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Abstract We study the Mullins effect for a circular cylinder of incompressible,
isotropic material under loading cycles of combined extension and torsion. The
analysis is based on the constitutive model recently proposed in De Tommasi et al.
(J. Rheol. 50: 495–512, 2006). This model assumes that the mechanical response at
each material point results as a homogenized effect of a mixture of different materials
with variable activation and breaking thresholds. We show the feasibility of this
approach to treat complex, inhomogeneous deformations. In particular, we obtain
for the generic loading path the analytical expressions of the stress field, of the
axial force, and of the twisting moment. The proposed model exhibits the Mullins
stress softening effect in the case of simple extension, simple torsion, and combined
extension and torsion. We analyze in detail the path dependent behavior and the
preconditioning effects.

Key words Mullins effect · rubberlike materials · softening · damage ·
preconditioning
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1 Introduction

Rubber-like materials subjected to cyclic loading exhibit a stress-softening behavior,
which is usually known as the Mullins effect. This material behavior was first analyzed
by Bouasse and Carrière [3] and then extensively studied by Mullins in a number
of papers [9, 10]. From the microscopic point of view, the stress-softening is due
to an alteration mechanism of the macromolecular network which is subjected to
a continuous scission and cross-linking process. This behavior is particularly relevant
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when filler particles are dispersed in the rubber, because there is a significant
interaction between the filler and the macromolecular network.

Due to its theoretical and technological interest, today there is a wide literature on
the Mullins effect including a number of phenomenological models (see [2] and [4]
for an extensive reference list). Many of the proposed models can be traced back to
the original approach of Mullins and Tobin [11] which considers a two phase material
with a hard phase that transforms into a soft phase when the strain increases. In this
vein, Wineman and Rajagopal [17] supposed that the material is a mixture of two
macromolecular networks with different reference configurations. Later, the authors
extended their model in order to consider a continuous transformation of the original
network into new networks with variable reference configurations [13]. Finally, in a
number of papers [12, 15, 16] the authors have systematically applied their model
to the analysis of special equilibrium problems. In these papers, the authors have
also shown the possibility of describing other phenomena associated to the described
Mullins effect, such as hysteresis, permanent strain, and healing.

A computationally efficient three-dimensional model has been recently proposed
by Beatty and Krishnaswamy [2]. In this work the stress-softening behavior is
modelled by considering an inelastic material with a memory of the ‘maximum’ past
strain. The efficiency of this model in describing rubber bodies undergoing special
deformations have been shown by the authors in a number of successive papers [1, 7].
More recently, within the theory of limiting chain extensibility, Horgan et al. [5] and
Horgan and Saccomandi [6] have proposed a mesoscopic model for the Mullins effect
that describes the macromolecular network alteration by assuming an evolution law
for the chains extensibility.

The analysis in the present paper is based on the model proposed in [4], where
the authors derived a micromechanics based model for the Mullins effect which
considers a mixture of two types of materials. The first one is elastic and allows a
non-zero strength for any deformation. The complementary fraction is breakable
and describes the network alteration. This fraction is assigned through a distribution
of materials with variable activation and breaking thresholds. In particular, the stress
is zero until the activation threshold is reached and also when the limit threshold is
overcome. In [4] the authors discussed the predictability of the model by showing
the effective possibility of determining the distribution function of the breakable
materials by means of suitable loading histories.

In this paper we consider the application of the described model to the case of a
circular cylinder subjected to an inhomogeneous deformation of combined torsion
and extension. In particular we assume that the material is incompressible and that
both elastic and breakable fractions have an energy function of the Neo–Hookean
type. In addition, for the breakable fraction we assume that the activation and
breaking thresholds depend on the first principal strain invariant. We remark that
the model is suitable for the description of the ideal Mullins effect, neglecting other
phenomena such as healing, recrosslinking, rate-dependence, and permanent strain
that will be the subject of future work.

In Section 2 we describe the constitutive assumptions at the basis of the model
for the rubberlike material. Then we apply this model to the combined deformation
of extension and torsion of a circular cylinder (Section 3). In particular, we obtain
explicit analytic expressions of the stress components, of the normal force, and of
the twisting moment as functions of the loading history. In Section 4 we analyze
the Mullins effect for the cases of simple extension, pure torsion, and combined
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extension and torsion. In particular, for each of these cases we consider loading
cycles with increasing amplitude and we show that our model exhibits an “idealized
Mullins effect” associated with increasing portions of broken material. As we show,
the model delivers a remarkable path-dependence due to the dependence on the
loading history of the mechanical response of the breakable fraction (i.e., along
different paths we have different reference configurations and different fractions of
activated and broken material). Finally, we describe both the preconditioning effects
of previous elongation cycles on the torsion behavior and of previous torsion cycles
on the simple extension loading.

2 Constitutive Assumptions

In this section we summarize our constitutive assumptions for the rubberlike
material. We refer the reader to [4] for a detailed description of the constitutive
properties of the model. As usual, let X be the reference configuration of a material
point which, as a consequence of a deformation f, occupies the position x = f(X).
Moreover we indicate with F = ∇f the deformation gradient and with B = FFT the
left Cauchy–Green strain tensor.

We suppose that at each material point X the mechanical response results as
a homogenized effect of different types of material. In particular we assume that
a fraction α of the material is elastic. Moreover, for the purpose of simplicity,
we consider an isotropic, incompressible, and hyperelastic Neo–Hookean material
whose energy density function We is defined as

We = μe

2
(I − 3),

so that the Cauchy stress Te is given by

Te = −pI + μeB, (2.1)

where I is the first invariant of B and p is an arbitrary pressure associated with the
incompressibility constraint.

To take care of the network scission effects induced by the deformation, we
suppose that the complementary fraction (1 − α) of the material is breakable.
Specifically, we suppose that this type of material is activated when the first invariant
I of B reaches an activation threshold Ia

I = Ia,

whereas the material breaks when

I = Ib

with Ib representing a breaking threshold, verifying Ib > Ia ≥ 3 (notice that, as a
consequence of incompressibility, I ≥ 3). More precisely, the breakable material is
activated when F = Fa such that the first invariant I of Ba := FaFT

a satisfies the con-
dition I = Ia. Moreover, we suppose that the elastic energy of the activated material
and its Cauchy stress depend on the relative deformation gradient̂F := FF−1

a , so that
the energy is a function of the first invariant ̂I of the relative left Cauchy–Green
strain ̂B :=̂F̂F T. (Here and in what follows we indicate with ( .̂ ) the strain measures
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evaluated with respect to the activation configuration Fa.) Analogously, the material
breaks when F = Fb such that the first invariant I of Bb := Fb FT

b satisfies I = Ib .
Summarizing the previous hypotheses, the energy density Wb of the breakable

material is assigned as

Wb =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 if I < Ia,
μb

2
(̂I − 3) if Ia ≤ I ≤ Ib ,

μb

2
(̂Ib − 3) if I > Ib ,

(2.2)

wherêIb is the invariant of̂Bb :=̂Fb̂FT
b (̂Fb := Fb F−1

a ). As a consequence of Eq. 2.2,
the Cauchy stress is given by

Tb =

⎧

⎪

⎨

⎪

⎩

0 if I < Ia,

μb ̂B if Ia ≤ I ≤ Ib ,

0 if I > Ib .

(2.3)

Once the breakable material reaches the breaking threshold, we assume that it
is unloaded for any successive loading. Observe that the damage is isotropic and it
depends only on the maximum value attained by I in the loading history.

As a main feature of our model, to take care phenomenologically of the proper-
ties of the polymeric network, made up of chains with different reference and limit
“length”, we suppose that the breakable fraction is composed of a distribution of
materials with different activation and breaking thresholds. For the purpose of sim-
plicity, in this paper we assume that for each breakable material the elastic domain
is fixed, i.e.,

Ib = Ia + �,

with � ≥ 0 a given material parameter (see [4] for a more general case). Under
previous hypothesis, the breakable fraction of the material is defined by a scalar
probability function f = f (Ia) with

f (Ia) = 0 for Ia < 3, f (Ia) ≥ 0 for Ia ≥ 3,

∫ ∞

3
f (Ia) dIa = 1.

Consider now a loading history F = F(t), t ∈ [0, T] at a material point, and the as-
sociated histories B = B(t) and I = I(t). We first analyze the behavior of the material
point, starting from the virgin configuration (characterized by no previous breaking
event) when it is subjected to a strain path with I(t) monotonically increasing. In this
case I(t) = IM(t) := maxτ∈(0,t) I(τ) for all t. In the following, we refer to this type of
path as a primary loading path.

Along a primary loading path (as the path O-A in Figure 1) we may evaluate for
the fraction (1 − α) of breakable material the percentage a of activated material and
the percentage b of broken material (see Figure 1b):

a(I) =
∫ I

I−�

f (Ia) dIa, b (I) =
∫ I−�

3
f (Ia) dIa.
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Figure 1 Evolution of the distribution of broken, active, and unloaded chains in the probability
space I ∈ (3,∞) for the loading path I = I(t) represented in (a). In (b) we show the distribution
corresponding to the primary loading path (I = IM), in (c) the distribution after unloading (I < IM).
Notice that for the loading paths with I < IM the fraction of broken chains is fixed and depends on
the maximum previous value IM, so that we obtain an elastic behavior (ideal Mullins effect).

Thus, according to Eqs. 2.1 and 2.3, based on an additivity hypothesis for the stress
(see [4] for details), the Cauchy stress T may be evaluated as

T = −p I + α μe B + (1 − α) μb

∫ I

I−�

f (Ia)̂B dIa. (2.4)

If we consider an unloading path, for which I(t) < IM(t), the activated fraction a
and the broken fraction b can be evaluated as follows (see Figure 1c)

a(I, IM) =
∫ I

IM−�

f (Ia) dIa, b (IM) =
∫ IM−�

3
f (Ia) dIa, (2.5)

Observe that along an unloading path no new chain is broken, and thus the behavior
is elastic. In this case the Cauchy stress is given by

T = −p I + α μe B + (1 − α) μb

∫ I

IM−�

f (Ia)̂B dIa, (2.6)

for I ≥ IM − �. For I < IM − � only the elastic fraction α is active.
Note also that

if IM < 3 + �, then b = 0; (2.7)

therefore � takes the role of an (overall) elastic threshold.
We remark that at the ‘unloaded state’ (I = 3) the memory of the system is re-

stricted to the maximum past value IM of I. Moreover, as a consequence of our
assumption of additivity of the stress, increasing the value of IM leads necessarily
to a Mullins type softening effect because it corresponds to a growing percentage b
of broken material.
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3 Extension and Torsion of a Circular Cylinder

In this section we study the Mullins effect for a circular cylinder B constituted by a
material of the type introduced in Section 2. The cylinder has reference length L and
outer radius Ro, and it is subjected to a combined effect of torsion and extension. We
suppose that the lateral surface is unloaded.

We consider a cylindrical coordinate system and we denote with (R,�, Z ) the
coordinates of a material point X in the reference cylindrical configuration and with
(r, θ, z) the coordinates of the corresponding point x in the current configuration.
(eR, e�, e3) and (er, eθ , e3) denote the reference and current cylindrical unit vector
bases, respectively.

Consider the isochoric deformation

r = R√
λ

, θ = � + γ Z , z = λZ ,

with λ ≥ 1 and γ > 0, and Z ∈ (0, L), � ∈ (0, 2π), R ∈ (0, Ro). The deformation
gradient F takes the form

F = 1√
λ

er ⊗ eR + 1√
λ

eθ ⊗ e� + λ e3 ⊗ e3 + rγ eθ ⊗ e3,

so that with respect to the current basis we have

B =

⎡

⎢

⎢

⎢

⎢

⎣

1

λ
0 0

0
1

λ
+ r2γ 2 r γ λ

0 r γ λ λ2

⎤

⎥

⎥

⎥

⎥

⎦

;

this yields

I = 2

λ
+ λ2 + r2γ 2. (3.1)

To describe the behavior of the breakable material characterized by the activation
threshold Ia, we need to evaluate the relative deformation gradient with respect to
the activation deformation

Fa = 1√
λa

era ⊗ eR + 1√
λa

eθa ⊗ e� + λa e3 ⊗ e3 + R√
λa

γa eθa ⊗ e3,

with I(λa, γa) = Ia and (ea
r , ea

θ , e3) the current reference frame at F = Fa. Thus we get

F−1
a = √

λa eR ⊗ era +√

λa e� ⊗ eθa + 1

λa
e3 ⊗ e3 − R

λa
γae� ⊗ e3,
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so that the relative deformation gradient is given by

̂F := FF−1
a = 1

√

λ̂
er ⊗ era + 1

√

λ̂
eθ ⊗ eθa + λ̂e3 ⊗ e3 + rγ̂ eθ ⊗ e3,

where we have used the following measure of the relative strain

λ̂ := λ

λa
, γ̂ := γ − γa

λa
,

satisfying λ̂ = 1 and γ̂ = 0, when F = Fa. Finally, the relative left Cauchy–Green
strain ̂B :=̂F̂F T with respect to the current basis is given by

̂B =

⎡

⎢

⎢

⎢

⎢

⎣

1

λ̂
0 0

0
1

λ̂
+ r2 γ̂ 2 r γ̂ λ̂

0 r γ̂ λ̂ λ̂2

⎤

⎥

⎥

⎥

⎥

⎦

.

Based on Eqs. 2.4 and 2.6 we may evaluate the Cauchy stress field, which must
satisfy the equilibrium equation div T = 0. In particular, the only non trivial scalar
equilibrium equation is

dTrr

dr
+ 1

r
(Trr − Tθθ ) = 0

(Tij are the components of the Cauchy stress T in the current basis). By imposing the
condition of unloaded lateral surface (Trr(ro) = 0) we get the expression

Trr(r) = −
∫ ro

r

[

α μe ρ γ 2 + (1 − α) μb ρ

∫ I(ρ)

I(ρ)−�

γ̂ 2 f (Ia) dIa

]

dρ,

where ro := Ro/
√

λ is the outer radius in the current configuration. By using Eq. 2.4
we obtain the pressure p at r, i.e.,

p(r) = αμe

(

1

λ
+ γ 2

2

(

r2
o − r2

))

+(1 − α)μb

(∫ I(r)

I(r)−�

f (Ia)

λ̂
dIa +

∫ ro

r

(

ρ

∫ I(ρ)

I(ρ)−�

γ̂ 2 f (Ia)dIa

)

dρ

)

. (3.2)



92 J Elasticity (2007) 86:85–99

Thus, for a primary loading path described by Eq. 2.4, we can deduce the non-zero
components of the Cauchy stress:

Trr(r) = αμe
γ 2

2

(

r2 − r2
o

)

− (1 − α)μb

∫ ro

r

(

ρ

∫ I(r)

I(r)−�

γ̂ 2 f (Ia) dIa

)

dρ,

Tθθ (r) = α μe
γ 2

2

(

3r2 − r2
o

)

+(1 − α) μb

[

r2
∫ I(r)

I(r)−�

γ̂ 2 f (Ia) dIa −
∫ ro

r

(

ρ

∫ I(ρ)

I(ρ)−�

γ̂ 2 f (Ia) dIa

)

dρ

]

,

T33(r) = α μe

(

λ2 − 1

λ
− γ 2

2

(

r2
o − r2

))

+(1 − α) μb

[∫ I(r)

I(r)−�

(

λ̂2 − 1

λ̂

)

f (Ia) dIa −
∫ ro

r

(

ρ

∫ I(ρ)

I(ρ)−�

γ̂ 2 f (Ia) dIa

)

dρ

]

,

T3θ (r) = Tθ3(r) = α μe r γ λ + (1 − α) μb r
∫ I(r)

I(r)−�

γ̂ λ̂ f (Ia) dIa. (3.3)

Finally, by using Eq. 3.3, we may evaluate the normal force N := 2π
∫ ro

0 rT33(r)dr
and the twisting moment M = 2π

∫ ro

0 r2 T3θ (r)dr acting on the bases of the cylinder:

N = α μe π r2
o

(

λ2 − 1

λ
− γ 2 r2

o

4

)

+ 2(1 − α)μb π

∫ ro

0

[

r
∫ I(r)

I(r)−�

(

λ̂2 − 1

λ̂

)

f (Ia) dIa

−
∫ ro

r

(

ρ

∫ I(ρ)

I(ρ)−�

γ̂ 2 f (Ia)dIa

)

dρ

]

dr,

M = α μe
π

2
γ λ r4

o + 2π(1 − α)μb

∫ ro

0

(

r3
∫ I(r)

I(r)−�

γ̂ λ̂ f (Ia) dIa

)

dr. (3.4)

We remark that by using Eq. 2.6 the extensions of the expressions (3.3) and (3.4)
to the case of unloading is simply obtained by replacing I − � by IM − �. Moreover,
the response of an elastic Neo–Hookean material can be obtained by putting α = 1
in Eqs. 3.3 and 3.4.
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4 Loading Cycles

In the following we describe, through some numerical examples, the Mullins type
softening behavior of the cylinder B for the class of deformations described in the
previous section. To this end, we assume a given deformation history

λ = λ(t), γ = γ (t), t ∈ (0, T),

so that, in view of Eq. 3.1, we have

I = I(R, t) = 2

λ(t)
+ λ2(t) + R2 γ 2(t)

λ(t)
. (4.1)

First observe that we have to consider Eq. 3.3 for those points of the body with
I = IM; otherwise the expression Eq. 3.3 with I − � substituted by IM − � must be
used. In addition, the loading condition İ > 0 depends on the point due to the R
dependence of I. However, if (λ − 1)λ̇ > 0 and γ γ̇ > 0, then İ > 0 for the whole
cylinder. On the contrary, if (λ − 1)λ̇ < 0 and γ γ̇ < 0, then İ < 0 at each point.

In order to determine the axial force and the twisting moment, we consider the
“instant” ta of activation of the breakable particles at r, defined by

I(R, ta) = Ia.

With this, Eq. 3.4 can be written in the form

N(t) = α μe πr2
0(t)

(

λ2(t) − 1

λ(t)
− γ 2(t)r2

o(t)
4

)

+2(1 − α) μb π

∫ ro(t)

0

[

r
∫ t

t̄(r)

(

λ2(t)
λ2(ta)

− λ(ta)
λ(t)

)

f (I(r, ta))
dI(r, ta)

dt
dta

−
∫ ro

r

(

ρ

∫ t

t̄(ρ)

(

γ (t) − γ (ta)
λ(ta)

)2

f (I(ρ, ta))
dI(ρ, ta)

dt
dta

)

dρ

]

dr, (4.2)

M(t) = αμe
π

2
γ (t)λ(t)r4

o(t)

+2π(1 − α)μb

∫ ro(t)

0

[

r3
∫ t

t̄(r)

(

γ (t) − γ (ta)
λ(ta)

λ(t)
λ(ta)

f (I(r, ta))
dI(r, ta)

dt

)

dta

]

dr,

where t̄(r) denotes the solution of the equation I(t̄(r), r) = I(t, r) − � at the points
with I(r, t) = IM(r), whereas it is the solution of I(t̄(r), r) = IM(r) − �, otherwise. The
solution t̄(r) denotes the “instant” at which the “most recently broken particle” has
been activated, so that the particles that have been activated at t < t̄(r) are broken.

It is worth noting that the stress field depends on the whole loading history since
the stress at each breakable particle depends on the values λ(ta) and γ (ta) attained at
the activation time ta.
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4.1 Simple Extension

First we consider the behavior of the cylinder B under a cyclic loading path of as-
signed stretch

λ = λ(t) > 1, γ = γ (t) = 0, t ∈ (0, T).

For all details we refer to [4], where the possibility of determining the probability
distribution f by means of simple extension tests is also described. Here, we simply
analyze the possibility of reproducing, through the proposed model, the Mullins
behavior for simple extension loading cycles.

To this scope we observe that in the present case I(t) = 2/λ(t) + λ2(t). In par-
ticular, since for t > 0 we assume λ(t) > 1, İ(t) > 0 when λ̇(t) > 0 and İ(t) < 0 when
λ̇(t) < 0. Moreover, IM = 2/λM + λ2

M where λM is the maximum past longitudinal stretch.
Observe that since t̄ does not depend on r, we get the following simplified expression
of Eq. 4.21:

N(t)
π R2

o
= α μe

(

λ(t) − 1

λ2(t)

)

+ (1 − α) μb

∫ t

t̄

(

λ(t)
λ2(ta)

− λ(ta)
λ2(t)

)

f (I(ta))
dI(ta)

dt
dta.

In Figure 2b we represent the normal force-stretch curve for a material defined by
a Gaussian distribution function f under cycles with increasing size (see Figure 2a).
Curve 1 describes the primary loading path obtained during a loading starting from
the virgin configuration with no previous breaking event. As the strain is increased
an increasing percentage of material is activated at each point. In the figure we mark
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Figure 2 Axial force-stretch cycles (γ (t) = 0). Here α = 0.1, μe = 1, μb = 15, and f = e−β(Ia−Io)
2

with β = 15, Io = 4.5 and α = 0.8. Finally, we assume � = 0.5 and Ro = 1. In (a) we show the
evolution of active and broken material fractions. In (b) we describe the corresponding force-stretch
relationship. In (b) the dashed line represents the response of only the elastic percentage.
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with a grey area the percentage of activated material and with the black area the
fraction of broken material in the probability space f = f (Ia). The behavior is elastic
until I(t) = 3 + �, with the fraction of broken material b = 0. When I(t) ≥ 3 + �, a
part of the activated material breaks.

We remark that in our model the (rubberlike) hardening effect is due to the
increasing rate of growth of the activated fraction. Indeed, this effect is absent for the
Neo–Hookean material as it is shown by the dashed line in Figure 2b that represents
the behavior of only the elastic fraction.

If the stress is decreased (e.g., path 2) the body exhibits the claimed softening
effect: the normal force associated with each value of the stretch λ decreases with the
value of the previous maximum stretch λM. Observe that the body follows the same
path (for λ(t) < λM) both for decreasing and increasing stretch (without hysteresis),
describing the so called “ideal Mullins effect”. We remark that during reloading the
only active material is the percentage α of elastic material, until I(t) = IM − � when
a fraction of the breakable material is activated again. Thus, for I(t) < IM − � all the
curves coincide with the (dashed) curve describing the behavior of the sole elastic
percentage.

4.2 Pure Torsion

In this section we consider the case of pure torsion: γ = γ (t) and λ(t) = 1. The Mullins
effect for a circular cylinder subjected to pure torsion loading cycles has been also
analyzed in [14]. In the present case, using Eq. 4.1, we have I(t) = 3 + R2γ 2(t) so
that for γ γ̇ > 0 it is İ > 0. Moreover, since I is a growing function of R the damage
grows with R, so that if γM denotes the previous maximum value of the twist γ , by
using Eq. 2.7 we have that

Re :=
√

�

γM

gives the radius of the elastic core of the cylinder (i.e., b = 0 for R ≤ Re).
In the case of pure torsion, since r = R, Eq. 4.2 reduce to

N(t) = −α μe π
R4

o

4
γ 2(t)

−2(1−α)μb

∫ Ro

0

[

R
∫ Ro

R

(

ρ

∫ t

t̄(ρ)

(γ (t)−γ (ta))2 f (I(ρ, ta))
dI(ρ, ta)

dt
dta

)

dρ

]

dR,

M(t) = αμe
π

2
γ (t)R4

o (4.3)

+2π(1 − α)μb

∫ Ro

0

[

R3
∫ t

t̄(R)

(

(γ (t) − γ (ta))p(I(R, ta))
dI(R, ta)

dt

)

dta

]

dR.

In Figure 3 we represent the numerical results under cyclic loads with increasing
amplitude. Notice that, as a consequence of the Poynting effect, the deformation
is maintained both by a moment M and an axial force N. In particular, to have λ

constant, a compressive axial force is required. In this figure, we show for comparison
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Figure 3 Pure torsion cycles (λ(t) = 1) for the same material considered in Figure 2. In (a) we
represent the twisting moment and the axial force as a function of γ for the path represented in
(b). In (a) the dashed lines represents the behavior of only the elastic fraction. In (c) we describe the
evolution of the damage in a gray scale. In this figure the elastic core is bounded by a dashed line.

the response of only the elastic fraction α (dashed line). Observe that, as in the case
of uniaxial extension, the rubberlike hardening is induced by the growing fraction of
active material. Finally, in Figure 3c we represent the evolution of the damage b at
different points of the loading history. Here the elastic core is bounded by a dashed
line. Of course, as the value γM grows, the elastic core radius decreases.

4.3 Combined Extension and Torsion

In this section we consider the more general case of combined extension and torsion.
The Mullins effect for the contemporary extension, torsion, and inflation of a tube
has been analyzed in [8].

We first consider the behavior of the body under cyclic experiments with a pro-
portional variation of λ and γ

γ (t)
λ(t) − 1

= const.

The corresponding response curves N − λ and M − γ , represented in Figure 4, show
again the Mullins type softening behavior and the hardening effect associated with
the increasing percentage of activated material. In the figure we also show the evolu-
tion of the damage b . Notice that, using Eqs. 4.1 and 2.7 we can evaluate the ‘instant’
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Figure 4 Proportional cycles with λ(t) = 1 + t and γ (t) = 2.5 t, for the same material considered in
Figure 2. In (a) we represent the the axial force, in (b) the twisting moment, and in (c) the evolution
of the damage b in a gray scale. As in the previous figures, in (a) and (b) we also represent by dashed
lines the response of the elastic fraction. In (c) the elastic core is bounded by a dashed line.

at which the elastic core disappears and the whole cylinder is damaged as the solution
of I(0, t) = 3 + �.

In Figure 5 we represent the remarkable path dependence of the cylinder. In par-
ticular, we consider three loading paths leading to the same deformed configuration
(λM, γM), so that we have the same final value of the damage b at each point of the
cylinder. Interestingly, we obtain different curves with a sensitive path dependence.
We observe that the different values of N and M at γ = γM and λ = λM are a result
of different stress fields. Indeed, as a consequence of the difference of the defor-
mation histories, the particles are characterized by different activation deformation
gradients Fa (see Section 2) in the three loading histories.

First, let us compare the N − λ curves associated with the three paths (Figure 5b).
In the path O − A1 − A2, when first only the twist γ increases (O-A1) we observe
a compressive normal force due to the Poynting effect; later when the stretch is
increased (A1-A2), this path is characterized by the largest stiffness due to the largest
value of activated material fraction. The other two paths have a less pronounced
difference produced by the simultaneous presence of Poynting effect and variable
damage and activation.
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Figure 5 Path dependent behavior for the same material studied in Figure 2. In (a) we represent
the three different loading paths and in (b) and (c) the corresponding different force-elongation and
moment-twist diagrams.
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Figure 6 Preconditioning
effects for the same material of
Figure 2. In the figure we
represent the effect in the
M − γ and N − γ diagrams
due to previous cycles
λ = 1 → λM → 1 for different
values of λM (curve 0 is the
virgin curve, curve 1
corresponds to λM = 1.5, curve
2 to λM = 1.6, and curve 3 to
λM = 1.7).
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Similar considerations can be extended to the twisting moment curves in
Figure 5c. Here the stiffest behavior is given by the path O-B1-B2 characterized by a
previous pure extension.

Finally, in Figures 6 and 7 we show the preconditioning effects exhibited by our
model. In particular, in Figure 6 we consider the effect of previous loading cycles of
simple extension with growing sizes on the pure torsion deformation. Whereas the
case of pure extension preconditioned by previous torsion cycles with different am-
plitude is represented in Figure 7. Notice that in Figure 6 the preconditioned curves
don’t reconnect at “large” γ to the virgin curve. This behavior must be addressed
to the observation that while the virgin curve is characterized by the presence of
an elastic core with no damage, the other curves start from a homogeneous damage
configuration, due to the preconditioning of the normal force, with no elastic core. On
the contrary, in the case of preconditioning by means of torsion cycles (see Figure 7),
we have that for ‘large’ values of λ the damage of the preconditioned and virgin
curves coincide so that the curves reconnect.

Figure 7 Preconditioning
effects for the same material of
Figure 2. In the figure we show
the softening effect in the
N − λ curves due to previous
cycles of torsion
γ = 1 → γM → 1 for different
values of γM. Curve 0 is the
virgin curve, curve 1
corresponds to γM = 0.5, curve
2 to γM = 0.6, and curve 3 to
γM = 0.7.
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