from [41]: we take c = 10, d = 25, ρi,j = 0.4
for all i �= j , T = 1, r = 0.04, σi = 0.1 + 0.4(i − 1)/9 for all i, Si(0) = 100, and
K = 100. This gives a 250-dimensional integration problem. The exact value and the
MC variance are μ ≈ 5.818 and σ 2 ≈ 72.3 (these values are accurate up to the given
digits).

The results are in Table 2, in the same format as for Table 1. They are similar.
The main difference is that here we have a 250-dimensional problem instead of a
10-dimensional one, so PCA has more room to reduce the effective dimension com-
pared with Cholesky. The VRFs are smaller than in Table 1 with Cholesky, but the
improvement provided by PCA over Cholesky is larger.

Example 3 Here we consider an Asian option on a single asset (c = 1) whose price
follows a GBM process. The payoff is based on the arithmetic average (8.1). We also
experiment with the geometric average as a CV to reduce the variance. We examine
the improvement of RQMC over MC with and without the CV, with sequential sam-
pling (SEQ), BBS, and PCA, for an example with S(0) = 100, r = ln(1.09), σi = 0.2,
T = 120/365, tj = D1/365 + (T − D1/365)(j − 1)/(d − 1) for j = 1, . . . , d , for
six combinations of values of (D1, d,K) given in Table 3. This table provides esti-
mates of the exact value μ, the MC variance σ 2 without the CV, and the VRF σ 2/σ 2

cv,
where σ 2

cv is the MC variance with the CV. These values are accurate at least to the
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Table 4 VRFs for Example 3 with and without CV, for sequential sampling (SEQ), Brownian bridge
sampling (BBS), and PCA sampling. The Sobol’ point sets with a random digital shift (Sob-DS) have
216 = 65536 points, and the Korobov rules with a random shift (Kor-S) and with a random shift followed
by a baker’s transformation (Kor-SB) have n = 65521 and a = 944

d D1 K Pn without CV with CV

SEQ BBS PCA SEQ BBS PCA

10 111 90 Sob+DS 9572 12549 14279 63 183 4436

10 111 90 Kor+S 5943 6014 13751 18 29 291

10 111 90 Kor+S+B 88927 256355 563665 90 177 668

10 111 100 Sob+DS 5764 6638 10309 42 82 1913

10 111 100 Kor+S 2224 3682 8782 12 31 397

10 111 100 Kor+S+B 27214 29042 313724 29 61 635

10 12 90 Sob+DS 2205 9053 12175 27 67 434

10 12 90 Kor+S 442 1720 13790 13 50 71

10 12 90 Kor+S+B 1394 26883 446423 31 66 200

10 12 100 Sob+DS 368 2025 9506 21 42 274

10 12 100 Kor+S 63 909 5039 8 26 47

10 12 100 Kor+S+B 133 1317 123650 18 54 119

120 1 90 Sob+DS 325 7079 15101 3 48 483

120 1 90 Kor+S 192 2025 984 5 47 75

120 1 90 Kor+S+B 394 15575 474314 13 55 280

120 1 100 Sob+DS 39 1776 10244 3 48 217

120 1 100 Kor+S 24 672 5538 3 23 29

120 1 100 Kor+S+B 29 1101 162531 9 29 144

digit given. We immediately see that the CV alone (without RQMC) can reduce the
variance by a huge factor, especially when d is small and the observation times are
close to each other. This is because the geometric and arithmetic averages are almost
the same in this case.

Table 4 gives the VRFs of RQMC over MC, with and without the CV, with ap-
proximately n = 216 points. It is important to recall that the optimal CV coefficient
depends on the RQMC point set and on the sampling method, because it depends on
the estimator’s variance and its covariance with the CV, which may vary significantly
across the methods [36]. In our experiments, these variances and covariances were
estimated from the same simulation runs used to compute the estimators of μ.

Without the CV, RQMC reduces the variance by a huge factor, especially when
combined with BBS or PCA. The Korobov rule with the random shift and the baker’s
transformation provides the largest variance reduction. With the CV, significant ad-
ditional VRFs are obtained by the RQMC methods on top of those obtained by
the CV alone. In this case, the Sobol’ net with a random digital shift is the best
performer. As an illustration, in the first row of Table 4, for PCA, the additional
VRF over MC+CV is around 4436, whereas the CV alone was already providing a
VRF of around 1.53 × 106. The combined VRF with both methods is approximately
6.8 × 109. The CPU times per run are about 20% larger with PCA in this case (in our
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Table 5 Variance reduction factors for Example 4 with BGSS (left), BGBS (middle), and DGBS (right)

Sobol’ nets

n = 214 n = 216 n = 218

Sob+S 37 359 585 41 421 1077 75 510 1154

Sob+LMS+S 29 530 557 49 565 995 77 735 1642

Korobov lattice rules

n = 16381, a = 5693 n = 65521, a = 944 n = 262139, a = 21876

Kor+S 17 54 119 24 138 263 22 285 557

Kor+S+B 52 53 57 44 44 433 92 93 1688

implementation), so plain (naive) MC would take about 5.6 × 109 times more CPU
time to yield an estimator with equivalent precision. For d = 120, the CPU time for
PCA sampling is about three times that of SEQ. With SEQ, our implementation needs
about 2.7 seconds to make one million simulation runs and compute the estimators
with and without CV for d = 10, and about 29 seconds for d = 120. These timings
are for an AMD Athlon 64-bit processor running at 2.4 GHz.

Example 4 An Asian option under a variance gamma process. We consider now an
asset price that evolves according to a variance gamma (VG) process S defined by [2,
3, 72]

S(t) = S(0) exp
[
rt + X

(
G(t;1, ν), θ, σ

)+ ωt
]
,

where X is a Brownian process with drift and variance parameters θ and σ , G is a
gamma process (a process with independent gamma increments) with mean and vari-
ance parameters 1 and ν, X and G are independent, and ω = ln(1 − θν − σ 2ν/2)/ν.
We want to estimate by simulation the value of an Asian call option, given by
E[e−rT max(S̄ − K, 0)].

Here, the vector (S(t1), . . . , S(td)) is not multinormal, so the general setting of
the previous subsection does not apply. However, the processes G and X (and there-
fore S) can be generated by sequential sampling (BGSS) or Brownian and gamma
bridge sampling (BGBS), as explained in [2, 3]. For BGBS, we use the fact that for
any given values ta < t < tb and τa < τ < τb, the distribution of G(t) conditional on
(G(ta),G(tb)) is beta with known parameters, and the distribution of X(τ) condi-
tional on (X(τa),X(τb)) is normal with known parameters. This method requires the
generation of one gamma variate, d − 1 beta variates, and d normal variates. Yet an-
other method, explained in [2, 3], is difference of gamma bridges sampling (DGBS).
It writes the process {S(t), t ≥ 0} as a difference of two gamma processes, and re-
quires two gamma variates and 2d − 2 beta variates.

For a numerical illustration, we take the following parameters from [3]:
θ = −0.1436, σ = 0.12136, ν = 0.3, r = 0.1, T = 1, d = 16, tj = j/16, K = 101,
and S(0) = 100. The exact value and the MC variance are μ ≈ 5.725 and σ 2 ≈ 29.89.
Table 5 gives the variance reduction factors of QMC compared with MC. DGBS pro-
vides the best improvement.
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Example 5 Boyle et al. [7] consider a spread option, where d = 1, c = 2, and the
payoff is e−rT max[S2(T ) − S1(T ) − K, 0], which is again a function of a bivariate
normal with known covariance matrix �. To generate the payoff, they use importance
sampling as follows: Generate S1(T ) from its original distribution, then generate
S2(T ) from its conditional distribution given that the payoff is non-zero, and mul-
tiply the estimator by the appropriate likelihood ratio. This reduces the variability of
the integrand and makes it smoother. For RQMC, they use a two-dimensional lattice
rule, and they periodize the function with polynomial and sine transformations. Their
best results are with the transformations ϕpoly,4(u) = u4(35 − 84u + 70u2 − 20u3)

and ϕsin,3(u) = (12πu − 8 sin(2πu) + sin(4πu))/12π , which are special cases of
well-known classes of transformations. We ran some experiments to compare their
proposed transformation with the baker’s transformation, which also periodizes the
function, and found that ϕpoly,4 and ϕsin,3 gave much larger variance reductions than
the baker’s transformation, for n ≈ 216 and with the same lattices, for this two-
dimensional example. We also tried an Asian option with d = 2, t1 = 1/2, t2 = 1,
S(0) = 100, K = 90, r = ln(1.09), and σ1 = 0.2, with sequential sampling combined
with importance sampling, and the proposed transformations did slightly better than
the baker’s transformation (approximately by a factor of 2).

However, for higher-dimensional problems, we observed the opposite: these trans-
formations give much larger variance than the baker’s transformation. For Example 3
with d = 10, K = 90, and n ≈ 216, for instance, with sequential sampling, the higher-
order transformations gave a larger variance than plain Monte Carlo. In other words,
they annihilate all the RQMC gain. The explanation is that the higher-order trans-
formations also increase the variation of the function, and the impact of this higher
variation increases with s.

9 Conclusion

Our discussion of QMC in this paper was in the context of estimating a mathematical
expectation. But QMC can also be used advantageously to estimate something else
than an expectation: e.g., for estimating a quantile, or a function of several expecta-
tions, or the gradient of an expectation with respect to a vector of parameters [7, 24].
It can also be used to obtain an approximation of a function f over a given domain
(see [51] and other references cited there), or to estimate the solution of an opti-
mization problem in which the objective function or the constraints (or both) involve
mathematical expectations. This can be used effectively in the context of computing
maximum likelihood estimators, for example. QMC can also replace MC in algo-
rithms that combine MC with approximate dynamic programming (e.g., for pricing
American-style options) [10, 24]. All these settings have applications in finance.

Other QMC developments that could be of high interest in finance are special
methods designed for the simulation of Markov chains over many steps, a setting for
which it is difficult to reduce the effective dimension to a small number. A recently
developed RQMC method named array-RQMC [52, 62] simulates n copies of the
chain, advancing all copies by one step using an RQMC point set at each iteration, and
induces negative dependence between these copies, so that the empirical distribution
of the n states at any given step provides a better estimate of the true distribution
than if the n copies were simulated independently. This method provides variance
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reduction factors of over 1000 in some examples where the chain evolves over a few
hundred steps.

Important topics for ongoing and future research include the development of addi-
tional effective methods for reducing the effective dimension, to better understand the
ANOVA decomposition in typical finance problems, to better understand the differ-
ent discrepancies and the impact of their choice in the final variance of the estimators
for typical classes of integrands, and to develop software tools that can easily pro-
vide appropriate point sets tailored to specific classes of applications. In the short
term, classical QMC point set constructions available in popular software should be
replaced by constructions whose parameters are selected on the basis of criteria (dis-
crepancies) that take better account of the low-dimensional projections. This was
already pointed out in [64], for example.
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