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Abstract

Background: MicroRNAs (miRNAs) are small non-coding RNA sequences with regulatory functions to
post-transcriptional level for several biological processes, such as cell disease progression and metastasis. MiRNAs
interact with target messenger RNA (mRNA) genes by base pairing. Experimental identification of miRNA target is one
of the major challenges in cancer biology because miRNAs can act as tumour suppressors or oncogenes by targeting
different type of targets. The use of machine learning methods for the prediction of the target genes is considered a
valid support to investigate miRNA functions and to guide related wet-lab experiments. In this paper we propose the
miRNA Target Interaction Predictor (miRNATIP) algorithm, a Self-Organizing Map (SOM) based method for the miRNA
target prediction. SOM is trained with the seed region of the miRNA sequences and then the mRNA sequences are
projected into the SOM lattice in order to find putative interactions with miRNAs. These interactions will be filtered
considering the remaining part of the miRNA sequences and estimating the free-energy necessary for duplex stability.

Results: We tested the proposed method by predicting the miRNA target interactions of both the Homo sapiens and
the Caenorhbditis elegans species; then, taking into account validated target (positive) and non-target (negative)
interactions, we compared our results with other target predictors, namely miRanda, PITA, PicTar, mirSOM, TargetScan
and DIANA-microT, in terms of the most used statistical measures. We demonstrate that our method produces the
greatest number of predictions with respect to the other ones, exhibiting good results for both species, reaching the
for example the highest percentage of sensitivity of 31 and 30.5 %, respectively for Homo sapiens and for C. elegans.
All the predicted interaction are freely available at the following url: http://tblab.pa.icar.cnr.it/public/miRNATIP/.

Conclusions: Results state miRNATIP outperforms or is comparable to the other six state-of-the-art methods, in
terms of validated target and non-target interactions, respectively.
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Background
MicroRNAs (miRNAs) are small non-coding single
stranded RNA molecule, 22–25 nucleotides (nt) long,
found in many organisms (plants, animals, and some
viruses) [1]. MiRNAs are important players in gene reg-
ulation. The most important step in their regulatory
function is the targeting of RNA messengers (mRNAs).
MiRNAs, in fact, are responsible for degradation or
repression of mRNAs at post-transcriptional level, when
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their sequences bind with partially complementary sites.
This way, they play a crucial role in the cell differentiation
and proliferation, apoptosis, andmany other physiological
and pathological processes [1].
Expression patterns of miRNAs are highly related to

specific external stimuli, developmental stage or tissue.
For example, in cancer disease the expression levels of
miRNAs are known to change considerably [2].
Many recent works proved a different behaviour of

cellular actors mediated by a differential expression of
miRNAs that are cell condition or tissue/specific [3]. In
the pathology of cancer this is relevant as they can act as
tumour suppressors or oncogenes by targeting different
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type of targets, leading respectively to decrease or acceler-
ate the tumorous processes. Thus, analysing the miRNA-
mRNA interaction would mean to better understand the
molecular mechanism of the pathological condition com-
pared to the normal cell behaviour, through the main
actors that are proteins, and moreover to hypothesize new
therapeutic strategies of intervention to stop the malig-
nant processes [4, 5].
MiRNAs were first identified in 1993 [6] via classical

genetic techniques in Caenorhabditis Elegans (Nematoda;
Rhabditidae).
It is just over the last decade that thousands of miRNAs

have been discovered in all kinds of taxa and their regu-
lations in cancer have been analysed [7–9]. Unfortunately,
most of these studies were focused only on a specific sub-
set of miRNAs, or a limited group of patients. The role
of miRNAs was also demonstrated in the early stages of
the disease progression and metastasis. In fact, several
experimental evidences showed miRNAs are involved in
the regulation of those biological processes, leading to
the acquisition of metastatic potential, including adhe-
sion, invasion, migration, epithelial-mesenchymal transi-
tion and angiogenesis [10, 11].
MiRNAs interact with their mRNA targets especially

by base pairing in the 3’-untranslated regions (3’UTR) of
mRNA sequences. In living species, near perfect base pair-
ing is required between the so called miRNA seed, i.e. the
first 8 nt in the 5’ miRNA sequences, and a target site in
the 3’UTRmRNA sequences. In plants, the whole miRNA
sequences usually have near-perfect pairing with their
mRNA targets, which induces gene repression through
cleavage of the target transcripts. In contrast, with few
exceptions, in animals, the base pairing between the whole
miRNA sequences and their mRNA targets is imperfect.
However, some authors have identified three main rules
for miRNA-target base pairing by experimental and in
silico analysis [12]:

1. Perfect and contiguous base pairing of miRNA seeds,
made of nucleotides 2 to 8 in 5’ miRNA, which
nucleates the miRNA-mRNA association. In general,
conditions as mismatches and bulges in the seed
region should be avoided because it greatly affect on
repression.

2. There must be enough complementarity to the
miRNA 3’ half in order to stabilize the interaction. In
this region bulges and mismatches are generally
allowed.

3. The central region of the miRNA-mRNA duplex
should have bulges or mismatches, in order to
preclude the endonucleolytic cleavage of mRNA.

Because experimental identification of miRNA targets
is a difficult work, the aid of computational tools for

target predictions is a valuable instrument to investigate
miRNA functions and to guide related wet-lab experi-
ments. Usually two research problems involving miRNA
are addressed with computational methods, i.e. miRNA
genes detection and miRNA targets prediction. The for-
mer consists in the identification of those regions in the
genome that produces the miRNAs; the latter searches
for the mRNAs that could interact with the miRNAs.
Machine learning methods have improved the perfor-
mance of both miRNA gene detection and target pre-
diction [13–15]. These approaches typically make use
of sequence data (e.g. of short 6–8 nt miRNA bind-
ing motifs), secondary structure (e.g. stem-loops using
thermodynamic modelling) and evolutionary conserva-
tion to identify putative candidates, using algorithms such
as Hidden Markov Models (HMM) [15], Random Forest
classifiers [14] or Support Vector Machines (SVM) [13].
In this work, we present miRNATIP (miRNA Target

Interaction Predictor), a method for miRNA target pre-
dictions based on Self-Organizing Maps (SOM). SOM
networks [16] are artificial neural networks widely used
to categorize large high-dimensional datasets by map-
ping the data into a smaller dimensional space, typically
into a two-dimensional lattice of interconnected neurons.
Each neuron of a SOM represents a reference model, cor-
responding to a local domain in the input space [17].
By using a competitive learning, rather than an error-
correction learning like the back-propagation with gra-
dient descent adopted by other artificial neural network
algorithms, the SOMalgorithm tries to reproduce the self-
organizing mechanism that creates the somatosensory in
some areas of the brain. In this sense the SOM algorithm
can be defined as an artificial neural network, like many
other algorithms inspired by neurons in the brain. The
SOM is more than a clustering algorithm because it gives
a visualisation of the distribution of the patterns in the
input space. When the input patterns are projected on the
map the clusters can be visualised, and the map can be
divided into areas where the input patterns share some
feature values. In our work, the SOM algorithm is able to
cluster together the miRNA seeds and, consequently, to
project on the trained lattice the 3’UTR mRNA sequences
in order to find a preliminary list of putative targets. This
list will be filtered out considering the remaining parts of
both miRNA and mRNA sequences and finally it will be
shortened using a threshold over the free-energy, whose
values provides hints about the thermodynamic stabil-
ity of the miRNA-mRNA duplex [18]. In bioinformatics,
SOM has been previously applied to issues like clustering
of protein sequences [19] and molecular compounds [20],
gene finding [21], and identification of transcription factor
binding sites [22].
The paper has the following structure: the next Section

describes some related works about miRNA-target
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predictors; “Methods” section reports in details our pro-
posed algorithm and the datasets used in our experi-
ments; the basic SOM algorithm and some details of the
other algorithms used for comparison; “Results and dis-
cussion” section reports both the methodology to tune
the the parameters of miRNATIP algorithm and the the
experimental prediction results compared with other six
state-of-the-art miRNA-target prediction tools. Finally,
some conclusion as well as our future work are reported
in “Conclusion and future work” section.

Related works
All known miRNA-targets are mainly based on experi-
mentally validated miRNA-mRNA interactions [23, 24].
However, they represent only a very small part of all exist-
ing interactions. For this reason, in recent years several
miRNA-target predictors have been developed. The avail-
able algorithms were recently reviewed in [18, 25, 26]
focusing on their bioinformatics, mathematical and statis-
tical features. In the following it will be discussed some of
these in more detail.
The miRanda algorithm [27] searches for target sites on

the 3’UTR regions of mRNAs. It considers both the bind-
ing energy for the duplex stability and the conservation
of the target site among different species. Those miR-
NAs havingmultiple binding sites within 3’UTR are highly
scored.
PicTar [28] identifies a list of putative targets searching

for almost fully complementarity sites between miRNAs
and 3’UTR mRNAs. The free energy between the binding
sites is then computed and finally the results are ranked by
means of a score obtained using an HMM, and miRNAs
having multiple binding sites are highly scored. In order
to refine the identified targets, PicTar looks for the target
site conservation among eight vertebrate species.
TargetScan [29] algorithm is based on the identification

of full complementary zones between the miRNA seed
(nucleotide 2 to 7) and 3’UTRmRNA. Starting from those
sites, TargetScan searches for larger interactions, ranking
the results in three groups according to the length of the
matches. In particular, the presence of an adenine in the
first position of the target site is highly scored because of
its evolutionary conservation.
DIANA-microT [30] scans putative target sites by

means of a 38 nt-long sliding window moved over the
3’UTR region of mRNA. At each shift, the minimum free
energy between the miRNA-mRNA binding sites is com-
puted and then it is compared with the energy related to
the supposed full (100 %) miRNA-mRNA complementar-
ity. miRNA seed matches of 7, 8 and 9 nt are allowed, as
well as 6 nt-long matches if there are further complemen-
tary sites in the remaining region of miRNA.
PITA [31] algorithm consists of two steps. In the

first one, it looks for putative target sites considering

near perfect complementarity between miRNA seed and
3’UTR mRNA. In the second step, PITA takes into
account the actual accessibility of the target site, related
to the transcript secondary structure, by combining the
free energy of the miRNA-mRNA bound and the energy
needed to unfold the mRNA and make it accessible.
RNAhybrid [32] searches for miRNA target sites con-

sidering the hybridization sites having the most advanta-
geous energy content. Hybridization is a technique that
measures the degree of genetic similarity between groups
of DNA/RNA sequences [33] and it is usually used to
determine the genetic distance between two organisms.
RNAhybrid looks for targets in the 3’UTR mRNA.
MirSOM [34] is, at the best of our knowledge, the only

othermiRNA target prediction tool implementing a SOM.
It takes C. elegans 3’UTR sequences and cluster them
using a SOM in order to identify potential miRNA tar-
get sites. The SOM is built upon is a 32 × 32 grid and it
is trained considering all the overlapping 22 nt-long frag-
ments extracted from the 3’UTR mRNA sequences. At
the end of the learning phase, MirSOM produces clus-
ters of putative target sites. Then miRNA sequences are
assigned to a mRNA cluster if they have a perfect match
between their 7 nt-long seed and the last 8 nucleotides
of the sequences belonging to that cluster. Because the
SOM clusters together not only identical but also similar
sequences, it is possible to identify miRNA-mRNA inter-
action having near perfect seed matching. At this point,
each cluster contains a list of putative miRNA targets.
Those list are filtered lefting out those miRNA-mRNA
couples whose free energy is below a certain threshold.
MirSOM performed well against most other tools with

high sensitivity and vastly improved specificity. Unfor-
tunately, it currently supports only C. elegans data. The
mirSOM interface allows the user to enter an miRNA
and the predicted mRNAs are returned as output. mir-
SOM can be accessed from https://bioinformatics.uef.fi/
mirsom/.

Methods
In this Section, it is described the representation adopted
for the miRNA and mRNA sequences; then it is pre-
sented the four-steps algorithm for the identification of
miRNA targets and finally all the datasets used for our
experiments are introduced.

Genomic sequence representation
One of the major challenges in bioinformatics is find-
ing the best representation of the DNA/RNA sequences.
In our approach, similarly to [34], we represented RNA
(miRNA and mRNA) sequences by means of a numeri-
cal encoding derived from the position weight matrices
(PWMs) [35]. A PWM is a commonly used represen-
tation model in biological sequence analysis, obtained

https://bioinformatics.uef.fi/mirsom/
https://bioinformatics.uef.fi/mirsom/
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by computing the frequency of each specific base (A,
C, G and T or U) at each nucleotide position in the
sequence. The PWMmodel has been successfully applied
to many problems in DNA and protein sequence analysis,
for example in the identification of functional sequence
elements [36].
In particular, within our method, each RNA sequence is

represented with a PMW of 4 × k elements, where 4 are
the nucleotide symbols and k is the length of the sequence.
Each column j has a fixed value according to the corre-
sponding nucleotide in the j-th position, with 1 ≤ j ≤ k.
Numeral encoding for each nucleotide was the following:
A = [ 1000]t , C = [ 0100]t , G = [ 0010]t , T/U = [ 0001]t
To measure the dissimilarity between two PWMs

we considered, among the others [37], the normalised
Euclidean Distance defined as:

D(a, b) = 1√
2k

·
k∑

j=1

√√√√
∑

b∈{A,C,G,T}

(
P1j,b − P2j,b

)2
(1)

where P1 and P2 are two PWMs, k is the length of the
sequences and Pj,b is the values in column j with base b.
This distance ranges from 0 (perfect identity) to 1 (com-
plete dissimilarity).

MiRNATIP pipeline
ThemiRNATIP algorithm is composed of fourmain steps.
Figure 1 shows the whole pipeline used in this work and
it will be explained in detail in the following subsec-
tions. Steps 1 to 3 have been implemented using the Java
programming language, so that miRNATIP is platform-
independent.

SOM training
In the first step, a set of miRNAs seeds, fixed at a length
of 8 nt, is used for the training of a SOM. More details
on the SOM training algorithm can be found in [16]. We
considered only the 8-mer miRNA seeds, because it has
been demonstrated that the seed is mainly responsible of
the miRNA target binding (cfr. Background). Each neu-
ron is represented by a PWM of size 4 × 8 that are first
initialised using random values. In this work, we used the
batch method for the training of the SOM [38]. Further-
more, the neurons are arranged in a rectangular lattice,
in which each neuron is connected to its four neighbours,
except for those at the edge of the grid. To locate the best
matching unit (bmu), it is calculated the distance between
the input vector and the weights of each neuron according
to Eq. 1. The result of this step is a set of clusters composed
of the 8-mer seeds belonging to each miRNA.

SOMprojection
The second step consists in the projection of a mRNA
sequence over the trained SOM. For this reason, we
extracted all the 8-length mRNA fragments through a 8-
mer sliding window with step = 1. This way, we obtained a
set of 4 × 8 PWMs that can be projected over the trained
SOM. The result of this step is, for each neural unit (clus-
ter), a list of couples (miRNA_seed, mRNA fragment).
Each cluster can be considered as a preliminary set of
predicted miRNA-mRNA interactions.

Tail filtering
In this step, we filtered those preliminary interactions
considering the remaining part of the miRNA sequences,
calledmiRNA_tail. For each couple (miRNA_seed, mRNA
fragment), we considered respectively the miRNA_tail

Fig. 1 The proposed miRNA target prediction method. It is composed of four steps, each one represented by a light-blue coloured box. We
described SOM training in section “SOM training”, SOM projection in section “SOM projection”, miRNA tail filtering in section “Tail filtering” and the
free-energy filtering in section “Free-energy filtering”
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and the mRNA sequence of the same length of
miRNA_tail, next to the projected mRNA fragment. Then
we computed a dissimilaritymeasure based on normalised
euclidean distance (Eq. 1) between the PWM representa-
tion of those two sequences and, according to the the rule
no. 2 of the “Background” Section, we retained only the
couples of miRNA-mRNA interactions whose distance is
below a certain threshold. As reported in the third rule
of the “Background” section, in order to take into account
also the presence of possible bulge loops between the
8-mer seed and the tail of the miRNA, we considered
an offset of few nucleotides (2–3), causing a shift of the
mRNA fragment corresponding to the miRNA_tail.

Free-energy filtering
In the last step, we applied a further filtering process
to the couples list, based on the minimum free-energy
required to form the miRNA-mRNA duplex. For this pur-
pose we used the IntaRNA tool [39, 40]. IntaRNA is able
to calculate a free-energy value (given in kcal/mol) from
a couple of genomic sequences, considering two different
contributions: (1) the free-energy required to unfold the
interaction sites both in miRNA and mRNA and (2) the
hybridization free-energy between interacting nucleotides
of genome sequences. The sum of these two contributions
represents the final free-energy score. In our method,
we introduced a threshold on this free-energy score: in
this way, the putative interactions that obtain a free-
energy score over the threshold are removed from the final
miRNA-mRNA interaction list.

Datasets
In our study, we focused on two species: C. elegans (cel)
and human (Homo sapiens - hsa). Human species of
course has been chosen for the importance that miRNA
target interactions have with regards to regulatory func-
tions involving many diseases, such as cancer. Moreover,
we considered C. elegans because Nematodes have been
studied in a wide range of fields, and they are organ-
isms that allow to help to understand the molecular
biology of humans and animals. They are easy to study
thanks to their intrinsic features and handiness in culti-
vation and manipulation. miRNAmature sequences, both
for cel and hsa, have been downloaded from miRBase
[41] (release 21, update in June 2014), the most compre-
hensive online database of published validated miRNA
sequences and annotation. We obtained 434 and 2588
miRNA sequences for cel and hsa, respectively. As for cel,
the validated 3’UTR mRNA sequences are available on
WormBase [42] (releaseWBcel 235, update in April 2013),
an online genome database of the nematode model organ-
ism C. elegans, and they have been downloaded through
the BioMart [43] online service. As for the hsa, the val-
idated 3’UTR mRNA sequences were downloaded from

Ensembl repository (release 80) [44]. We obtained a total
of 30939 and 154666 3’UTR mRNA sequences for cel and
hsa, respectively.
Experimentally validated miRNA-mRNA interactions,

representing positive examples, were downloaded from
mirTarBase [45], a repository of manually verified miRNA
target interactions for the most studied species, including
cel and hsa. We collected 3209 and 39111 positive vali-
dated interactions for cel and hsa, respectively. Finally we
considered a set of validated non-target interactions, rep-
resenting negative examples: for cel we had 16 non-target
interactions; for hsa we collected 123 negative validated
interactions. Thirteen out of 16 negative interactions for
cel have been provided by [34], the remaining 3 and all
the negative interactions for hsa have been found in Tar-
base (release 7.0) [46], that is a publicly available database
containing both miRNA-mRNA target and non-target
interactions.

Results and discussion
In this Section we describe how we selected the best
parameter configuration for miRNATIP algorithm and
then we analyse the prediction results against other
six state-of-the-art miRNA-target interaction prediction
tools.

MiRNATIP configuration
During the SOM training step (see Fig. 1), in order to
obtain the best parameters for the network learning, we
performed several tests at varying of network size and
learning rate α [16]. The quality of the trained map was
measured by means of two evaluation criteria: resolution
and topology preservation. These two measures are cal-
culated respectively with the average quantization error
(QE) and the topographic error (TE), as defined in [47].
We chose the configuration of SOMparameters thatmini-
mize both theQE andTE, according to the Eq. 2, where c is
the configuration we adopted, i is a triple of SOM param-
eters (size, αmax and αmin) , QE′

i and TE′
i are respectively

the normalized value of QE and TE for the triple i.

c = argmin
i

(
mean

(
QE′

i,TE′
i
))

(2)

Figure 2 reports a box-plot that shows a trend of per-
formed test at varying of i for the homo sapiens. At the end
of the training phase, we obtained a configuration c with
the following values: map size= 65 × 65, initial α= 0.85,
final α= 0.1. The same configuration process has been
computed for the C. elegans species. After this phase, the
projection of mRNA fragments over the SOM lattice was
performed.
As regards the third step of the proposed method, i.e.

the tail filtering, we used a threshold of 0.7 over the
euclidean distance (Eq. 1), that allow to preserve at least
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Fig. 2Measure of SOM training for hsa species at varying of SOM parameters. The box-plot reports the distribution of the mean between QE’ and TE’
(as defined in section “MiRNATIP configuration”), at varying of SOM parameters, i.e. map size (from 30 × 30 to 70 × 70) and αmax (from 0.75 to 0.95).
Values of αmin (from 0.001 to 0.1) are omitted from the graph for the clarity of image. According to Eq. 2, the best configuration for hsa species is
map size = 65 × 65, αmax = 0.85 and αmin = 0.1

the 30 % of miRNA-mRNA match in the tail region. In
addition, to simulate the presence of a bulge between the
seed and the tail of the miRNA binding site, we set the off-
set = 3, i.e. we supposed a bulge could contain at most
three nucleotides. Finally, for establishing the minimum
free-energy score, we performed different measurements
of the obtained predictions and estimated the optimal
threshold for cel and hsa, respectively equal to –6 and
–7 kcal/mol.
All the configuration parameters used in this work are

reported in Table 1.

Prediction results
MiRNATIP has been run using the datasets presented
in “Datasets” section. Prediction results have been com-
pared with those provided by other miRNA target pre-
dictors: PITA [31], MiRanda [27], MirSOM [34], PicTar
[28], DIANA-microT [30], TargetScan [29]. These predic-
tors have been considered for comparison because they
allow to directly download the whole set of miRNA tar-
get predictions. MirSOM only provided prediction for cel
species; as for TargetScan, the predictions were extracted

by means of the miRDIP portal [48]. In order to obtain
the most reliable and comparable results as possible,
we filtered out the predictions of the other algorithms
according to the following criteria. PITA and MiRanda
predictions have been chosen considering the same free-
energy thresholds we adopted for miRNATIP algorithm
(–6.0 kcal/mol for cel and –7.0 kcal/mol for hsa). DIANA-
microT predictions have been selected according to the
default scores suggested by the authors (0.6 for cel and
0.7 for hsa). Finally for TargetScan we considered the con-
served predicted targets, representing the most reliable
interactions. In order to evaluate the correctness of a pre-
dicted miRNA-mRNA interaction, for each predictor we
considered only the set of interactions that involve at least
one miRNA/mRNA belonging to the datasets of exper-
imentally validated miRNA-mRNA interactions. Predic-
tion scores have been computed considering the following
statistical measures [49]:

Accuracy (ACC) = TP + TN
P + N

(3)

Table 1 Parameters used for cel and hsa miRNA-target predictions

MiRNATIP parameters

Species SOM training Tail filtering Free-energy filtering
Map size αmax αmin offset distance threshold score threshold

C. elegans 30×30 0.95 0.1 3 0.7 –6 kcal/mol

Homo sapiens 65×65 0.85 0.1 3 0.7 –7 kcal/mol

The first column reports the species, the next three columns contain parameters for SOM training (section “SOM training”). Forth and fifth columns report parameters for
miRNA tail filtering process (section “Tail filtering”). Finally, the last column shows the free-energy threshold score (section “Free-energy filtering”)
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Table 2 Comparison among the proposed method and the other prediction algorithms for the C. elegans species, in terms of true
positive and true negative interactions

Validation of miRNA target prediction algorithms for C. elegans

Algorithm Last update (year) Predicted interactions 3209 positive validated interactions 16 negative validated interactions

True positive True negative

PITA 2008 4874 979 14

MiRanda 2010 3307 829 12

MirSOM 2011 1734 588 15

DIANA-microT 2012 1232 172 16

MiRNATIP 2015 6533 994 15

Precision or positive predictive value (PPV ) = TP
TP + FP

(4)

Sensitivity or true positive rate (TPR) = TP
TP + FN

(5)

Specificity or true negative rate (TNR) = TN
FP + TN

(6)

Miss rate or false negative rate (FNR) = FN
FN + TP

(7)

Fall − out or false positive rate (FPR) = FP
FP + TN

(8)

F1 score = 2TP
2TP + FP + FN

(9)

Matthews correlation coefficient (MCC) =
= TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(10)

where TP is the number of true positives, TN is the num-
ber of true negatives, FP is the number of false positive,
FN is the number of false negative.

Prediction results are reported in Tables 2 and 3 for cel;
in Tables 4 and 5 for hsa, respectively. As for Tables 2
and 4, the first two columns of the tables contain respec-
tively the algorithms we compared and the year of the last
update. Third column contains, for each method, the sub-
set of the miRNA-mRNA predicted interactions that have
at least one miRNA or mRNA belonging to the validated
target dataset. Finally, the last two columns report the
number of TP and TN with regards to the total number
of positive validated interactions and negative validated
interactions.
Tables 3 and 5, for cel and hsa respectively, show the pre-

diction scores computed using all the statistical measures
presented in Eqs. 3 to 10.
Observing these results, it is possible to notice that our

miRNATIP algorithm reaches the best scores regarding
the sensitivity, with a score of almost 31 % for both cel
(30.97 %) and hsa (30.54 %) species. At the same time we
produced the largest number of total predicted interac-
tions. The other best predictors are PITA for cel (30 %)
and MiRanda for hsa (about 25 %). Best results are also
reached in terms of accuracy and F1 score, confirming
the fact that our algorithm predicts the most number of
correct interactions.
As for the specificity scores, our miRNATIP algorithm

is able to reach one of the best results especially for cel
species. In fact the proposed predictor obtained a score
of 93.75 %. The best result in terms of specificity for cel

Table 3 Performances of prediction algorithms related to validated interactions in Table 2

Algorithm ACC % PPV % TPR % TNR % FNR % FPR % F1 % MCC

PITA 30.8 99.8 30.5 87.2 69.5 12.5 46.7 0.02750

MiRanda 26.7 99.5 25.8 75.0 74.1 25.0 41.0 0.00133

MirSOM 18.7 99.8 18.3 93.7 81.6 6.2 30.9 0.02195

DIANA-microT 5.8 100.0 5.3 100.0 94.6 0.0 10.2 0.01676

miRNATIP 31.2 99.9 30.9 93.7 69.0 6.2 47.3 0.03761

Statistical measures reported in this table are accuracy (ACC), precision (PPV), sensitivity (TPR), specificity (TNR), miss-rate (FPR), F1-measure (F1) and Matthews correlation
(MCC), respectively



The Author(s) BMC Bioinformatics 2016, 17(Suppl 11):321 Page 50 of 71

Table 4 Comparison among the proposed method and the other prediction algorithms for the Homo sapiens species, in terms of true
positive and true negative interactions

Validation of miRNA target prediction algorithms for Homo sapiens

Algorithm Last update (year) Predicted interactions 3209 positive validated interactions 16 negative validated interactions

True positive True negative

PITA 2008 43823 1971 109

MiRanda 2010 420800 9962 73

TargetScan 2012 105407 4367 96

Pictar 2012 40497 2713 100

DIANA-microT 2012 367379 7805 91

MiRNATIP 2015 968798 11945 86

is reached by DIANA-microT tool (100 %), but it pro-
duced very low sensitivity score (5.36 %). As regards hsa,
mirRNATIP specificity score (69.92 %) is consistent with
the scores reached by the other algorithms, whose best
specificity score is reached by PITA (88.62 %). Once again,
however, PITA reached a very low sensitivity score of
about 5 %.
miRNATIP proves to reach the lowest miss-rate (FNR),

whereas the fall-out score (FPR) is the second best for cel
and and the fifth for hsa. Finally, miRNATIP is the only
algorithm producing a positive MCC, confirming the its
goodness of the overall predictive power.
It is important to notice that although we predicted

the largest number of interactions with respect to the
other methods for both species, we obtained a fair speci-
ficity score, with regards to the other predictors, and the
best sensitivity score. That that means our method could
predict more potentially true miRNA-mRNA interactions
than the other algorithms.
All the predicted interaction are freely available

at the following url: http://tblab.pa.icar.cnr.it/public/
miRNATIP/.

Conclusion and future work
The interaction between miRNA and mRNA is of funda-
mental importance in the post-transcriptional regulatory

mechanism. In this paper we presented miRNATIP, a
SOM-based predictor for the identification of miRNA-
target interactions. MiRNATIP simulates the main fea-
tures of the miRNA-mRNA interaction, including near
perfect seed pairing, the presence of bulges, free energy
constraints for stability of the duplex. In particular a
SOM is trained considering only the miRNA seeds (first
8 nucleotides), that are represented by means of a numer-
ical encoding derived from as PWM, and then 8-mer
mRNA fragments are projected over the trained lat-
tice in order to identify a preliminary list of putative
interactions. Then that list is filtered out taking into
account the distance between the remaining parts of the
miRNA and mRNA sequences and the free energy val-
ues. The obtained predictions, for cel and hsa species,
have been validated in terms of sensitivity and speci-
ficity scores against six other state-of-the-art predictors
(miRanda, PITA, DIANA-microT, mirSOM, PicTar, Tar-
getScan) with regards to a manually curated dataset of
both validated miRNA-mRNA interactions and validated
non-target interactions. Results demonstrated that our
methods reached the best sensitivity score for both species
and a specificity score consistent with the other predic-
tors, even if we produced the largest number of putative
interactions. As future work, we are going to test our
method with other species, and at the same time we

Table 5 Performances of prediction algorithms related to validated interactions in Table 4

Algorithm ACC % PPV % TPR % TNR % FNR % FPR % F1 % MCC

PITA 5.3 99.3 5.0 88.6 94.9 11.4 9.6 –0.01617

MiRanda 25.5 99.5 25.4 59.3 74.5 40.6 40.5 –0.01946

TargetScan 11.4 99.3 11.2 78.0 88.8 21.9 20.0 –0.01912

Pictar 7.1 99.1 6.9 81.3 93.1 18.7 12.9 –0.02581

DIANA-microT 20.1 99.5 19.9 74.0 80.0 26.0 33.2 –0.00847

miRNATIP 30.6 99.7 30.5 69.9 69.4 30.1 46.7 0.00055

Statistical measures reported in this table are accuracy (ACC), precision (PPV), sensitivity (TPR), specificity (TNR), miss-rate (FPR), F1-measure (F1) and Matthews correlation
(MCC), respectively

http://tblab.pa.icar.cnr.it/public/miRNATIP/
http://tblab.pa.icar.cnr.it/public/miRNATIP/
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will provide a web service that will allow to download
already computed predictions or to test our algorithm
with customized sets of miRNA and/or mRNA sequences.
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