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Because of the sensitivity of the Kalman framework to gross errors, proper techniques for detection of gross errors are necessary. 
By integrating the selection of quasi-accurate observations and the Kalman framework, a new filter called the quasi-accurate filter 
(QUAF) is developed. The expansibility and implementation scheme of the new algorithm are then discussed in detail, and the 
reliability matrix for the Kalman filter is proposed to analyze the reliability of the filters with different detection technologies. 
Finally, the experimental results from a real world case study are used to validate the conclusions. The QUAF carries out the pre-
liminary selection of the quasi-accurate observations (QAOs) using the innovation of the Kalman filter, and use the check QAOs 
to determine reasonable observations. This causes the QUAF to handle more easily and possess wider expansibility. QUAF can be 
reformulated to the special cases of several common detection methods, such as the innovation method, robust estimation and 
quasi-accurate detection (QUAD). Since only reasonable observations are used, the QUAF has better detection accuracy and 
stronger avoidance of gross errors than the innovation method and robust estimation. Meanwhile, compared with QUAD methods, 
QUAF introduces the state-predicted model, requiring fewer quasi-accurate observations and making it more suitable for systems 
with complicated observation structures or sparse observations. 

gross error, quasi-accurate detection, Kalman filter, reliability 

 

Citation:  Liu Y, Yu A X, Zhu J B, et al. Real-time filter based on the quasi-accurate detection of gross errors. Chin Sci Bull, 2012, 57: 20292035, doi: 10.1007/ 
s11434-012-5092-4 

 

 
 
There are many definitions for gross error in the literature. 
A universal viewpoint is that gross errors mean those ele-
ments that comprise a small portion of the whole data set 
and are separated from most of the other elements [1,2]. In 
surveying, gross errors are often called outliers. At present, 
most real-time filter systems are based on the Kalman 
framework [3], such as the extended Kalman filter (EKF), 
the unscented filter (UKF) and so on [4–6]. Therefore, ob-
servations containing gross errors may severely distort the 
filtered result, or even induce a divergence. That is to say, 
the mechanism for detecting gross errors must be involved 
in the actual real-time filter [7]. 

In most research, the detection of gross errors is often 
formulated as a hypothesis testing problem based on a de-
tection statistic constructed from the residual errors or the 

innovations of the filter. The committed steps are the selec-
tions of detection criteria and the detection thresholds. 
Meanwhile, an evaluation of the detection methods should 
not be ignored. 

The detection criteria are obtained by a predictive meth-
od. According to the type of information used, the two of 
methods used here are single channel detection and mul-
ti-channel detection. For the single channel detection meth-
od, the detection statistic is constructed directly from the 
predicted observations [2] or from some characteristics of 
the predicted observations [8,9], which are calculated using 
temporal correlation of the observations in the same channel. 
This method requires less calculation and communication, 
but a drawback is that it does not work when gross errors 
are present [7]. For the multi-channel detection method, the 
detection statistic is constructed from the filtered results and 
is calculated using more than one observed channels [7]. 
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Because more information is used, this method is often su-
perior to the single channel method. If the predicted state is 
chosen, the detection statistic is constructed only from the 
filter innovations [10]. Otherwise, if the filter state is chosen, 
the detection statistic is constructed from the residual errors 
[11]. Obviously, the current observations are used in the 
latter method. However, this does not mean more precise 
detection since the current observations are introduced 
without considering their quality. Therefore, when the ob-
served geometry is very complex, potential “leverage ob-
servations” may induce migration or submergence of gross 
errors [1]. 

The detection thresholds are obtained from the confi-
dence interval for the detection statistic. Therefore, it is im-
portant to find a detection statistic with good statistical 
characteristics [12]. This can be achieved by choosing a 
proper density function to depict the predicted observations, 
the innovations or the residual errors. To deal with the limi-
tations of the binary editing criteria in the original detection 
methods, Huber [13] proposed the M-estimator. Many ro-
bust filters were also developed, such as the integrated ro-
bust filter introduced by Yang et al. [14] for precise orbit 
determination. Its main drawback is that there is no univer-
sal method for constructing the robust function. Ting et al. 
[15] proposed using the gamma distribution to construct the 
fusion coefficients and introduced the Expectation-   
Maximization algorithm to adaptively update the coeffi-
cients online. However, the implementation of the algorithm 
is too complex. 

To reduce the effect of “leverage observation”, Ou [16] 
developed a new algorithm called quasi-accurate detection 
(QUAD). The algorithm considers gross errors to be distin-
guishable from the estimators of real errors, and resolves the 
estimators by adding conditions for minimizing the norm of 
the real errors related to quasi-accurate observations 
(QAOs). The algorithm is more reliable and prevents migra-
tion and submergence of gross errors better than the hy-
pothesis method and some robust schemes, especially in 
those instances where the observations are severely polluted. 
[17] Originally, the QUAD method was established as a 
batch processing scheme and the preliminary selection of 
QAOs was tightly related to prior observed qualities. Later, 
ref. [18] extended QUAD to the Kalman framework. This 
algorithm is restricted to the pre-treatment step and uses the 
same preliminary selection method as the original QUAD, 
although there is still a potential migration of gross errors 
when there is not enough prior information. 

Reliability is one of the elemental performance indices of 
real-time filters. Taking the Kalman filter as an adjustment 
model, we can introduce reliability theory from the perspec-
tive of surveying adjustment, where reliability is defined as 
the ability of the system to detect errors in the model (gross 
errors, systematic errors, and so on) and the harmful effect 
caused by gross errors that have not been detected [1]. 
Therefore, we can construct a detection criterion for gross 

errors from the lower bound on model errors that can be 
detected under a given reliability. The matrix of adjustment 
factors is used to display the reliability index in traditional 
adjustment theory [1,19]. Unfortunately, the reliability 
analysis method cannot be extended to the Kalman filter, 
where reliability depends on both the observed error and the 
state predicted error. 

This paper focuses on the detection of gross errors in a 
real-time filter. First, by introducing the predicted state to 
preliminary selection, the QUAD technique is merged into 
the Kalman framework. This produces a more reliable filter, 
which we call the quasi-accurate filter (QUAF). Second, the 
reliability matrix for the Kalman filter is established refer-
ring to reliability theory in the adjustment system. Using the 
reliability matrix, the filter performance of QUAF is com-
pared with the other three detection algorithms. Finally, two 
representative examples in trajectory target tracking are 
given to support our findings. 

1  A brief introduction to the quasi-accurate 
detection method 

Consider the following observed system: 
  Hx y  , (1) 

where x  is an m-dimensional state vector, y  is the n- 

dimensional observed vector, H  is the observed matrix 
and   is the real errors related to observations. If we let 
the coefficient matrix of observations be P , then the ad-
justment factor (reliability matrix) [1] can be calculated as 

T T( ) R I H H PH H P . It can be easily obtained that 

 RΔ Ry . In QUAD, gross errors are detected according 

to the estimator of  . Suppose that an r -dimensional qua-
si-accurate observed vector ry  is selected ( )r n . Since 

R  is rank deficient, the rank-deficiency equation for real 
errors is resolved by adding the condition that the minimum 
norm of the real errors related to the QAOs is restrained. 
That is,   is solved by the following equations: 

 
1

,

.

 
  r r r

RΔ Ry

G Δ 0
 (2) 

The gross errors can then be stepwise detected from   
according to the “hive-off” phenomenon [16–19]. 

2  Real-time filter based on quasi-accurate  
detection 

2.1  Algorithm expression 

In this section, we merge QUAD into the Kalman frame-
work by carrying out preliminary selection according to the 
state prediction ability of the filter. This proves to be very 
effective at improving the reliability of the filter. At time 
step 1k , consider the discrete time system of the form:  
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 (3) 

where the noise vectors kw and 1kn have a mean of zero, and 

satisfy T
,( ) ,k k k kE ww w P  T

,( ) k k kE nn n P  and T( )k kE w n 0 . 

Taking eq. (3) as an adjustment system, we have 1 k  

1kn  as the real errors. Let ˆ
kx  denote the estimated state 

with covariance ,kxP  that is obtained at time step k . The 

Kalman filter uses a forecast-calibration mechanism to ob-
tain a state estimation recursively. This is equivalent to 
solving the following optimization problem [14,20]:  

 
1

T T
1 1| , 1 1| 1| , 1|

ˆ min{ }


         
k

k k k k k k k k k k kx nx
x x P x y P y , (4) 

where 1| 1| 1 1
ˆ      

k k k k k k k kx x x A x x  is the predicted 

state error and 1| 1 1 1 1 1
ˆ ˆ        

k k k k k k ky y y H x y  is the 

residual error respectively, and , 1kxP  is the estimated var-

iances of 1|k kx . 

We calculate the innovation 1 1 1 1|   k k k k kv = y H x  and 

select , 1r ky  as the preliminary QAOs. Without loss gen-

erality, suppose that , 1 , 1 , 1 , 1 , 1[ , ; , ]    k s k sr k rs k r knP P P P P , 

1 , 1 , 1[ ; ]  k s k r ky y y , 1 , 1 , 1[ ; ]  k s k r kH H H , and by re-

shaping the other component of y  to , 1s ky . Furthermore, 

let 1r,kG  be the coefficient matrix of , 1r ky , and 

1 , 1[ , ]  k m s r kG 0 G . Then the filter is equivalent to solving 

the following equations:  
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Let T T T
1 1 1[ , ]  k k kX x Δ , T 1

, 1 , 1 1( )  k r k r,kQP G G , 1 
kH  

1[ , ] k nH I , 1/2 1/2 1/2
1 , 1 , 1 , 1 1[ , ; , ; , ]  
     k k k k kx n nB P 0 P H P 0 G , 1 kC  

1/2 1/2
, 1| , 1 1[ ; ; ] 

  k k k k k nx nP x P y 0 , and nI  be the n -dimensional 

identity matrix. Then, according to adjustment theory [1], 
the state can be calculated as 
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To simplify eq. (6), we refer to the solving technique for 
compound co-linearity in [21]. Denoting 0   as a small 

constant and 1 1
, 1[ , ; , ] 

  k s s r r s kQM I 0 0 P , we have the fol-

lowing approximate formulas:  
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Letting T
1 1 1 1 , 1      k k ,k k k kx nL H P H P M  and apply-

ing the theorem of matrix inversion [22], eq. (7) can be 
rewritten as 
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Furthermore, let T
1 , 1 1 , 1 , 1 , 1       k r k ,k r k r k kx QD H P H P P  and 

take 1kL  as the block form 11 12 21 22
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Then, noting that 1 
s s sI 0  and applying the theorem 

of matrix inversion [22], we have 1 1
1 1[ ; , ] 
   k s n r s kL 0 0 D  

and 1 T 1 1
1 , 1 1 , 1 1 , 1 1[ , ; , ].  
       k k s s k ,k r k k r s k kx QM L I H P H D 0 P D  

Therefore, the filter state and real errors can be calculated as 
follows:  
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   k r k r k r k kQ P y H x

 (9) 

If the appropriate preliminary selection is done, then the 
real error will exhibit a “hive off” phenomenon. That is, the 
real errors related to the observations that are polluted by 
gross errors will be distinctly larger than the others, allow-
ing us to obtain the check QAOs. After this, the state vector 
can be calculated by the standard Kalman framework. Fi-
nally, we finish the calculations for time step 1k  by re-
peating the QAOs selection and filter step alternately until 
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the convergence condition is satisfied. For the sake of brev-
ity, we call this algorithm the quasi-accurate filter (QUAF) 
in this paper. The implementation of the QUAF will be 
given in detail in Section 2.3. 

2.2  Several instructions 

(1) Accuracy of the filter.  In the derivation above, eqs. (7) 
and (9) both use the approximation 1 

s s sI 0  and are 

contravariant processes. Therefore, the estimated error 
caused by the approximation is compensated to some extent. 
The accuracy of the algorithm relies on the accuracy of the 
state model. An accurate predicted state not only improves 
the rationality of the preliminary selection and the estima-
tion accuracy of the real error, but also improves the ob-
servability of the filter, which usually has a high breakdown 
point. Otherwise, more preliminary QAOs are needed to 
reduce the number of false-alarms by the detection. 

(2) Extension to nonlinear systems.  The problem with 
applying the Kalman filter to a nonlinear system is the abil-
ity to predict the mean and covariance of the quantities to be 
estimated. Therefore, letting 1 1 , 1   

rk ,k ky QD P P  and 

referring to the equations for estimating the covariance and 
gain matrix in the filter, eq. (9) can be rewritten as:  

 

1
1 1| 1 1 , 1 , 1

, 1 , 1 , 1

1
, 1 , 1 , 1 , 1 , 1 , 1

ˆ ( ),

ˆ ˆ ,

ˆ ˆ( ) ( ).


     

  


     

   
  


  

rk k k ,k k r k r k

s k s k s k

r k k k r k r k r k

xy

Q Q

x x P D y y

y y

P P P y y





 (10) 

where 1 , 1 , 1
ˆ ˆ ˆ[ ; ]  k s k r ky y y  is calculated from 1

ˆ kx , and 

1 1 1 1 1[ , ; , ]    
s s r r s r,k ,k ,k ,k ,ky y y y y y yP P P P P , 1 1 1[ , ]  

s r,k ,k ,kxy xy xyP P P  

are the corresponding predicted covariance. The advantage 
of eq. (10) is that most nonlinear filter algorithms can be 
easily applied to it. 

(3) Differences between the algorithm and the standard 
Kalman filter.  On the one hand, the filter gain in eqs. (9) 
and (10) ( 1

1 1 1


  
rk ,k kxyK P D ) are smaller than that in the 

standard Kalman filter ( 1
1 1 1


  

r rk ,k ,kxy yK P P ). On the other 

hand, , 1
ˆ

s kΔ  is bigger than the residual calculated 

from 1
ˆ kx , while , 1

ˆ
r k  is smaller than the corresponding 

residual , 1 , 1
ˆ r k r ky y . 

(4) Reliability of the algorithm.  There are two potential 
reasons that the QUAF improves the filter reliability. The 
first is that the QUAF uses some of the observations ( , 1r ky ) 

to estimate the state x , and the observations , 1s ky  only 

affect some of the real errors ( , 1s k ) here. Therefore, the 

QUAF can reduce the effect of “leverage observations” and 
can detect more than one gross error simultaneously. The 
other reason is that the introduction of the dynamic model 
can improve the detection ability of the QUAF. Less than 

m  (the state dimension) observations are needed to solve 
for the real error here. Therefore, the QUAF has a high 
breakdown point. 

(5) Adaptability of the algorithms.  Several commonly 
used detection algorithms can be considered to be special 
cases of the QUAF. If no iteration steps are involved, then 
the QUAF is equivalent to the innovation algorithm. If all 
the observations are taken as QAOs and an appropriate ro-
bust coefficient function is used to select the check QAOs, 
then the QUAF becomes the robust estimation algorithm. If 
a state model is not used, i.e. the first equation of X(5)X is 
not introduced into the detection step, then the QUAF is 
similar to the original QUAD algorithm. 

2.3  Implementation scheme 

The key in the QUAF is the selection of the QAOs, which 
includes the preliminary selection and the check selection. 
This can be done according to the innovation, the residual 
and the real error. In the QUAF, the minimum number of 
QAOs 0r  is determined according to the observability at 

the current sample step. Then, the QUAF is implemented as 
follows. 

Step 1: Carry out the preliminary selection according to 
the innovation. Let 1

i
kv  be the i-th element of the innova-

tion, and id  be the square root of the element in the i-th 

row and i-th column of the predicted covariance 1r ,kyP . 

Calculate and rank the normalized innovations 

1 1 | / 
i i i

k kv v d=|  in numerical order. Then, the smallest r  

elements are chosen as the preliminary selections. 
Step 2: Carry out the check selection according to a “hive 

off” of the real error. Let il  be the square root of the ele-
ment in the i-th row and i-th column of the observed covar-

iance 1r ,kyP . Taking 1ˆ ˆ1.483 { |, , |}  nC med | |  , calcu-

late and rank the detected index ˆ / [ ] i i
iW Cl  in numeri-

cal order. Denote the ranked serials as jW , where 1, , j n . 

Let 1d  j j jW W W , and select the “hive off” point 0j . The 

selection strategy ensures that there is a large difference in 
d jW  both above and below the “hive off” point. Then, take 

the elements below the “hive off” point ( 0{ , 1, , } jW j j ) 

as the check QAOs. 
Step 3: Repeat the filter. Recalculate the state and the re-

al error of the filter using the check QAOs. If there is an 
obvious change in the “hive off” (the position of 0j  or the 

elements in the check QAOs 0{ , 1, , } jW j j ), return to 

Step 2 and do the check selection again. Otherwise, contin-
ue to Step 4. 

Step 4: Calculate the estimated state. First, referring to 
the robust filter [14], construct the equivalent coefficient 
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function. Then calculate the estimated state by carrying out 
the filter using the check QAOs. Finally, if the state covari-
ance has no obvious change or the maximum number of 
iterations is reached, the calculation at the current time step 
is finished. Otherwise, increase the iteration number by 1 
and set 1 r r . 

Step 5: If 0r r , finish the calculation at the current step 

time. Otherwise, return to Step 1. 
The main differences between the QUAF and the original 

QUAD are as follows. (1) The innovation is used for the 
preliminary selection in the QUAF. This can be viewed as 
prior information about the state model and obviously sim-
plifies the preliminary selection. Meanwhile, the depend-
ence on the prior quality of the instrument or the least 
square residual is overcome by QUAD. (2) The check se-
lection process is simplified without obvious effect on the 
filter result, which is verified by examination. (3) The ro-
bust filter technique is used to avoid the limitations of the 
binary editing criteria in the original methods. 

One point that should be noted is the filter divergence 
problem. If the condition 0r r  is satisfied for a long time, 

the filter performance will depend greatly on the predictive 
ability of the state model. This may incur the potential risk 
of filter divergence. Therefore, the technique for judging 
and treating divergence should also be considered. For the 
sake of brevity, we will discuss this problem in a separate 
paper. 

3  Reliability analysis 

In this section, the reliability analysis method from adjust-
ment theory is extended to the Kalman filter. We use this to 
compare several commonly used algorithms for the detec-
tion of gross errors. 

In system(3), the residual after filter implementation is 

1 1 1 1| 1 1

1 1 1|

1 1
, 1 , 1 , 1 , 1 , 1 , 1 , 1[ ; ],

     

  

 
      

  

 

 




r s r r

k k k k k k k

k k k k

s k k k r k r k k r ky y y y

V R H x R

R H x

P P P P



  

 

(11)

 

In eq.(11), the first term is determined by the state pre-
dicted error and the second term depends on the real error. 
Since these two terms have the same coefficient matrix, we 
define 1 1 , 1    k n n k r kR I H K  to be the reliability matrix 

of the Kalman filter. The matrix can be rewritten as 

 
1

, 1 , 1

1 1
, 1 , 1


 

 
  

 
  
  

r s r

r

s k k

k

r s r k k

y y y

y

I P P
R

0 P P
. (12) 

We refer to this reliability matrix while discussing the re-
liability of several other detection algorithms. 

(1) Innovation algorithm.  When using the innovation 
algorithm to detect gross errors in the filter, we have 0r , 

1 k nR I , and  

 1 1 1| 1     
k k k k kV H x Δ . (13) 

As we can see, the residual is related to both the state 
predicted error and the real error. The state predicted error 
acts on all the observed channels according to the observed 
geometry, while the real error only acts on the observed 
channels where it exists. Therefore, the reliability of the 
innovation algorithm is determined by the predicted state. 
That is to say, if the state predicted error (3) is small and has 
a uniform effect on all the observations, we can obtain high 
reliability by reducing the effect of “leverage observations” 
in the innovation algorithm. Otherwise, we may produce 
incorrect detection results. 

(2) Robust filter.  In the robust filter, we have r n ， 
1

1 , 1 , 1


  k k kn yR P P , and 

 1 1 1 1| 1 1       
k k k k k k kV R H x R Δ . (14) 

Obviously, both the state predicted error and the real er-
ror can act on the residuals according to the observed ge-
ometry. On the one hand, the introduction of observed in-
formation into the detection process can decrease the effect 
of the state model. On the other hand, polluted observations 
may go against all residuals and result in the migration or 
submergence of gross errors when there are “leverage ob-
servations”, especially in systems with complex observed 
geometry. Therefore, the reliability of the algorithm de-
pends on the design of the robust coefficient function. Un-
fortunately, there is no universal robust algorithm for this 
yet. 

(3) QUAD algorithm.  In the original QUAD algorithm, 
the number of QAOs satisfies r n  and the residual can be 
calculated by 

 1 1 1

1 1
, 1 , 1 , 1 , 1 , 1 , 1 , 1[ ; ].

  

 
      

 

 
r s r r

k k k

s k k k r k r k k r ky y y y

V R Δ

Δ P P P P Δ
 

(15)
 

That is, the residuals are determined by the real error on-
ly. Since the algorithm does not need the state model and 
performs the preliminary selection according to the prior 
quality of the instrument or the least square residual [16–19], 
there may be an incorrect selection when no enough prior 
information is used in the practical system. 

(4) QUAF algorithm.  In the QUAF, the number of 
QAOs satisfies r n and the residual can be calculated as 

1 1 1 1| 1 1

1 1 1|

1 1
, 1 , 1 , 1 , 1 , 1 , 1 , 1[ ; ].

     

  

 
      

  

 

 




r s r r

k k k k k k k

k k k k

s k k k r k r k k r ky y y y

V R H x R

R H x

P P P P



  

 

(16)

 

As with the robust filter, both the state predicted error 
and the real error act on the residual according to the ob-
served geometry. The difference is that a gross error only 
affects residual in the same observed channel. Besides, by 
acting on the both the preliminary selection and the calcula-
tion of the residual, the improvement in the state prediction 
accuracy implies a potentially large improvement in the 
reliability of the QUAF. 
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Information usages of the different algorithms for the 
detection of gross errors are shown in Figure 1, which 
clearly shows that the QUAF and the robust filter require 
more prior information than the other algorithms. Particu-
larly in the QUAF, the observations are carefully selected 
before being introduced into the detection process. There-
fore, the QUAF may have the highest reliability because of 
the highest usage of prior information. Besides, both QUAD 
and QUAF use different techniques to select the QAOs (the 
former uses the quality of the instrument and the latter uses 
the state model). Therefore, integrating the two algorithms 
may be a good approach to improve the reliability of the 
real-time filter. 

4  Example applications 

In this section, we consider an example of a multi-velocity- 
measuring trajectory tracking system to validate the algo-
rithm. The simplified UKF algorithm [4–6] and dynamic 
model [23] are chosen for the filter. The coefficients of the 
robust filter and the QUAF are constructed according to 
Yang et al. [14]. The QUAD implementation is similar to 
that in Chai and Ou [18]. The differences are that it uses 
prior quality information for the instrument in preliminary 
selection and includes the check QAOs selection step de-
scribed in Section 2.3. We take the trajectory calculated by 
the post-processing method [2] as the reference trajectory. 
Then, each time step with a big residual can be viewed as a 
time when a gross error occurs. 

The detection results for two typical observations are 
shown in Table 1. Because QUAD takes the same prelimi-
nary selection as the QUAF, the detection result for QUAD 
is not given in the table. A summary of the results is as fol-
lows: (1) There are no gross errors in observation I. All al-

gorithms obtained the correct results except the robust filter. 
From the maneuvering character analysis, we discover that 
the target has a stationary trajectory during the period 
700–2000, which means that the predicted state used in the 
innovation algorithm and the QUAF has a quite high accu-
racy. Meanwhile, the robust filter used here is done without 
parameter optimization. Therefore, the robust filter has a 
higher false alarm probability and is less reliable than the 
innovation algorithm and the QUAF. (2) There are several 
places where a gross error occurs in observation II. All al-
gorithms obtained detection results with different false 
alarm rates. Because the target has a high maneuvering 
character during the period 2100–2200, the innovation algo-
rithm has the highest rate of false alarms. While benefiting 
from the adaptive adjustment by the QAOs that restricts the 
influence of the predicted state, the QUAF effectively re-
duces the migration of gross errors and yields the lowest 
false alarm rate. 

Second, the number of the filter errors beyond the toler-
ance error is taken as the criterion for a credible perfor-
mance evaluation. Let M  be the tolerance error and 0t  

be the convergence time of the filter. Then the criterion is 
calculated as 

0
[ ( ) ]


  

k
kt t

q t Mx , where the function 

( ) x  is defined as ( ) ( 0)  x x . As shown in Table 2, 

the order in terms of filter reliability is QUAF followed by 
the robust filter and lastly the innovation algorithm. Be-
cause QUAD uses the same preliminary selection as the 
QUAF, the detection results for QUAD are not given in the 
table. This is entirely consistent with the reliability analysis 
in Section 3. 

Finally, we reduce the number of instruments artificially 
and compare the reliability of QUAD and QUAF with the 
observations, assuming that no prior quality of the instru-
ments is known. Therefore, the residuals of the least 

 

 

Figure 1  Information usages of different algorithms for the detection of gross errors. 

Table 1  Detection results for two typical observations 

Position of the gross error Observation I Observation II 

Innovation algorithm None 
2179, 2180, 2181, 2182, 2183, 2184, 2185, 2186, 2187, 2188, 2189, 2190, 2191, 
2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 

2205, 2206, 2207, 2208 

Robust filter 793, 884, 1486, 1589 
2176, 2177, 2178, 2179, 2180, 2181, 2182, 2183, 2184, 2185, 2186, 2187, 2188, 

2189, 2214 
QUAF None 2180, 2181, 2182, 2183, 2184, 2185, 2186, 2188 

True position None 2181, 2182, 2183, 2184, 2185, 2186 
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Table 2  Number of samples where the filter error is beyond the threshold 

 Position (x) Position (y) Position (z) Velocity (x) Velocity (y) Velocity (z) 

Innovation algorithm 0 0 0 73 155 49 

Robust filter 0 0 0 58 144 37 

QUAF 0 0 0 60 126 16 

 
 

square are used for preliminary selection in QUAD. From 
the calculation results, we conclude that the phenomenon of 
migration of gross errors occurs in QUAD when the number 
of instruments is no more than seven. Moreover, QUAD 
cannot be implemented when fewer than six instruments are 
used. However, the QUAF can produce nice detection re-
sults even if there is no more than six instruments could be 
used (Referring to the multi-velocity-measuring trajectory 
tracking example, we need no fewer than six velocity 
measurements to resolve the trajectory when temporal cor-
relation of the trajectory is not used [24]). 

5  Conclusions 

The detection of gross errors is an important technique for 
improving the reliability of real-time filters. By introducing 
QAOs selection into the Kalman filter process, this paper 
first develops the QUAF algorithm. Then, the implementa-
tion scheme of the new algorithm is established after a dis-
cussion of extensions and the adaptability. Finally, the reli-
ability matrix of the Kalman filter is proposed and the per-
formance of the QUAF is compared with three other algo-
rithms. Since it uses the selected observations, the QUAF 
more successfully prevents the migration or submergence of 
gross errors. Moreover, the QUAF introduces state predict-
ed information into the preliminary selection process, and is 
more suitable for complicated systems or poorly validated 
observations. The QUAF and the reliability analysis method 
discussed here can be widely used in real-time systems un-
der the Kalman filter framework. However, when the pre-
dicted state is unavailable or inaccurate, the QUAF may 
produce an incorrect detection result. Therefore, introducing 
other information, such as the prior quality of the instrument, 
into the QAOs selection may provide useful guidance. This 
will form part of our ongoing research in this area. 
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