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1 Introduction

Perturbative QCD calculations depend on unphysical renormalization and factorization

scales. Theoretical uncertainties are usually estimated by varying the scales by a factor

of two above and below their central value. In practice, in next-to-leading order (NLO)

calculations the central scale is often determined a posteriori by requiring either the NLO

corrections to be small, or the scale sensitivity to be minimised. These stability criteria are

usually motivated on the basis that ‘bad’ scale choices will give rise to large logarithms of the

ratio of the renormalization and/or factorization scale with respect to scales characteristic

of the process of interest and, hence, to sizable corrections. These large corrections will

induce in turn a stronger scale dependence in the cross sections.

While it is certainly the case that unrepresentative scale choices can lead to poor

convergence of fixed order predictions, renormalization and factorization scale logarithms

are only one possible cause of large higher order contributions. Significant physical con-

tributions may also arise from a number of other sources such as Sudakov effects, large

color factors, large π2 terms, and the opening up of new channels. Moreover, at least
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the dominant components of these corrections take the form of double logarithmic con-

tributions and hence cannot be absorbed by any judicious choice of renormalization and

factorization scales.

As an illustrative example consider the familiar case of vector boson production in

hadronic collisions. For fully inclusive observables there is no room for ambiguity in the

choice of factorization scale, which is naturally set equal to the mass of the vector boson,

since this scale limits the QCD radiation that accompanies the production process. On the

other hand, turning to the slightly more subtle case of vector boson production in associa-

tion with a jet, we are faced with two scales: the vector boson mass and the jet transverse

momentum. It is well known that this cross section carries (Sudakov) double logarithms of

the ratio of these two scales and that such terms are large in the low transverse momentum

region. By choosing the renormalization and factorization scales on the basis that radiative

corrections be small, one is led to compensate such genuine physical effects with unphysical

scale logarithms. Even if one takes the extreme view that the renormalization and factor-

ization scales are arbitrary parameters that one is free ‘to tune’ in making predictions, it

is difficult to see how the associated uncertainty could be considered reliable or unbiased

in the presence of theoretically spurious compensation mechanisms.

In short, the stability criterion is potentially misleading, since it attributes all large

NLO corrections to these scale logarithms. Both out of theoretical correctness and prag-

matism we are therefore motivated to look for an unbiased method to choose the central

scales, based on the kinematics and dynamics of the process under study, rather than an a

posteriori observation of stability.1

In the context of leading order matrix element-parton shower merging algorithms [4–9],

an unbiased method for assigning the factorization and renormalization scales is essential

and put to good effect. In practice, the kinematic configuration of the process is associated

with the most probable branching history by an exclusive jet clustering algorithm. The

transverse momentum at each branching defines the renormalization scale for the corre-

sponding factor of αS at the vertex, while the factorization scale is associated with the

matrix element - parton shower merging scale. Furthermore, a recipe is given for includ-

ing Sudakov form factors, accounting for the large double logarithms that arise when the

clustered event contains well separated scales. The net effect of the scale assignment and

Sudakov factors is to incorporate, consistently, all large logarithms, i.e. renormalization,

factorization and Sudakov logarithms, associated with rendering the event exclusive with

respect to radiation above the matrix element-parton shower merging scale — the scale

beneath which the parton shower is used to populate the remaining phase space.2

It therefore seems appropriate to adapt the calculation of NLO cross sections such

that the Born term is evaluated with the scales and Sudakov form factors prescribed by

the CKKW method [4, 7, 8]. In the present work we pursue this possibility and construct

such a procedure in accordance with the following generic requirements:

1We stress that the aim of the present work is not to eliminate the scale dependence using some appro-

priate recipe for its choice [1–3], but rather to find a physically motivated central value, around which we

perform scale variation studies in the usual way.
2This is not the case for small x or threshold logarithms, that we are not considering in this context.
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• the full result has formal NLO accuracy, therefore the scale variation around the

central values is formally of next-to-next-to-leading (NNLO) order;

• the accuracy and the smooth behaviour near the Sudakov regions is comparable to

that of the corresponding tree-level calculation in the adopted CKKW scheme;

• the procedure is simple and easily implemented for any NLO parton level generator,

requiring only minor work on top of the NLO calculation available.

The procedure we propose is based upon two simple observations. The first one con-

cerns the choice of the renormalization scale µR. To this end let us note that NLO cross

sections have the formal structure

dσ

dΦ
= αN

S (µR)B + αN+1
S (µR)

[
V +N b0 log

µ2
R

Q2
B

]
+ αN+1

S (µR)R , (1.1)

where B denotes the Born term and R the real corrections to it. The virtual corrections are

shown in parenthesis, their explicit renormalization scale dependence being proportional

to the Born term, where b0 is the one loop beta function coefficient

b0 =
33− 2nf

12π
, (1.2)

and Q is a momentum scale representative of the leading order kinematics. The explicit

µR dependence of the virtual corrections is such that the variation of eq. (1.1) with respect

to changing the renormalization scale is of order αN+2
S ; terms of order αN+1

S induced by

varying µR in the Born and virtual contributions cancel exactly due to the renormalization

group equation.

From here it is clear that should we choose to evaluate the N coupling constants in

the Born term at different scales {µi}, as in the matrix-element-parton shower merging

algorithms, in order for NLO scale compensation to take place eq. (1.1) must generalise to

dσ

dΦ
=

N∏
i=1

αS(µi)B + αN+1
S (µ′R)

[
V + b0

N∑
i=1

log
µ2
i

Q2
B

]
+ αN+1

S (µ′′R)R , (1.3)

where the scales µ′R and µ′′R in the virtual and real terms are irrelevant from the point of

view of scale compensation: αS(µR) − αS(µ′R) ≈ O(α2
S). In eq. (1.3), scale compensation

takes place independently for each of the µi that is varied. While it may be a relatively

straightforward task to evaluate N coupling constants at N scales for the Born term, virtual

corrections in NLO calculations are usually expressed in terms of a single renormalization

scale only. However, by simply setting µR in the virtual term to be the geometric mean of

the µi in eq. (1.3)

µR =

(
N∏
i=1

µi

) 1
N

, (1.4)

and evaluating the N coupling constants in the Born term at scales µi, we arrive at an

expression precisely of the form in eq. (1.3). Equivalently, we can evaluate the virtual term
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at some fixed scale µ0 and explicitly add the following contribution

αN+1
S (µ′R)× b0

N∑
i=1

log
µ2
i

µ2
0

B . (1.5)

The second ingredient that is needed in order to maintain NLO accuracy has to do

with the Sudakov form factors that are included in the Born term in the CKKW approach.

These form factors, when expanded in powers of αS, lead to terms of order αN+1
S , i.e.

of the NLO level of accuracy. These terms should be subtracted in order to maintain

NLO accuracy.

The choice of scales in the arguments of each power of αS in the real and the virtual

terms, the exact definition of the subtraction term arising from the expansion of the Su-

dakov form factors, and the inclusion of the Sudakov form factors in the real and virtual

terms, remain to a large extent arbitrary as far as the NLO accuracy is concerned. We

will however further constrain these choices, in such a way that the virtues of the CKKW

result at leading order are maintained once radiative corrections are included. We defer

the discussion of these and further details to the main body of the article.

The method presented in this paper can be applied in order to improve the prediction

for inclusive quantities in any NLO calculation. It is however particularly advantageous

in the context of interfacing NLO calculations to parton shower programs [10, 11]. In

the POWHEG framework [11, 12], for example, the underlying Born structure of the event

is generated with a probability proportional to the NLO inclusive cross section at a given

point in the Born phase space. This cross section can be evaluated using the prescription

advocated in the present work, leading to a considerable improvement in reliability near

the Sudakov regions.

The paper is organized as follows. In section 2 we review briefly the CKKW method for

matrix element-parton shower merging. In section 3 we present in detail our prescription.

A theoretical discussion regarding the interplay of the scale choices and Sudakov form

factors is given in section 4. In section 5, as an example, we apply our method to the case

of Higgs and Z production in association with one or two jets. Finally, we present our

conclusions in section 6. In the appendix we give the exact expression of the Sudakov form

factors at next-to-leading logarithmic (NLL) accuracy that we used to obtain the results

presented here.

2 Summary of the CKKW formalism

We first briefly summarize the standard CKKW procedure [4, 7, 8]. We consider a pro-

duction process in hadronic collisions. The CKKW formalism requires that we recursively

cluster the coloured partons in the event using a kT-clustering algorithm [13, 14], in order

to reconstruct the most likely branching history. The kT-clustering should be consistent

with the flavour structure, i.e. a pair of partons can only be clustered if it can come from

a single parton, and the appropriate flavour is assigned to the parton arising from the

merging. At each of the vertices i (i = 1, . . . , n) of the branching history, one assigns a

nodal scale qi, equal to the relative transverse momentum value at which the clustering

– 4 –



J
H
E
P
1
0
(
2
0
1
2
)
1
5
5

has taken place. In the CKKW formalism one also assigns a resolution scale Q0, meaning

that the cross section is interpreted as being inclusive for all radiation below Q0.

The recursive procedure ends when no further clustering is possible and we refer to

the remaining ensemble of particles as the primary system.3 We assign it a scale equal to

its invariant mass Q. The CKKW cross section is obtained by taking the tree-level matrix

element, with the strong couplings associated with each node evaluated at the correspond-

ing scale. The remaining m = N − n powers of the strong coupling4 are associated with

the primary system, and are evaluated at the scale Q. Intermediate lines between nodes i

and j in the branching history are furthermore assigned a Sudakov form factor

∆fij (Q0, qi)

∆fij (Q0, qj)
, (2.1)

where fij is the flavour of the line joining i and j, where i is the node closest to the primary

vertex (qi > qj). External lines have Sudakov form factors equal to ∆f (Q0, qi), where i is

the node connected to the external line.

The general form of the Sudakov exponent is

∆f (Q0, Q) = exp

[
−
ˆ Q

Q0

dq
2Cf

π

αS(q)

q

(
log

Q

q
−Bf

)]
, f = q, g , (2.2)

where Cg = CA, Bg = πb0/CA or Cq = CF , Bq = 3/4 for gluon or quark lines respectively.

Using the leading logarithmic expression for αS, we can compute the Sudakov form factor

analytically. We obtain

∆f (Q0, Q) = exp

[
−
Cf

πb0

{
log

log Q2

Λ2

log
Q2

0
Λ2

(
1

2
log

Q2

Λ2
−Bf

)
− 1

2
log

Q2

Q2
0

}]
. (2.3)

A more detailed analysis, adequate for NLL accuracy, is presented in appendix A.

Expanding eq. (2.3) in powers of αS we get

∆f (Q0, Q) = 1 + ∆
(1)
f (Q0, Q) +O(α2

S), (2.4)

∆
(1)
f (Q0, Q) = −

Cf

π
αS

[
1

4
log2 Q

2

Q2
0

− log
Q2

Q2
0

Bf

]
, (2.5)

that represents the effective NLO correction that is already included in the Born term when

we use the CKKW prescription, and will eventually be subtracted in our method.

Finally, we note that in the CKKW algorithm the factorization scale in the parton

density functions is set to Q0, the matrix element-parton shower merging scale. Each event

from the tree-level matrix element generator, when reweighted to include these Sudakov

form factor and scale settings, is then passed to a parton shower simulation, constrained

3In processes like W + jets production, the clustering typically stops when all jets are clustered away.

In the case of jet production, clustering should stop when at least two jets are left.
4In the case of Higgs production in gluon fusion, for example, there will be always at least two powers

of αS associated with the primary system.
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in such a way that no further radiation is generated at scales above Q0. Hence, the

distribution of radiation resolved at scales above Q0 is governed by exact tree-level matrix

elements with the remaining phase space filled by the parton shower.

In the CKKW scheme, inclusive configurations with the maximum number of partons

in the matrix elements are treated differently [8]. In this case, the scale Q0 is taken equal

to the lowest merging scale. Hence, when interfacing the reweighted tree level events to

the parton shower, all higher jet multiplicities, for which no tree-level matrix element is

available, will be consistently generated by the shower.

In the context of our approach, the natural choice of Q0 is the same one adopted in

the CKKW scheme for the highest multiplicity sample. More specifically, in our case Q0

should be set equal to the scale of the first merging for Born level kinematics (i.e. the Born

and the virtual), and the scale of the second merging for the real kinematics. This is easily

understood with the following example. When we consider Z + jet production, with the

jet transverse momentum equal to pT , we clearly imply that the jet we are considering is

the hardest one and thus that its pT limits the scale of all other jets. In the case of the real

emission in an NLO calculation, the lowest merging scale corresponds to integrating over

further radiation inclusively, hence, its merging scale (the first one in this case) is skipped.

3 Formulation of the method

We now formulate our complete prescription, MINLO for Multi-scale improved NLO, in-

cluding the choice of scales appearing in the coupling constants associated with the NLO

corrections, the inclusion of the Sudakov form factors in the virtual and real contributions,

and how to perform the subtraction of the term in eq. (2.5). We recall that Q is the scale of

the primary configuration, q1 . . . qn are the remaining clustering scales in increasing order,

and that generally we have m powers of αS (where m can be zero) associated with the pri-

mary process. In the case of the real cross section, there will be also a smallest clustering

scale q0, corresponding to the first clustering. As discussed above, we will always fix the

scale Q0 entering eq. (2.1) to q1. We then proceed as follows:

i. We perform the kT clustering of the event, determine the scales Q, q1 . . . qn, and even-

tually q0 for the real term, and construct the event skeleton. We cluster only partons

that are compatible in flavours, i.e. gluons with gluons, yielding gluon pseudopartons,

gluons and quarks, yielding quark pseudopartons with the same flavour, and quarks

with antiquarks of opposite flavour, leading to gluon pseudopartons. We set Q0 = q1.

It may occur that the scale of the primary process Q turns out to be smaller than the

last clustering scale. This happens, for example in the production of a massive boson

recoiling against a hard jet, with transverse momentum larger than the boson mass.

In these cases we will take Q = qn. Notice that this choice is not fully motivated

by the CKKW approach, which instead deals with naturally ordered radiation. Al-

though this case is interesting on its own, being perhaps related to the giant K-factor

issues [15], we will not pursue it further in the present work.
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ii. n powers of the coupling constant in the Born, virtual and real contributions will

be evaluated at the scales µ1 . . . µn, with µi = KR qi (i = 1 . . . n) (the value of αS

to be used in the real and virtual contributions for the (n + m + 1)th power of the

coupling constant is specified at point VI). KR is the renormalization scale factor,

equal to 1 for the central value, and typically varied between 0.5 and 2 in order to

study scale variation uncertainties. The m strong coupling constants associated with

the primary system will be taken equal to KRQ.

iii. The renormalization scale explicitly appearing in the virtual corrections is set to

µR = ((µQ)m ×
∏n

i=1 µi)
1

m+n ,while the factorization scale µF, appearing explicitly in

the collinear subtraction remnants and in all parton densities functions (pdf’s), is

assigned the scale KFq1, where KF is the factorization scale factor.

iv. The Sudakov form factors for all the skeleton lines will be included for the Born,

virtual and real contributions. For the latter, as already remarked above, we in-

clude the Sudakov form factors corresponding to the branching history obtained af-

ter the first clustering. Notice that the external lines that join at the first node have

∆(Q0, q1) = 1, since Q0 = q1.

v. The subtraction of the NLO contribution present in the CKKW Born term is per-

formed by replacing

B ⇒ B ×

1−
∑
ij

[
∆

(1)
fij

(Q0, qi)−∆
(1)
fij

(Q0, qj)
]
−
∑
l

∆
(1)
fl

(Q0, qkl)

 , (3.1)

where the first sum extends over all pairs of nodes i, j, with qi > qj , connected by

a line of flavour fij , and the second one runs over all external lines l connected to

nodes kl (excluding kl = 1, which vanishes).

vi. For the value of αS to be used in the (n+m+ 1)th power of αS appearing in the real

and virtual cross section, and also appearing in eq. (3.1), we propose

α
(n+m+1)
S =

1

n+m

(
n∑

i=1

αS(µi) +mαS(µQ)

)
. (3.2)

The logic for this choice is the following. Large QCD corrections can be viewed as

being associated with the nodal scales in the branching history, and can thus be

viewed as an αS factor evaluated at the nodal scales times the Born cross section,

one for each node. The sum of them will lead to a sum of αS values taken at each

nodal scale. As far as the subtraction term in eq. (3.1) is concerned, here we make

the same choice performed in the NLO terms, since the subtraction term is meant to

subtract large corrections arising in the NLO terms and already resummed when the

full Sudakov form factors are multiplied by the Born term.

Notice that in eq. (3.1) we could have instead used the same value of αS that appears

in the Sudakov form factor, rather than the one given in eq. (3.2). By sticking to
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the present choice, we may be artificially reducing the scale dependence of the whole

result. The exploration of this alternative, as well as many other possible variations

on the method, will be left to future work. The purpose of the present work is just

to present the essential features of the method, and thus we will stick to a definite

choice among all possible options.

To further motivate the above prescription, we make the following remarks. First of all,

the inclusion of Sudakov form factors and running couplings in the NLO corrections, with

essentially the same prescription as in the Born term, guarantees that also when NLO

corrections are included, we recover in the Sudakov regions the same smooth behaviour that

was present in the Born term alone thanks to the CKKW procedure. A second important

remark has to do with the form of the subtraction term arising from eq. (3.1). We notice

that this term has precisely the same couplings and Sudakov form factors present in the

NLO term. It is thus constructed in such a way as to have an optimal cancellation of the

large Sudakov logs arising in the NLO corrections, that are already present in exponentiated

form in the Born Sudakov form factor.

4 Interplay between scale choices and Sudakov form factors

It is often easy to find conflicting motivations for the choice of scale in an NLO calculation.

Consider the example of Higgs plus jet production, assuming that the jet momentum is

substantially lower than the Higgs mass. This process is of order α3
S at the Born level and

one may be inclined to believe that one out of the three powers of αS, being associated

with the radiated jet, should be taken of the order of the jet transverse momentum, while

the other two should be of the order of the Higgs mass, and that the factorization scale

should be an intermediate scale between the two. On the other hand, if we recall that our

cross section describes the hardest jet, and should be viewed as inclusive in all radiation

with clustering scale below the pT of the jet, we would reach the conclusion that the

factorization and renormalization scales for all powers of αS should be taken equal to the jet

transverse momentum. This is because all gluon propagators and external lines (including

the incoming ones) are limited in virtuality by the jet transverse momentum (the internal

line by kinematics and the external lines because radiation with merging scale above pT is

not allowed).

This apparent conflict illustrates how failing to consider the effect of Sudakov form

factors when dealing with the choice of the scales can lead to inconsistent conclusions. First

of all, we should recall that Sudakov double logarithms are formally more important than

renormalization or factorization scale logarithms, since the latter lead only to single logs.

Furthermore, it should also be remembered that some sub-leading terms in the Sudakov

logarithms are precisely there to compensate the mismatch between different scales at

connected vertices. The purpose of this section is to further elaborate upon these points,

and to demonstrate that a scale assignment, in the framework of multi-jet processes, cannot

be consistently discussed if Sudakov form factors are not properly included.

Consider the simple example of quantum field theories without infrared divergences,

like Yukawa theories or Φ3 in 6 space-time dimensions. In such theories, we may look for

– 8 –
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Figure 1. Schematic leading logarithmic corrections to a branching history.

the dominant virtual corrections to a branching process by including leading logarithmic

virtual corrections to all vertices and internal lines, as illustrated in figure 1, where Γ

represent the one particle irreducible vertex corrections, and Σ represent self energies. In

these theories (and also in gauge theories in physical gauges), the vertex corrections are

infrared finite when at least one external line is off shell, so that they are dominated by

the largest virtuality. Thus, in figure 1, for the leftmost vertex we have

Γ(q, q′, q′′) ≈ Γ(q, q, q), (4.1)

and we will write for simplicity

Γ(q, q, q) = Γ(q). (4.2)

On the other hand, we have

Γ(q)[Σ(q)]
3
2 =

g(q)

g
, (4.3)

where g(q) is the running coupling at the scale q. Thus, if at each vertex with an incoming

line having virtuality q we substitute

Γ(q) =
g(q)

g[Σ(q)]
3
2

, (4.4)

we immediately see that the net effect of the insertion of vertex and self energy corrections

is the inclusion of the running coupling constant at the scale of the incoming virtuality for

each vertex, and of a factor √
Σ(q′)

Σ(q)
(4.5)

for each line. This yields in the cross sections, i.e. in the full squared amplitude, a factor

∆(q′, q) =
Σ(q′)

Σ(q)
, (4.6)

which is the Sudakov form factor.

It is interesting to look in detail to what happens in the case of Higgs plus jet production

and how the apparent contradictions arising from naive scale assignments are solved if the

– 9 –
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full Sudakov form factors are included. The couplings and Sudakov factors that multiply

the tree level amplitude in the CKKW approach yield the factor

F = α2
S(MH)αS(pT )

{
exp

[
−CA

πb0

{
log

log Q2

Λ2

log
Q2

0
Λ2

(
1

2
log

Q2

Λ2
− πb0
CA

)
− 1

2
log

Q2

Q2
0

}]}2

. (4.7)

Notice that we have only the two powers of the Sudakov form factors, associated with

the incoming internal and external lines that join at the Higgs production vertex. The

remaining two lines join at the first node, hence their Sudakov form factor is one, since

Q2
0 = p2

T . Eq. (4.7) in turn leads to

F = α2
S(MH)αS(pT )

(
log Q2

Λ2

log
Q2

0
Λ2

)2

exp

[
−CA

πb0

{
log

log Q2

Λ2

log
Q2

0
Λ2

log
Q2

Λ2
− log

Q2

Q2
0

}]

≈ α3
S(pT ) exp

[
−CA

πb0

{
log

log Q2

Λ2

log
Q2

0
Λ2

log
Q2

Λ2
− log

Q2

Q2
0

}]
, (4.8)

where we have taken Q2
0 = p2

T and Q = MH . Notice that

exp

[
−CA

πb0

{
log

log Q2

Λ2

log
Q2

0
Λ2

log
Q2

Λ2
− log

Q2

Q2
0

}]
≈ 1− CA

π
αS

1

2
log2 Q

2

Q2
0

+O
(
α2

S

)
, (4.9)

i.e. the pure Sudakov double logarithm. Thus, applying the CKKW prescription leads to

the conclusion that the scale choice for αS is pT for all powers of αS, provided a pure LL

Sudakov form factor is included. If one assigns the scale pT to one power of αS, and MH to

the remaining two, then the full NLL Sudakov form factor should be included, that takes

care of the scale mismatch.

Thus, the intuitive argument of assigning the same pT scale to all coupling constant is

in a sense correct, but one should not forget that double log Sudakov terms are formally

more important than scale logarithms.

5 Phenomenology

In order to test our prescription, we have implemented it in the POWHEG BOX [16] in a

fully generic way, so that it can be applied to any process of interest. In this context,

we have performed a variation over the scheme presented in section 3, regarding the first

clustering in the real emission contributions. Since the POWHEG BOX already provides a

first clustering, corresponding to the mapping of the real emission configuration to its

underlying Born structure, we have relied on this mapping rather than performing this

clustering explicitly using the kT algorithm. This procedure is formally equivalent to the

one given in section 3, and it has the advantage of greater simplicity. We have used R = 1

in our kT clustering procedure. The Sudakov form factors have been coded both with the

expressions of eq. (2.3), and with the full NLL dependence presented in the appendix. It

turns out that the two expressions differ very little if the value of Λ used in the leading
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order expression is taken equal to ΛMS. However, we have produced our results using for

the Sudakov exponent the full expression given in appendix A.

Our study will focus on two examples: Higgs production via gluon fusion and Z pro-

duction, both in association with one or two jets. The (infinite top mass limit) Higgs

production NLO calculations are taken from refs. [17–21]. They will be referred to as the

HJ (for Higgs plus one jet) and HJJ (for Higgs plus two jets) in the present work. The

Z+ jet cross section (ZJ in this paper) is taken from ref. [22]. A Z + 2 jets POWHEG BOX

implementation has appeared in ref. [23]. However, the relevant code is not fully public.

We thus implemented a new Z + 2 jets (ZJJ) POWHEG BOX generator using the automatic

MadGraph4 interface developed in ref. [21], taking the virtual corrections from the MCFM

package [24–26].

We will refer to the results obtained with the method presented in this work as MINLO

(for Multi-scale Improved NLO). All the calculations are performed for the LHC at a centre

of mass energy of 7 TeV. The Higgs mass is always taken equal to 120 GeV. We have used

the CTEQ6M parton density functions [27] for Higgs production, MSTW2008NLO [28] for Z

production processes, and the kT algorithm for jets, with R = 0.5, as implemented in

FastJet [29]. In the Higgs boson production case, the full cross section is reported, with

no branching ratios. All results concerning Z production include the branching fraction

for Z → e+e−. A mass window from 60 GeV to MZ + 15ΓZ was used for the Z virtuality

(ΓZ = 2.495 GeV), while for the Higgs Boson virtuality we have considered the window

from MH − 15ΓH to MH + 15ΓH (ΓH = 5.75 · 10−3 GeV).

When showing showered POWHEG results for comparison, these will always be generated

interfacing POWHEG with PYTHIA 6.4.25 [30], using the Perugia-0 tune (PYTUNE(320)), with

hadronization and underlying event turned off.

We will compare the MINLO results also to standard NLO results obtained with conven-

tional scale choices. In particular, a fixed scale choice, labelled ‘FXD’ in the figures, will

correspond to the scales central values equal to the mass of the heavy boson in all cases.

A running scale (labelled ‘RUN’) will also be considered. It will be taken equal to the jet

transverse momentum in both the H + 1 jet and Z + 1 jet processes, since this is the scale

that one would adopt following the intuitive reasoning of section 4. In the H + 2 jets case,

the running scale will be taken equal to ĤT , defined as

ĤT =

√
MH

2 + pHT
2 +

∑
i

p
(i)
T , (5.1)

where the sum runs over all partons in the event. In the Z + 2 jets case, the running scale

will be taken equal to ĤT/2. The ĤT scale is quite popular in multijet processes, and, in

particular, ĤT/2 seems to be the preferred scale for W and Z production in association

with jets [31].

5.1 Preliminary considerations

Before discussing the goal of our study, it is useful to clarify what we expect from our

method by making a couple of consideration regarding the CKKW algorithm when applied

to the tree level cross sections. Consider for example, Higgs production plus n partons.
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Because of the unitarity of the shower, in the parton shower approximation of the Higgs plus

n partons process, by integrating over the last splitting, one recovers exactly the shower

approximation to the cross section for Higgs plus (n− 1) partons. One expects something

similar to happen for the CKKW formula.5 However, in the CKKW case unitarity is

not exact, and this feature is only approximate. In the simplest case of a single radiated

parton we can easily prove that by integrating out the radiated parton we recover the Born

cross section up to corrections of order αS. In the case of more complex configurations,

sub-leading logarithms can arise, and a sound conclusion is more difficult to reach.

In order to assess the performance of a MINLO result, we need to compare it to other

calculations that give a reasonably good description of the Sudakov region. So, for ex-

ample, we will compare the MINLO HJ result to the showered, parton level POWHEG result

for inclusive Higgs (ggH). If we look, for instance, at the Higgs transverse momentum dis-

tribution, the POWHEG ggH result gives a correct description of the Sudakov region and,

furthermore, its integral yields the NLO accurate total Higgs production cross section. On

the other hand, it describes the tail of the Higgs transverse momentum distribution only

with LO accuracy. By contrast, the MINLO result is instead NLO accurate at relatively

large transverse momenta and LO accurate for the integral of the whole distribution.

In the case of heavy boson production in association with two jets, like in Higgs plus

dijet production, we will compare the MINLO HJJ result with the POWHEG HJ one, enhanced

with the MINLO prescription. Here we expect the POWHEG HJ result to give a good description

of the Sudakov region associated with the emission of the second parton. Integrating out

the second parton emission in distributions that are inclusive in the hardest jet, one achieves

NLO accuracy. On the other hand, only LO accuracy is achieved for the production of two

widely separated jets. Conversely, the MINLO HJJ calculation has full NLO accuracy for

Higgs plus two jets and leads to LO accuracy for Higgs plus one jet distributions.

We remark here that the standard NLO calculations are not integrable over the full

phase space. Thus, for example, the HJJ standard NLO result does not yield a finite cross

section for Higgs plus one jet distributions, while in the MINLO approach a sensible result

is obtained (thanks to the damping of the Sudakov form factors), although only accurate

at leading order.

The fact that the MINLO NLO calculation is finite is a remarkable advantage over the

usual fixed order calculations, since, for instance, when generation cuts are imposed in order

to obtain finite cross sections, one needs to make sure that the cuts are low enough so that

final results are not sensitive to them. However, making generation cuts too low renders

NLO calculations inefficient, so that usually an appropriate, delicate compromise needs

to be found. Another feature that is worth stressing in the MINLO result is the improved

stability of the inclusive distributions as the Sudakov regions are reached. This is not only

due to the Sudakov suppression factor, but also to the fact that Sudakov logarithms arising

at fixed order in the NLO corrections are compensated by the inclusion of the subtraction

terms of eq. (3.1), which have exactly the same structure.

5Notice that, because of the presence of the Sudakov form factors, the CKKW formula is integrable in

the full phase space, provided we avoid integrating over the Landau pole of the running coupling constant

by, for example, freezing the coupling at a scale just above it.
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The observables for which we expect most advantges from the MINLO method are those

that can be constructed from the momenta of the pseudo-partons after a kT-clustering

procedure carried out until we have n jets, n being the number of radiated partons beyond

the primary process at the Born level (e.g. n = 1 for HJ and ZJ and n = 2 for HJJ and

ZJJ). Strictly speaking it should work for observables built up with the n-jet exclusive cross

section. This is obtained by applying the kT clustering algorithm, discarding or merging

the pseudoparton with the smallest transverse momentum until we are left with exactly n

pseudopartons. In practice, it should also work well for quantities built out of the hardest

n jets, as defined in the inclusive kT algorithm with a reasonable (i.e. not too small) choice

of the R parameter. We remark, however, that quantities that are sensitive to the radiation

in the real event (i.e. to the third parton in HJJ and to the second parton in HJ) the MINLO

method has no great advantage over the standard ones. In fact, no Sudakov suppression is

included for the radiated parton in the real cross section. On the other hand, the POWHEG

method provides specifically these Sudakov form factors, while maintaining NLO accuracy.

Therefore, the MINLO method combined with POWHEG yields the fully resummed results for

all quantities. We expect that in this framework the POWHEG results improved with the

MINLO method will ease the task of merging multijet samples, by providing associated jet

cross section that merge more smoothly with those with smaller multiplicity.

It is possible to conceive observables for which the MINLO method includes double

logarithms (at the NNLO level and beyond) that are actually not correct [32]. At the end

of section 5.2.1 we will consider two such examples.

5.2 Higgs boson production

5.2.1 Higgs boson production in association with one jet

We begin by considering the MINLO improved HJ calculation. In figure 2 we show the

transverse momentum spectrum of the Higgs boson, computed with the POWHEG BOX ggH

generator, the HJ-MINLO result, and the HJ result with the two alternative scale choices

µF = µR = pHT (RUN) and µF = µR = MH (FXD). The POWHEG BOX result was obtained

with the settings advocated in ref. [33], that is to say with the hdamp parameter set to the

Higgs mass divided by 1.2, and all other parameters at their default value. The events were

showered at the parton level using PYTHIA 6, with the settings described in the introduction

of section 5.

In the right panel in figure 2, the full scale variation of the HJ results, normalized to the

POWHEG BOX result, are presented. We have varied the renormalization and factorization

scale independently by a factor of two above and below the central value, discarding the

extreme cases of varying them in opposite directions. More precisely, referring to the

notation of section 3, we have chosen KR and KF equal to 1/2, 1 and 2, restricted by the

condition 1/2 ≤ KR/KF ≤ 2. This leaves seven scales combinations. The upper (lower)

curves are obtained by taking the upper (lower) envelope of these seven curves.

Notice the striking difference between the MINLO result and the standard NLO ones.

The MINLO result mimics well the POWHEG BOX result down to very low values of transverse

momentum. We stress again that this is a consequence of the presence of Sudakov form

– 13 –



J
H
E
P
1
0
(
2
0
1
2
)
1
5
5

10−1

100
d
σ
/d

pH T
[p
b
/G

eV
]

R
at
io

0
0.5
1

1.5

20 40 60 80 100
pH

T
[GeV]

d
σ
/d

pH T
[p
b
/G

eV
]

R
at
io

H PWG
HJ MINLO

HJ RUN
HJ FXD

1
2
4

R
at
io

MINLO

1
2
4

R
at
io

RUN

1
2
4

20 40 60 80 100
pH

T
[GeV]

R
at
io

FXD

Figure 2. Transverse momentum spectrum of the Higgs boson, computed with the POWHEG BOX

ggH generator (H PWG), the HJ-MINLO result (HJ MINLO), the HJ default µF = µR = pH
T (HJ

RUN), and HJ with µF = µR = MH (HJ FXD). The right panel shows the ratio of each of the

NLO HJ results with respect to the NLO ggH POWHEG simulation with the band either side of the

central values indicating the combined renormalization and factorization scale uncertainty. Results

are shown for LHC collisions at 7 TeV and a Higgs mass of 120 GeV. No cuts are applied.

factors, and also of the inclusion of the subtraction term of eq. (3.1). The standard HJ

results do instead diverge at small transverse momentum. Furthermore, they tend to

abruptly change sign, due to the growing of the large Sudakov double logarithms arising

at the NLO level. Notice also that they begin to depart from the MINLO result even at

moderate values of the transverse momenta. By contrast, we observe that the MINLO

uncertainty band is fairly compatible with the POWHEG result down to very low values of

the transverse momentum.

We notice that the fixed scale result is more compatible with the MINLO result than the

running scale one. This may seem surprising, since, as shown in section 4, the MINLO scale

choice corresponds to the running scale case. However, the Sudakov suppression of the

MINLO result is missing in the running scale result. Using a larger scale at small transverse

momenta, as is done in the fixed scale case, compensates to some extent the lack of a

Sudakov form factor, yielding a more stable result.

We also remark that the MINLO result yields an increasing scale band at low transverse

momenta, i.e. the ratio of the upper to lower band increases at small transverse momenta.

This is to be contrasted with the fixed scale case, where the uncertainty band seems to

shrink at small pT, giving the illusion of a smaller theoretical uncertainty. The ratio plots in

the right panel of figure 2 are shown in logarithmic scale, in order to makes this effect more

evident. This observation is easily explained. The NLO correction includes a dominant,

negative Sudakov term, carrying two more powers of log(MH/pT) than the Born term. This

term causes the NLO correction to change sign at some small value of pT. At the point

where the NLO correction becomes zero, its derivative with respect the renormalization

scale almost vanishes. In fact, at the point where the NLO correction vanishes, the scale

dependence is given schematically by

σ = BαN
S (µR) +NBb0 log(µ2

R/µ
2
0)αN+1

S (µR) , (5.2)
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Figure 3. As figure 2 for the 0→ 1 and 1→ 2 differential jet rates in Higgs boson production via

gluon fusion.

where µ0 is the scale central value. Its derivative at µR = µ0 is

µ2
R

dσ

dµ2
R

= NBαN
S (µR)

(
−b0αS(µR)− b1α2

S(µR)
)

+NBb0α
N+1
S (µR) = −NBαN+2

S (µR)b1 .

(5.3)

Thus, the scale dependence in this region, being only due to the NLO evolution term of

αs, is small, and the NLO correction is also small, yielding a full NLO result close to the

Born one. Both these conditions may convey a false impression of reliability.6 For the

MINLO result, on the other hand, this mechanism does not operate, since the large double

logarithmic term is removed from the NLO correction, and is included in the Sudakov

form factors.

In figure 3 we show the differential jet rates. These are defined as

yi i+1 = log10

( qi i+1

1 GeV

)
, (5.4)

where qi i+1 is the kT merging scale for going from a (i + 1)-jet configuration to a i-jet

configuration in the kT clustering procedure. For the 0 → 1 differential jet rate, as for

the Higgs transverse momentum distribution, all three methods we are considering should

be predictive. We see again that the MINLO prediction is well behaved even below q01 ≈
10 GeV, while the standard methods fail in this region. The 1→ 2 differential jet rate is a

distribution for which we expect little or no improvement from the MINLO method. In fact,

it is determined by the distribution of the radiated parton in real events, that forms the

second jet. No Sudakov improvement for this emission is provided by the MINLO method.

In the POWHEG Higgs implementation, this quantity is determined by the shower stage of

the generation, where partons beyond the first one are generated. In a POWHEG simulation

of the HJ process, either with the MINLO improvement or with a standard choice of scales,

all curves would be in better agreement with the POWHEG ggH result, since in this case a

Sudakov form factor for the radiated parton is properly included.

In figure 4 the transverse momentum of the hardest jet is plotted (this distribution is

equivalent to y01 but shown in a different form and range). This distribution should be

6See also figure 3 in ref. [34], and the associated discussion.
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Figure 4. As figure 2 for the transverse momentum spectrum of the leading jet produced in Higgs

boson production via gluon fusion.
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Figure 5. As figure 2 for the rapidity of the Higgs boson in events containing at least one jet

with pjT > 20 GeV.

similar to the transverse momentum of the Higgs, except for the fact that it is displayed

for pT > 20 GeV. As the small pT region is approached, we see indications of an initial

unphysical behaviour in the standard methods, especially evident for the running scale case.

In figure 5 we show the rapidity distribution of the Higgs, in events with at least

one jet above 20 GeV. The normalization of this distribution inherits the results obtained

for the jet transverse momentum distribution, since it is mainly affected by the 20 GeV

cut. An interesting trend is observed, however, in the large rapidity region, where phase

space restrictions become operative and Sudakov effects may become manifest. The MINLO

result is more compatible with the POWHEG ggH one, while the default running scale result

markedly departs from it.

We consider now two distributions such that the double logarithmic structure intro-

duced with the MINLO procedure is not correct beyond the NLO level [32]. Consider for

example the transverse momentum distribution of the hardest jet included in a given ra-

pidity range around the Higgs boson and of the hardest jet in a fixed (central) rapidity

region. Observe that in both cases the jet in the considered rapidity range is not necessarily
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Figure 6. The transverse momentum distribution of the hardest jet with |yJ − yH | < 0.5 (left

plot) and with |yJ | < 0.5 (right plot).

the hardest one in the whole process, since the hardest jet could be outside that range.

Thus, these distributions do not satisfy our requirement mentioned earlier, i.e. they cannot

be constructed neither out of the exclusive kT-clustered configuration at the one-jet level,

nor out of the inclusive hardest jet distribution. Since we are limiting the collinearity of

the emitted jet, the MINLO procedure introduces an excessive double logarithmic Sudakov

suppression for these observables. In figure 6 we show predictions for the transverse mo-

mentum distribution of the hardest jet with |yJ − yH | < 0.5 (left plot) and |yJ | < 0.5

(right plot) from, the showered ggH generator, the MINLO procedure and a standard NLO

calculation with a fixed scale. We observe that indeed for the left plot the MINLO prediction

seems to fare worse than the standard fixed order NLO computation. On the other hand,

relevant differences between the two are only visible for very small pT, already in the region

where both distributions depart from the ggH prediction. Conversely, for the right plot the

MINLO prediction tracks the ggH one more closely down to smaller values of pT. Even for

the left plot, the MINLO result is closer to the ggH one as soon as one increases the rapidity

interval. We thus see that even for observables conceived to expose the limitations of the

MINLO method, it still performs comparably to standard NLO calculations. Nevertheless,

we believe that more extensive experience of the MINLO method is needed in order to fully

assess its performance.

5.2.2 NLO Higgs boson production in association with two jets

In this section we compare the MINLO HJJ distributions with the standard ones, obtained

with two choices of the scale, µF = µR = MH , and µF = µR = ĤT , with ĤT defined as

ĤT =

√
MH

2 + pHT
2 +

∑
i

p
(i)
T , (5.5)

the sum running on all final state partons. These two scale choices will be labelled FXD and

RUN in the figures. We begin by comparing in figure 7 the transverse momentum of the

Higgs obtained with the POWHEG BOX HJ generator (interfaced to the PYTHIA shower) and

the MINLO HJJ generator. The POWHEG BOX HJ generator was modified with the inclusion
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Figure 7. The transverse momentum of the Higgs boson (left) and the differential jet rate y01
(right), representing the logarithm of the resolution scale in the kT jet algorithm [14] for which

1-jet events become resolved as 0-jet ones. Results shown are computed with the POWHEG BOX HJ

generator, augmented by the MINLO procedure, and with HJJ-MINLO method. Distributions are

shown for LHC collisions at 7 TeV and a Higgs mass of 120 GeV. No cuts are applied.

of the MINLO method for the computation of the underlying Born kinematics. No standard

NLO Higgs plus two jets prediction is possible for this distribution, since it does not

require the presence of at least two jets. Thus, as previously discussed, we expect the

MINLO result to give a LO representation of the physical cross section. We can see that,

in spite of this the MINLO result is still remarkably close to the POWHEG BOX cross section.

The agreement is particularly impressive at very low transverse momentum, where it seems

that the MINLO HJJ result gives a description of the total Higgs cross section that is very

close to the one given by the HJ POWHEG BOX generator. The latter, when improved with

the MINLO prescription, yields a cross section that is accurate at least at LO, according to

the discussion given at the beginning of section 5. In the right panel of figure 7 we show

the differential jet rate for the zero jet to one jet transition. Here again we see the MINLO

prediction closely tracks the result of the HJ POWHEG generator.

In figure 8 the differential jet rate y12 is shown. For this distribution the MINLO result

and the standard NLO calculations are all predictive, showing reasonable agreement among

each other for moderately large merging scales. At small scales, the MINLO result is in

better agreement with the POWHEG BOX HJ code and shows a better scale stability. The

standard HJJ NLO results, by constrast, display unphysical behaviour under scale variation,

especially as far as the ĤT scale choice is concerned.

In figure 9 we show the transverse momentum of the leading jet in events with at least

two jets. All NLO calculations, MINLO-improved and those with conventional scale setting,

are again predictive for this distribution. Observe that in the case of the running scale

prediction (µR = µF = ĤT ) the central value is outside the MINLO error band. Using a

central value of ĤT/2 would instead lead to much better agreement between the MINLO and

RUN results. Remarkably, it has become common in multijet NLO calculation to prefer

ĤT/2 as central scale, because it seems to lead to an improved scale stability. The MINLO

result seems also to favour this choice. We also notice that the uncertainty band for the
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Figure 8. The differential jet rate y12, defined as the value of the kT jet measure [14] for which

events with two resolved jets are clustered into 1-jet events. Results are computed with the POWHEG

BOX HJ generator (HJ PWG), the HJJ-MINLO result (HJJ MINLO), the HJJ with µF = µR = ĤT

(HJJ RUN), and HJJ with µF = µR = MH (HJJ FXD). To the right we show the ratio of each of

the NLO HJJ results with respect to the NLO HJ POWHEG simulation, with the band either side of

the central values indicating the combined renormalization and factorization scale uncertainty.
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Figure 9. As in figure 8, for the transverse momentum of the leading jet in events with a Higgs

boson and at least two jets with pT > 20 GeV.

MINLO result shrinks at high pT, while those of the NLO results using a more conventional

scale choice do not. It is tempting to interpret this result as being due to the fact that

the MINLO method yields smaller radiative corrections in the high pT region, on account

of its resummation of logarithms of the ratio of the widely different scales present in this

observable — the jet pT cut and pT of the first jet. On the other hand, we must remember

that the terms that are exponentiated in the Sudakov form factor are not subject to scale

variation in our present procedure. Thus, we believe that much more practice with MINLO

calculations is needed in order to substantiate this interpretation.

In figure 10 we show the transverse momentum distribution of the second jet. The

ĤT scale choice gives results below the MINLO ones, to an even larger extent than in the

case of the leading jet. Again, choosing ĤT/2 as central scale considerably improves the

agreement, although not quite in a satisfactory way. Predictions with ĤT/2 remain on the

lower limit of the MINLO band for moderate transverse momenta.
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Figure 10. As in figure 8, for the transverse momentum of the next-to-leading jet in events with

a Higgs boson and at least two jets with pT > 20 GeV.
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Figure 11. Transverse momentum spectrum of the Z boson computed with the POWHEG BOX Z

generator, the ZJ-MINLO result, the ZJ default µF = µR = pZ
T (ZJ RUN) and ZJ with µF =

µR = MZ (ZJ FXD). To the right we show the ratio of each of the NLO ZJ results with respect to

the NLO Z POWHEG simulation, the band either side of the central values indicating the combined

renormalization and factorization scale uncertainty.

5.3 Z boson production

5.3.1 Z boson production in association with one jet

We begin by showing the transverse momentum of the Z boson in figure 11, wherein we

compare the predictions of the POWHEG Z program interfaced to PYTHIA, MINLO ZJ and

conventional NLO Z + jet computations using two different scale choices: the mass of the

Z boson and, separately, its transverse momentum. Scale uncertainty bands are presented

in the accompanying plot to the right of the main distribution. As one can see, the MINLO

result is closer to the POWHEG one for small transverse momenta. Observe, however, that

now the agreement with POWHEG is not as good as in the Higgs case. It should be kept in

mind, however, that the Z Sudakov peak is located at much smaller values of the transverse

momentum with respect to the Higgs case, in a region that is strongly influenced by cut-

offs introduced to avoid the Landau pole in the perturbative calculation, and by shower

cut-offs.
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Figure 12. As figure 11 for the transverse momentum spectrum of the leading jet produced in Z

boson production.
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Figure 13. As figure 11 for the 0 → 1 and 1 → 2 differential jet rates in inclusive Z boson

production.

In figure 12 we display the hardest jet transverse momentum. In this case, due to

the 20 GeV cut on the jet transverse momentum, we see that all prescriptions perform

equally well.

In figure 13 we display the differential jet rates for the 0 → 1 and 1 → 2 transitions.

In the first case, we see a more realistic behaviour of the MINLO result with respect to the

conventional NLO predictions, while for the 1 → 2 transition, as noted previously in the

case of Higgs production, all three methods are unreliable at small y12. This behaviour is

of course expected, since Sudakov resummation of the real radiation is absent in all but

the POWHEG+PYTHIA prediction.

5.3.2 Z boson production in association with two jets

In the case of Z production in association with two jets, one does not expect a meaningful

prediction for the Z transverse momentum and for the 0 → 1 differential jet rate from

regular NLO calculations with standard scale choices. As shown in figure 14 the MINLO

result is instead sensible for both distributions.

Following our analysis for Higgs production, in figure 15 we have superimposed predic-

tions from the MINLO ZJJ and conventional NLO Z + 2 jets computations (with different
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Figure 14. The transverse momentum of the Z boson (left) and the differential jet rate y01 (right),

computed with the POWHEG BOX ZJ generator, augmented with the MINLO procedure and with the

ZJJ-MINLO procedure.
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Figure 15. The differential jet rate y12, computed with the ZJ POWHEG BOX simulation, augmented

by the MINLO procedure (black), the MINLO ZJJ computation (red dashes), and conventional NLO

ZJJ predictions with µF = µR = ĤT/2 (blue dots) and µF = µR = MZ (fine green dots).

scale choices) on those of the ZJ POWHEG generator interfaced to PYTHIA, for the 1 → 2

differential jet rate. As in the case of Higgs production the Sudakov suppression effects

built into the MINLO prediction are clearly manifest in the region y12 < 1, where the regular

NLO computations clearly depart from the fully resummed ZJ POWHEG result.

Finally, in figs 16 and 17 we show the transverse momentum distribution for the first

and second jet, in events with at least two jets. In these figures we see that, when cuts are

imposed to stay away from the Sudakov regions, all methods are in reasonable agreement.

6 Conclusions

In this paper we have formulated a method for the choice of scales and for the inclusion

of Sudakov form factors in NLO calculations of processes involving jet production. The

method proposed is such that the Born term is evaluated using the CKKW prescription,

and the real and virtual corrections are added in such a way that formal NLO accuracy is

maintained and the good features of the CKKW Born result are not spoiled.
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Figure 16. The transverse momentum of the leading jet in events comprising the Z boson and

at least two jets with pT > 20 GeV. As in figure 15, on the left we compare the prediction of

the ZJ POWHEG simulation, augmented by the MINLO procedure (black), to those of the MINLO ZJJ

computation (red dashes), and conventional NLO ZJJ predictions with µF = µR = ĤT/2 (blue

dots) and µF = µR = MZ (fine green dots). To the right we show the ratio of each of the NLO

ZJJ results with respect to the NLO ZJ POWHEG simulation, with the band either side of the central

values indicating the combined renormalization and factorization scale uncertainty.
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Figure 17. As in figure 16 for the transverse momentum of the next-to-leading jet in inclusive Z

boson production.

We have examined the performance of our method (MINLO for Multi-scale improved

NLO) in Higgs and Z boson production in association with up to two jets. We have

observed the following properties of the MINLO method as compared to conventional

NLO computations:

• The MINLO results are well behaved in the Sudakov regions for a large class of dis-

tributions, where instead the NLO results with standard choice of scale display large

instabilities and breakdown. Although we do not expect the MINLO result to maintain

NLO accuracy in the Sudakov regions, we clearly see the advantage that when these

regions are approached, large Sudakov logarithms are exponentiated properly for a

large class of observables.

• Away from the Sudakov regions, the MINLO method performs similarly to regular

NLO computations using standard scale choices without Sudakov form factors.
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• In general, NLO results using popular prescriptions for the scale choice, like ĤT/2,

that tend to favour high scales, are in better agreement with the MINLO results. We

attribute this behaviour as being due to the fact that larger scales in general lead to

smaller cross sections, thus compensating for the lack of genuine Sudakov suppression.

The method we propose has the further advantage of great simplicity. All the formulae

needed to implement it are given in the present work, and their POWHEG BOX implementation

will soon be made publicly available.

The advantages of the MINLO method are strictly correlated with the advantages of the

corresponding CKKW procedure. Thus, in the context of POWHEG simulations including

parton showers, augmented with the MINLO procedure, we expect improved behaviour in

Sudakov regions where more than one invariant becomes small, regardless of the observable

under consideration. This parallels the fact that the CKKW method used in conjunction

with a parton shower generator yields an improved description of the Sudakov effects for

all observables. If the MINLO procedure is instead used in the context of a bare NLO

calculation, we expect an improvement for observables that depend upon the final state

pseudo-parton obtained using the kT clustering algorithm, at the stage where we have a

number of jets equal to the number n of light partons accompanying the primary process

at the Born level (e.g. n = 1 for H + 1 jet and Z + 1 jet, and n = 2 for H + 2 jets and

Z + 2 jets).

Distributions that do not satisfy the above requirements are not well described by

the MINLO procedure alone. However, we stress again that the MINLO procedure adopted

in conjunction with a NLO+PS method like POWHEG or MC@NLO should yield an improved

resummation of Sudakov logarithms for all observables.

We thus have been led in this study to conclude that finding an optimal scale in multi-

scale processes requires the inclusion of Sudakov form factors, whose subleading terms are

required to compensate scale mismatch between nearby vertices. This leads formally to

improved accuracy for a large class of distributions. In turn, the inclusion of the Sudakov

form factor acts correctly for all observables only if we match the NLO calculation to a

parton shower algorithm.

As a last point, we remark that many variations can be made on the method that we

have proposed, that do not affect neither the NLO accuracy, nor the logarithmic resum-

mation. One example is the scale chosen in the (N + 1)th power of αS in the virtual, real

and Sudakov subtraction term. The method that we propose is completely new, and in the

present work we simply present it with a definite choice among all possible options. We

will thus leave the exploration of all possible alternatives, and eventual refinements of our

prescription, to future work.
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A NLL improved Sudakov

We have used the following expression for the Sudakov exponent

log ∆i(Q0, Q) = −
ˆ Q

Q0

dq2

q2

[(
a(q2)A

(i)
1 + a2(q2)A

(i)
2

)
log

Q2

q2
+ a(q2)B

(i)
1

]
, (A.1)

where

A
(q)
1 = CF, B

(q)
1 = −3

2
CF, A

(g)
1 = CA, B

(g)
1 = −2πb0, (A.2)

A
(g/q)
2 = A

(g/q)
1

[(
67

18
− π2

6

)
CA −

5

9
nf

]
, (A.3)

and

2π a(q2) = αS(q2) =
1

b0 log(q2/Λ2
MS

)

[
1− b1

b20

log log(q2/Λ2
MS

)

log(q2/Λ2
MS

)

]
, (A.4)

with

b0 =
33− 2nf

12π
, b1 =

153− 19nf

24π2
. (A.5)

Equation (A.1) was integrated analytically and the result checked numerically. We have

always used nf = 5, and the five flavours expression of ΛMS.
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