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Abstract Let f be a continuous function defined on Ω := [0,1]N which depends on
only � coordinate variables, f (x1, . . . , xN) = g(xi1, . . . , xi�). We assume that we are
given m and are allowed to ask for the values of f at m points in Ω . If g is in Lip1
and the coordinates i1, . . . , i� are known to us, then by asking for the values of f at
m = L� uniformly spaced points, we could recover f to the accuracy |g|Lip1L

−1 in
the norm of C(Ω). This paper studies whether we can obtain similar results when the
coordinates i1, . . . , i� are not known to us. A prototypical result of this paper is that
by asking for C(�)L�(log2 N) adaptively chosen point values of f , we can recover
f in the uniform norm to accuracy |g|Lip1L

−1 when g ∈ Lip1. Similar results are
proven for more general smoothness conditions on g. Results are also proven under
the assumption that f can be approximated to some tolerance ε (which is not known)
by functions of � variables.

Keywords Approximation of functions · High dimension · Significant variables ·
Sensitivity analysis
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1 Introduction

The numerical solution of many scientific problems can be reformulated as the ap-
proximation of a function f , defined on a domain in R

N , with N large. If one only
assumes classical smoothness (such as Lipschitz or Besov regularity) of the underly-
ing function f , then numerical recovery and approximation rates deteriorate severely
with the growth of N . This is the so-called curse of dimensionality. On the other
hand, the functions f that arise as solutions to real world problems are thought to
be much better behaved than a general N -variate function in the sense that they de-
pend on only a few parameters or variables, or they can be well approximated by
such functions. This has led to a concerted effort to develop a theory and algorithms
which approximate such functions well without suffering the effect of the curse of
dimensionality. There are many impressive approaches (see [1, 4, 8, 11–13] as repre-
sentative) which are being developed in a variety of settings. There is also the active
literature in compressed sensing which is based on the model that real world func-
tions are sparsely represented in a suitable basis (see, e.g., [2, 3, 6] and the references
in these papers).

The present paper will study one particular version of variable reduction in high
dimension. Our first results assume that f is a continuous function defined on
Ω := [0,1]N , but it depends on just � of the coordinate variables: f (x1, . . . , xN) =
g(xi1, . . . , xi�), where i1, . . . , i� are not known to us. We are given a budget m of
questions we can ask about f . Each question takes the form: What is the value of f

at a point of our choosing? We want then to approximate f from these point values.
We are interested in what are the best questions to ask and to what error we can cap-
ture f as we allow the number m of questions to increase. We shall measure the error
of approximation in the norm

‖ · ‖ := ‖ · ‖C(Ω),

where C(Ω) is the space of continuous functions on Ω and the norm is the supre-
mum norm on Ω . Measuring the error in other norms is also of interest but is not
discussed here. The quantitative results we obtain will be made under some smooth-
ness assumption on g in the form of Lipschitz or Besov smoothness.

We consider both the nonadaptive setting, where the m points are set in advance, as
well as the adaptive setting, where the questions are allowed to depend on the answers
to the prior queries. A second problem we discuss is when f is not a function of �

variables but it can be approximated to some tolerance ε by such a function. We seek
again sets of points where the knowledge of the values of f at these points will allow
us to approximate f well.

Let us mention one special case of our theory which is particularly easy to un-
derstand. Suppose that g is in Lipα and the coordinates i1, . . . , i� are known to us.
Then, by asking for the values of f at m = L� appropriately spaced points, we could
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recover f to the accuracy |g|LipαL−α in the norm of C(Ω). We show that we can
obtain similar estimates even when the coordinates i1, . . . , i� are not known to us.
However, to achieve this performance we have to ask slightly more questions. For
example, we give an adaptive algorithm in Sect. 4, see Theorem 4.2, which asks for
the values of f at m = C(�)L�(log2 N) points and from these values gives an ap-
proximation with accuracy |g|LipαL−α . The additional factor log2 N is the price our
algorithm pays for not knowing the coordinates i1, . . . , i�.

The paper is organized as follows. In the next section, we gather a few well-known
results about multivariate functions and their approximation which we need later. In
Sect. 3, we discuss the case when g is a univariate function. Our reason for discussing
this case separately from the general case of g being �-variate is that the arguments
are particularly simple and transparent. This will give the reader a good anchor for
understanding the general case which is discussed in Sect. 4.

In Sect. 4, we consider two settings. Our first algorithms apply when f is known
to depend only on � variables. The construction of the favorable set of points where
we ask for the values of f in these algorithms is based on having a family A of
partitions of {1, . . . ,N} into � disjoint sets. The requirements on A are given in what
we call the Partition Assumption, formulated in Sect. 4. The second algorithms we
consider apply to any continuous f which is defined on Ω and the performance of the
algorithms depends on how well f can be approximated by functions which depend
only on � variables. The second algorithms require a second set B of partitions which
satisfy a property we call Partition Assumption II.

The smaller the collection A, the smaller the number of point evaluations of f

that is needed in our algorithms. Therefore, it is very interesting to give constructions
of partitions which satisfy the Partition Assumption with #(A) small. The Partition
Assumption is called perfect hashing in theoretical computer science (see [7, 9]). We
recall what is known about constructions of such sets A in the last section of this
paper. There, for the convenience of the reader, we include a standard probabilistic
argument to show the existence of sets A with small cardinality which satisfy the
Partition Assumption for general �. We also discuss how to obtain collections B which
satisfy the Partition Assumption II.

Let us mention that hashing and perfect hashing techniques are frequently used
in theoretical computer science to reduce computational cost. The closest work in
that field to what we are doing in this paper is what are called the JUNTA theorems
(see, e.g., [11]). The JUNTA theorems use hashing to determine change variables in
a discrete setting. While their techniques have similarity to our approach, they do not
consider the approximation setting of our paper.

The problems we consider in this paper are in the language of information-based
complexity described as the L∞ approximation problem with standard informa-
tion (i.e., function values). The distinction between our results and the literature in
information-based complexity is that the latter typically has other model classes for
sparsity (see [12] and their upcoming second volume).

The viewpoint of this paper is of a theoretical nature. We concentrate on the num-
ber of queries needed for approximate recovery of our model classes of functions. We
do not discuss computational aspects of our algorithms.
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2 Simple Facts about Approximation

Let Ω0 := [0,1]�. Given any h = 1/L with L an integer, we denote by

L := hL� := {
h(i1, . . . , i�) : 0 ≤ i1, . . . , i� ≤ L

}

the lattice of equally spaced points (spacing h) on Ω0. Given the values of a function
g ∈ C(Ω0) at the set of points L, there are many ways to create a favorable ap-
proximation to g from these values. Rather than spell out exactly the approximation
scheme and the corresponding smoothness classes which guarantee an approxima-
tion rate, we instead postulate the properties we need of such a system. We give some
examples of such approximation schemes at the end of this section.

We now describe the formal setting in which we shall work. For each h = 1/L,
we assume that Ah is a linear mapping from C(Ω0) into itself which satisfies the
following:

Approximation Properties

(i) The value of Ah(g) depends only on g|hL�
. Thus, if g = g̃ on hL�, then

Ah(g) = Ah(g̃).
(ii) There is an absolute constant C0 such that ‖Ah(g)‖C(Ω0) ≤ C0 maxx∈hL�

|g(x)|,
for all h = 1/L, L = 1,2, . . . .

(iii) Ah(g)≡g if g is constant.
(iv) If g|hL�

depends only on the variables xj1, . . . , xjk
, k ≤ �, then Ah(g) also de-

pends only on these variables.
(v) If π is any permutation of the variables x = (x1, . . . , x�) (which can re-

spectively be thought of as a permutation of the indices {1, . . . , �}), then
Ah(g(π(·)))(π−1(x)) = Ah(g)(x), x ∈ Ω0.

We define the following approximation class:

As := As
(
(Ah)

)

= {
g ∈ C(Ω0) : ∥∥g − Ah(g)

∥∥
C(Ω0)

≤ Chs, h = 1/L, L = 1,2, . . .
}
, (2.1)

with semi-norm

|g|As := sup
h

{
h−s

∥∥g − Ah(g)
∥∥

C(Ω0)

}
. (2.2)

We obtain the norm on As by adding ‖ · ‖C(Ω0) to the semi-norm. As will be dis-
cussed below, there is typically a range 0 < s ≤ S, where the approximation classes
can be characterized as smoothness spaces.

We need the following simple fact about As functions.

Lemma 2.1 Suppose g ∈ As and |g(x)| ≤ ε, x ∈ hL�. Then,

‖g‖C(Ω0) ≤ C0ε + |g|As hs,

where C0 is the constant in Approximation Property (ii).
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Proof This follows directly from the triangle inequality

‖g‖C(Ω0) ≤ ∥∥g − Ah(g)
∥∥

C(Ω0)
+ ∥∥Ah(g)

∥∥
C(Ω0)

≤ |g|As hs + C0ε. �

There are several ways to construct operators Ah of the above form. However,
spelling out their details can be cumbersome and this is why we have chosen the
above approach of merely postulating their existence. The most prominent opera-
tors would be tensor product quasi-interpolant constructions such as those used in
spline theory, shift invariant space theory, and wavelet theory (see, e.g., [5, 10] as
representative). Quasi-interpolants begin with a function φ, its dilate φh, and the shift
invariant space Sh(φ) spanned by the translates of φh with respect to the lattice hL�.
A common setting (for example in multivariate box spline theory) is that the shifts of
φ are locally linearly independent. It follows that the point evaluation functionals at
the lattice points hL� are linearly independent and span the space of all functionals
defined on Sh(φ). This enables one to construct projectors Ah mapping C(R�) into
Sh(φ) of the form

Ah(f ) =
∑

p∈hL�

cp(f )φh(x − p),

where each linear functional cp is a finite linear combination of point evaluation func-
tionals at points from the lattice hL� near p. These functionals can even be chosen
so that the evaluations are done only at points inside Ω0 whenever the support of
φh(· − p) intersects Ω0 nontrivially. In quasi-interpolant constructions, the spaces
As correspond to the generalized Lipschitz spaces of order s (equivalently the Besov
space Bs∞(C(Ω0))).

3 The Case of One Change Variable

It will be instructive to consider first the case when f depends only on one coordi-
nate variable where the arguments and proofs are most transparent. That is, we first
suppose f (x1, . . . , xN) = g(xj ) with j unknown to us. Later we treat the case where
f is only approximated by such a function g.

3.1 Nonadaptive Algorithms

We first consider nonadaptive algorithms in which we spell out all the query points
in advance. Later, we consider adaptive algorithms which allow the query points to
depend on the answers to the previous questions.

The set of points where we will ask for the values of f is the union of two point
sets. The first of these sets consists of what we call base points. In the case of one
variable the base points are all points in the set P := {Pi := L−1(i, i, . . . , i)}Li=0.
Clearly there are L + 1 such base points. The important property of this set is that
when its points are projected onto any of the coordinate axes, we get a set of L + 1
equally spaced points.

The second set of points we need are padding points. These points are used to
find the coordinate j . Padding points are associated to a pair of points P,P ′ ∈ P



130 Constr Approx (2011) 33: 125–143

and are constructed as follows. Every integer j ∈ {1, . . . ,N} has a unique binary
representation j = 1 + ∑n

k=0 bk(j)2k , where n := �log2 N	 − 1 and each bit bk(j) ∈
{0,1}. Given a pair of points P,P ′ ∈ P and a value of k ∈ {0,1, . . . , n}, we define the
point [P,P ′]k whose j -th coordinate is P(j) (i.e., the same as the j -th coordinate of
P ) if bk(j) = 0 and otherwise this coordinate of [P,P ′]k is defined to be the same as
the j -th coordinate of P ′.

3.1.1 Algorithm 1

For this first algorithm, we ask for the values of f at the base points in P given
above. We also ask for the values of f at the following set Q of padding points. To
each pair Pi−1,Pi , i = 1, . . . ,L, of consecutive points, we associate the padding
points [Pi−1,Pi]k , k = 0, . . . , n. Thus the collection of padding points is Q :=
{[Pi−1,Pi]k, i = 1, . . . ,L, k = 0, . . . , n}. Clearly there are L(n + 1) points in Q.

Notice that f (Pi) = g(i/L), i = 0, . . . ,L. Therefore, after receiving the values of
f at the base points P , we know g(i/L), i = 0, . . . ,L. We use the approximation
operator Ah of the previous section to construct the function ĝ = Ah(g). Note that
the construction of ĝ only uses the points from P . The function ĝ(xj ) would provide
a good approximation to f if we knew j . Also, observe that if f is constant on P ,
then we do not need to know j . If f is not constant on P then we use the padding
points to find j . There is an i such that f (Pi−1) 
= f (Pi) with 1 ≤ i ≤ L. For each
k = 0, . . . , n, the value f ([Pi−1,Pi]k) is either f (Pi−1) or f (Pi) because of the way
the padding points are constructed and the fact that f depends on only one variable.
If it is f (Pi−1), then we know that bk(j) = 0; if it is f (Pi), then we know bk(j) = 1.
Thus from the answer to these questions, we know all the bits of j and hence we
know j . We define our approximation to f to be f̂ (x1, . . . , xN) := ĝ(xj ).

Theorem 3.1 If f (x1, . . . , xN) = g(xj ) with g ∈ As , then the function f̂ defined
above satisfies

‖f − f̂ ‖C(Ω) ≤ |g|As hs . (3.1)

This algorithm uses at most L + 1 + L�log2 N	 evaluations of f .

Proof We have f (x1, . . . , xN) − f̂ (x1, . . . , xN) = g(xj ) − Ah(g)(xj ). Therefore,
(3.1) follows from (2.1) and (2.2) since g ∈ As . �

Note that the logarithm appearing in the number of evaluations needed of f is the
price we pay for not knowing the change coordinate j .

3.1.2 Algorithm 2

The purpose of our second algorithm is to handle the case where f is not necessarily
a function of just one variable but it can be approximated well by such a function. To
describe this we introduce the following notation. Given a univariate function g, we
define the multivariate functions

Iν(g)(x1, . . . , xN) := g(xν), ν = 1, . . . ,N.
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Our starting assumption about f is that for some g ∈ As , some ν ∈ {1, . . . ,N}, and
some ε > 0, we have

∥∥f − Iν(g)
∥∥

C(Ω)
≤ ε.

The algorithm given below does not need to know g, ν or ε.
In this second algorithm we take Q := {[Pi,Pi′ ]k,0 ≤ i < i′ ≤ L, k = 0, . . . , n}.

Clearly there are now (n + 1)(L + 1)L/2 points in Q. As in the first algorithm, we
use the values of f at the points Pi ∈ P , i = 0, . . . ,L and apply the operator Ah,
h = 1/L to receive a function ĝ.

Now to find a change coordinate j from this information, we choose a pair Pi,Pi′ ,
i < i′, for which |f (Pi) − f (Pi′)| is the largest among all such pairs. We consider
the value f (Qk) at each of the points Qk := [Pi,Pi′ ]k , k = 0, . . . , n. If this value is
closest to f (Pi), we assign the bit bk = 0. If this value is closest to f (Pi′) or if there
is a tie, we assign the bit bk = 1. These bits determine an integer j := 1+∑n

k=0 bk2k .
If j ≤ N , we define f̂ (x1, . . . , xN) = ĝ(xj ). Otherwise, we define f̂ (x1, . . . , xN) :=
ĝ(x1). As we shall see in the proof of the following theorem, the above algorithm
does not necessarily find the change coordinate of f but, when it does not, then f

does not deviate much and we can still approximate it well.

Theorem 3.2 Suppose that f is a function of N variables for which there is a func-
tion g ∈ As and a ν ∈ {1, . . . ,N}, such that

∥∥f − Iν(g)
∥∥

C(Ω)
≤ ε.

Then the function f̂ defined above satisfies

‖f − f̂ ‖C(Ω) ≤ (6C0 + 1)ε + 3|g|As hs, (3.2)

where C0 is the constant of Lemma 2.1. The definition of f̂ uses at most L + 1 +
�log2 N	L(L + 1)/2 point evaluations of f .

Proof We consider two cases.
Case 1: We assume in this case that the maximum deviation in the values

f (Pi), i = 0, . . . ,L, is greater than 4ε. We choose i, i′ such that |f (Pi) − f (Pi′)|
is largest. At each of the padding points Qk := [Pi,Pi′ ]k , k = 0, . . . , n, we have
|f (Qk)−Iν(g)(Qk)| ≤ ε. Now if bk(ν) = 0 then Iν(g)(Qk) = Iν(g)(Pi) (since Iν(g)

is a function only of the ν-th variable) and, therefore, f (Qk) is within 2ε of f (Pi)

but further than 2ε from f (Pi′). This means that the bit bk assigned by the algorithm
is zero and, therefore, bk = bk(ν). The same conclusion holds if bk(ν) = 1. Hence
the value j determined by the algorithm is equal to ν. We therefore obtain from the
definition of As that

‖f − f̂ ‖C(Ω) ≤ ∥∥f − Iν(g)
∥∥

C(Ω)
+ ‖g − ĝ‖C([0,1]) ≤ ε + |g|As hs, (3.3)

which is the desired inequality.
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Case 2: In this case, the maximum deviation of f over the points Pi , i =
0, . . . ,L, is at most 4ε. Hence the maximum deviation of g over the points hL1 =
{0,1/L, . . . ,1} is at most 6ε. We consider the function g̃ = g − c, where c is the
average of the minimum and maximum values of g on hL1. Then |g̃| ≤ 3ε on hL1
and |g̃|As = |g|As . From Lemma 2.1, we see that ‖g̃‖C([0,1]) ≤ 3C0ε + |g|As hs . It
follows that

∥
∥Iν(g) − Ij (g)

∥
∥

C(Ω)
≤ ∥

∥Iν(g) − c
∥
∥

C(Ω)
+ ∥

∥c − Ij (g)
∥
∥

C(Ω)
= 2‖g̃‖C([0,1])

≤ 6C0ε + 2|g|As hs .

Hence,

∥∥f − Ij (g)
∥∥

C(Ω)
≤ ∥∥f − Iν(g)

∥∥
C(Ω)

+ ∥∥Iν(g) − Ij (g)
∥∥

C(Ω)

≤ (6C0 + 1)ε + 2|g|As hs . (3.4)

Finally, using that ‖f̂ − Ij (g)‖C(Ω) ≤ |g|As hs with (3.4), we arrive at (3.2). No-
tice that in this case we may have selected a wrong change coordinate j . However,
since the maximum deviation of f over Pi , i = 0, . . . ,L, is small, estimate (3.2) still
holds. �

3.2 Adaptive Algorithms

The algorithms we have just described and analyzed are nonadaptive. We can save
some on the number of point values we need for f if we work adaptively. We be-
gin by asking for the values of f on the point set P of base points exactly as be-
fore. However, now, for the adaptive version of Algorithm 1, we identify i such that
f (Pi−1) 
= f (Pi); if there is no such pair we do not have to identify a change coordi-
nate since Ah(g) is constant. To identify the change coordinate, we only ask for the
values of f at the padding points [Pi−1,Pi]k associated with this pair. This means the
total number of values we need for f is L + 1 + �log2 N	. Similarly, in Algorithm 2,
we identify the pair Pi,Pi′ corresponding to maximum deviation of f on P and ask
only for the values of f at the padding points [Pi,Pi′ ]k associated with this pair. This
again gives L + 1 + �log2 N	 point values.

In this adaptive version of Algorithm 1, one can prove that the number of points
at which we require the value of f is (up to a fixed constant multiplicative factor)
optimal, provided we use standard constructions of the operators Ah (such as uni-
variate spline interpolants). This is proved by using widths and Kolmogorov entropy.
However, this will be reported on in another work.

4 The General Case of � Variables

In this section, we consider the general case where the number of variables in g is �.
We assume that we know � (the algorithms work equally well if we only know a
bound for �). We present two algorithms which generalize Algorithms 1 and 2 from
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above. They have a similar flavor to the one variable case but have some important
differences.

Our starting point is to assume that we have a set P of base points in R
N with

certain properties. Let A be a collection of partitions A of {1,2, . . . ,N}. Each A
consists of � disjoint sets A1, . . . ,A�. We require:

Partition Assumption The collection A is rich enough so that given any � distinct
integers i1, . . . , i� ∈ {1, . . . ,N}, there is a partition A in A such that each set in A
contains precisely one of the integers i1, . . . , i�.

This condition is known as perfect hashing in theoretical computer science and is
heavily used in finding change coordinates in a different setting than ours (such as
finding JUNTAs). It is an interesting question how to create such a class of partitions
and how many partitions are needed to guarantee the Partition Assumption. We dis-
cuss this issue in the following section, where we show that C(�) log2 N partitions
suffice. But for the remainder of this section, we merely assume that we have such a
collection A in hand.

Corresponding to any A ∈ A, we construct the set of base points

P = h

�∑

i=1

αiχAi
, αi ∈ {0,1, . . . ,L}, h = 1/L. (4.1)

In other words, P has coordinate value hαi at each of the coordinate indices in Ai .
We denote by P the set of all such base points. Note that there are (L + 1)�#(A)

such base points. An important property of the base points which we use often is the
following:

Projection Property Given any j = (j1, . . . , j�), with distinct jq ∈ {1, . . . ,N}, q =
1, . . . , �, and any integers 0 ≤ i1, . . . , i� ≤ L, there is a point P ∈ P such that the
coordinate jν of P is hiν , ν = 1, . . . , �.

Indeed, it is enough to take a partition A from A such that each jν is in a different
set Ai of A. Then the point (4.1) with the appropriate value of αi = iν when jν ∈ Ai

has the value hiν at coordinate jν .
In analogy with our previous notation, given a sequence j = (j1, . . . , j�), of dis-

tinct integers from {1, . . . ,N}, and a function g defined on Ω0 := [0,1]�, we define

Ij(g)(x1, . . . , xN) = g(xj1, . . . , xj�
).

We also use the following restriction operator. Given any partition A =
(A1, . . . ,A�) of {1,2, . . . ,N}, we define the mapping RA from functions on Ω into
functions on hL� by

RA(f )
(
h(i1, . . . , i�)

) = f

(

h

�∑

j=1

ijχAj

)

, h = 1/L.
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4.1 General Adaptive Algorithm 1

In this section, we introduce an algorithm which gives an approximation to any func-
tion f which is equal to Ij(g) with both j and g unknown to us. In contrast with the
one variable case, we first describe the adaptive version of this algorithm and then
later mention the modifications necessary to have a nonadaptive algorithm. We call
this adaptive algorithm GA Algorithm 1, indicating that it is general (applies to a gen-
eral �) and adaptive. The algorithm requires us to know � (essentially just a bound
for �) but the assumption of knowing � is ameliorated in the second algorithm which
works in an approximation setting.

We start GA Algorithm 1 by asking for the values of f at all of the base points
P described in (4.1). We examine the values of f at these points and from these
values we choose one of the partitions in A, call it A∗, as follows. Given any A ∈ A,
A = (A1, . . . ,A�), we examine the base points P subordinate to this A. We say the
set Ai is a change set if there are P and P ′, both subordinate to A, for which P and
P ′ only differ on Ai and f (P ) 
= f (P ′). We define n(A) as the number of sets Ai ,
i = 1, . . . , �, in A, which are change sets. Now we define

A∗ := argmax
A∈A

n(A).

We call any such partition a maximal change partition for f . We note that A∗ is
not necessarily unique and so the statements below referring to A∗ refer to any of
the A∗’s.

We say that the change coordinate jν is visible at scale h = 1/L if there ex-
ist two points h(i1, . . . , iN ) and h(i′1, . . . , i′N), 0 ≤ i1, i

′
1, . . . , iN , i′N ≤ L, which are

identical in all coordinates except for the jν -th coordinate and f (h(i1, . . . , iN )) 
=
f (h(i′1, . . . , i′N)). We can always take i′jν

= ijν + 1. Then the following lemma holds:

Lemma 4.1 If A∗ is any maximal change partition, then every change set A∗
i from

A∗ contains exactly one coordinate visible at scale h. The sets A∗
i from A∗ which are

not change sets do not contain any coordinates visible at scale h.

Proof Let j ′
1, . . . , j

′
k , k ≤ � be the change coordinates which are visible at scale h.

From the Partition Assumption there is a partition A∗∗ such that each j ′
ν lies in a

different set A∗∗
i of A∗∗. Let us now check that each set A∗∗

i which contains a vis-
ible change coordinate (call it j ′

ν ) is a change set. Indeed, there exist two points
h(i1, . . . , iN ) and h(i′1, . . . , i′N), 0 ≤ i1, i

′
1, . . . , iN , i′N ≤ L, which are identical in all

coordinates except for the j ′
ν -th coordinate and f (h(i1, . . . , iN )) 
= f (h(i′1, . . . , i′N)).

We define P as the point subordinate to A∗∗ such that for any A∗∗
μ which contains a

visible change coordinate j , the coordinate values of P on A∗∗
μ are the same as ij .

For sets that do not contain a visible change coordinate, we can define the coor-
dinate value in an arbitrary way. It follows that f (P ) = f (h(i1, . . . , iN )). Indeed,
we can change P to h(i1, . . . , iN ) by just altering coordinates which are not visible
change coordinates of f at scale h. We define P ′ by using the same construction,
where for sets that do not contain a visible change coordinate we define the coor-
dinate values to be the same as the ones we have chosen for P . Then we see that
f (P ) = f (h(i1, . . . , iN )) 
= f (h(i′1, . . . , i′N)) = f (P ′) and so A∗∗

i is a change set.
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We have just shown that there is a partition A∗∗ which contains k change sets.
Obviously, no partition A can contain more than k change sets since each change set
must contain at least one visible change coordinate. Finally, for any partition A∗ such
that n(A∗) = k, we must have that each visible change coordinate lies in a different
set A∗

i . �

We can now easily identify each of the change coordinates that is visible at scale h.
For the partition A∗, we mark the change sets A∗

i (each one of them, by Lemma 4.1
contains a visible change coordinate). We take a pair of base points P , P ′ subordinate
to A∗ which differ only on the coordinates in A∗

i and satisfy f (P ) 
= f (P ′). For P ,
P ′ we create the padding points Qk := [P,P ′]k , k = 0, . . . , n, corresponding to
binary partitions as follows: Qk and P differ only on the coordinates in A∗

i which
have k-th binary bit equal to one, and on these coordinates Qk has the same value
as P ′. We ask for the value of f (Qk) and check whether it is f (P ) (in which case we
assign bk = 0) or f (P ′) (in which case bk = 1). The bits bk , k = 0, . . . , n, uniquely
determine the change coordinate in A∗

i .
The change coordinates of f that are visible at scale h have been identified. There

may be k ≤ � of these coordinates, so we add arbitrarily � − k coordinates to obtain
j′ = (j ′

1, j
′
2, . . . , j

′
�), with 1 ≤ j ′

1 < j ′
2 < · · · < j ′

�.
We fix a partition A′ that separates all the coordinates in j′, and we consider the

base points P defined in (4.1), subordinate to this partition. We can assume with-
out loss of generality that j ′

1 ∈ A′
1, . . . , j

′
� ∈ A′

�. We define ĝ = Ah(RA′(f )) and

f̂ (x1, . . . , xN) := Ij′(ĝ) = ĝ(xj ′
1
, . . . , xj ′

�
).

Theorem 4.2 If f = Ij(g) with g ∈ As , then the function f̂ determined by GA Al-
gorithm 1 satisfies

‖f − f̂ ‖C(Ω) ≤ |g|As hs . (4.2)

The number of point values used in the algorithm is at most

(L + 1)�#(A) + ��log2 N	, (4.3)

where A is the collection of sets satisfying the Partition Assumption.

Proof The algorithm requires the values of f at each of the base points which is
#(P ) = (L + 1)�#(A), and then for each cell of A∗ which has a change coordinate it
asks for n + 1 = �log2 N	 padding points to determine the binary bits of the visible
change coordinate in this cell. Since there are at most � visible change coordinates,
we arrive at (4.3).

To prove the bound on the approximation error, we define S0 := Ah(g) and write

f − f̂ = Ij(g) − Ij(S0) + Ij(S0) − Ij′(ĝ). (4.4)

The first term on the right side satisfies
∥∥Ij(g) − Ij(S0)

∥∥
C(Ω)

= ∥∥g − Ah(g)
∥∥

C(Ω0)
≤ |g|As hs .
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From Approximation Properties (iii), (iv), and (v), and the fact that both j and j′
contain the coordinate indices of any visible coordinates, we see that Ij(S0) = Ij′(ĝ).
This means that the second term on the right side of (4.4) is identically zero. We have
therefore proved (4.2). �

4.2 A Nonadaptive Version of GA Algorithm 1

If we want to work nonadaptively, i.e., spell out all queries in advance independent of
f , then we need to only make the following modification in GA Algorithm 1. Since
we do not know which partition has maximal change, we need to define the padding
points [P,P ′]k , k = 0,1, . . . , n, for each partition A, each choice of points P,P ′,
subordinate to this partition and each choice of a set Ai from A. The set Q of all
such padding points has cardinality �log2 N	�L(L + 1)�#(A). We can then proceed
as in GA Algorithm 1 to find a maximal change partition A∗ and then use the padding
points to find the visible change coordinates. We see that the total number of queries
needed in the nonadaptive algorithm is considerably more than in the adaptive case.

4.3 General Adaptive Algorithm 2

We now consider the case where f is not a function of � variables but rather that it
can be approximated by such a function. We assume that we are given a function f on
Ω for which there is a function g ∈ As and a j = (j1, . . . , j�), 1 ≤ j1 < · · · < j� ≤ N ,
such that

∥∥f − Ij(g)
∥∥

C(Ω)
≤ ε.

We do not assume that we know ε, j, or g. However, we do assume we know �. One
could equally well work with just a bound for �.

The algorithm we describe is adaptive. It begins with the same set P of base points
as in GA Algorithm 1. However, we modify significantly the padding points which
enter into the algorithm.

For each A and each i = 1, . . . , �, we choose exactly one pair of base points
P,P ′ subordinate to A as follows. We require that P and P ′ agree on all of the
sets Aμ 
= Ai . Among all these possible pairs of points we choose one for which the
oscillation osc(P,P ′) := |f (P ) − f (P ′)| is maximal. There are �#(A) such pairs.
We call these pairs maximal.

We construct padding points associated to any maximal pair P,P ′. However,
now the padding points are constructed by using a different set of partitions than the
binary ones. We consider partitions B of {1, . . . ,N} into two disjoint sets B0 and B1.
We introduce the following property of a set B of such partitions:

Partition Assumption II The set B of partitions is said to have this property if given
� + 1 distinct integers j, j1, . . . , j�, there is a partition B ∈ B such that the set in B
that contains j does not contain any of the j1, . . . , j�.

We want such a set B with cardinality as small as possible. We shall see in the next
section that B is easily constructed from perfect hashing sets. We fix a B that satisfies
Partition Assumption II.
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For each maximal pair P,P ′ and each B ∈ B, we define two padding points
Qν := [P,P ′]B,ν , ν = 0,1, as follows. The j -th coordinate of Qν for each j ∈ Aμ,
μ 
= i, is the common j -th coordinate of P and P ′. Namely, we do not alter the base
points except on Ai . For each j ∈ Ai , the j -th coordinate of Qν is the same as that of
P ′ if j ∈ Ai ∩ Bν . Otherwise it is the same as that of P . In other words, the padding
points have the same coordinates as P , except that the coordinates with indices in
Bν ∩ Ai are changed to the coordinates of P ′. For each maximal pair there will be
at most 2#(B) padding points, corresponding to the #(B) choices of B and the two
choices for ν.

We are only interested in certain maximal pairs. We call a pair P,P ′ useful if for
each B ∈ B, there is exactly one value ν(B) ∈ {0,1} such that

∣∣f
([P,P ′]B,ν(B)

) − f (P ′)
∣∣ <

1

4
osc(P,P ′),

and
∣∣f

([P,P ′]B,μ

) − f (P )
∣∣ <

1

4
osc(P,P ′),

for μ 
= ν(B).
For each maximal and useful pair of points P,P ′ which differ on Ai , we define

JP,P ′ :=
⋂

B∈B
Bν(B) ∩ Ai.

We say that a change coordinate jν is ε-visible at scale h, if for some pair of
points P = h(i1, . . . , iN ) and P ′ = h(i′1, . . . , i′N), 0 ≤ i1, i

′
1, . . . , iN , i′N ≤ L which

are identical in all coordinates except for the jν -th coordinate, we have
∣∣f (P ) − f (P ′)

∣∣ ≥ 12ε. (4.5)

The following lemma will show that the set of indices JP,P ′ is either empty or
contains precisely one integer j .

Lemma 4.3 The following properties hold:

(i) For each maximal and useful pair P,P ′ the set JP,P ′ is either empty or it con-
tains precisely one integer j .

(ii) For each change coordinate jr which is ε-visible at scale h, there is a maximal,
useful pair P,P ′ for which JP,P ′ = {jr}.

Proof (i) Given any two distinct integers j, j ′ ∈ Ai , we want to show that not both
of these integers can be in JP,P ′ . To see this, we take a partition B such that j ∈ B0
and j ′ ∈ B1. The existence of such a partition follows from the Partition Assump-
tion II. From the definition of useful, we cannot have |f ([P,P ′]B,ν) − f (P ′)| <

osc(P,P ′)/4 for both ν = 0,1. So only one of these integers j, j ′ can be in JP,P ′ .
(ii) Given a change coordinate jr which is ε-visible at scale h, we know there are

points R := h(i1, . . . , iN ) and R′ := h(i′1, . . . , i′N) at which |f (R′) − f (R)| ≥ 12ε

and R and R′ differ only in the coordinate jr . By the Partition Assumption, we
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can choose a partition A such that each set Aμ, μ = 1, . . . , �, contains exactly
one change coordinate. Let jr be in the set Ai . Consider the pairs Q,Q′ subor-
dinate to A, for which Q and Q′ differ only on Ai . We can take such a pair,
call it Q0,Q

′
0, so that Q0 is identical to R at each change coordinate and Q′

0
is identical to R′ at each change coordinate. The pair Q0,Q

′
0 may not be max-

imal so we choose a pair P,P ′ which is maximal from the various Q,Q′. Then
clearly osc(P,P ′) ≥ osc(Q0,Q

′
0) ≥ 12ε. By construction, we have that Ij(g)(Q0) =

Ij(g)(R) and Ij(g)(Q′
0) = Ij(g)(R′).

We want to show that P,P ′ is useful and jr ∈ Bν(B) for all B ∈ B. First note
that osc(P,P ′) ≥ osc(Q0,Q

′
0) ≥ |Ij(g)(R′) − Ij(g)(R)| − 2ε ≥ 8ε. Now, given any

B ∈ B, let jr ∈ Bν(B), ν(B) ∈ {0,1}. Then [P,P ′]B,ν(B) agrees with P ′ in all change
coordinates. Hence Ij(g)([P,P ′]B,ν(B)) = Ij(g)(P ′), and therefore we have

∣∣f
([P,P ′]B,ν(B)

) − f (P ′)
∣∣

≤ ∣∣f
([P,P ′]B,ν(B)

) − Ij(g)
([P,P ′]B,ν(B)

)∣∣ + ∣∣Ij(g)(P ′) − f (P ′)
∣∣

≤ 2ε ≤ 1

4
osc(P,P ′).

Similarly, if μ is the complementary index in {0,1} to ν(B), then [P,P ′]B,μ agrees
with P in all change coordinates, and hence

∣∣f
([P,P ′]B,μ

) − f (P )
∣∣

≤ ∣∣f
([P,P ′]B,μ

) − Ij(g)
([P,P ′]B,μ

)∣∣ + ∣∣Ij(g)(P ) − f (P )
∣∣

≤ 2ε ≤ 1

4
osc(P,P ′).

Thus, P,P ′ is useful and jr ∈ JP,P ′ , as desired. �

Let us denote by J := ⋃{JP,P ′ : P,P ′ is maximal and useful}. For any j ∈ J ,
there may be many useful pairs P,P ′ which generate j . We define osc(j) :=
max{osc(P,P ′) : JP,P ′ = {j}}. Note that the above argument shows that

osc(j) ≥ 8ε, whenever j is an ε-visible change coordinate at scale h. (4.6)

We can now describe our second algorithm.

GA Algorithm 2

(i) We identify the maximal pairs P,P ′ and check if they are useful or not.
(ii) For each maximal, useful pair P,P ′ we find JP,P ′ and then the set J .

(iii) We choose � distinct entries j ′
1, . . . , j

′
� in J for which osc(j) is largest with ties

preferring the smallest j . If #J < �, we add arbitrary coordinates to have � of
them to arrive at 1 ≤ j ′

1 < · · · < j ′
� ≤ N .

(iv) Now that we have found the � potential change coordinates j′ = (j ′
1, . . . , j

′
�), we

fix a partition A′ = (A′
1, . . . ,A

′
�) ∈ A which separates j ′

1, . . . , j
′
�. The existence
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of such a partition follows from the Partition Assumption. We can assume with-
out loss of generality that j ′

1 ∈ A′
1, . . . , j

′
� ∈ A′

�. We define our approximating
function

f̂ = Ij′AhRA′(f ). (4.7)

The defined f̂ is not necessarily unique, but the results which follow will hold for
any such f̂ .

Lemma 4.4 Every change coordinate j1, . . . , j� which is ε-visible at scale h is in
the list j ′

1, . . . , j
′
�.

Proof If jr is an ε-visible change coordinate at scale h, then by (4.6) osc(jr ) ≥ 8ε.
Thus, it is enough to show that for any j ∈ J which is not a change coordinate, we
have osc(j) < 8ε. Suppose P,P ′ is any maximal, useful pair for which JP,P ′ =
{j}. We use Partition Assumption II to find a B ∈ B such that j ∈ B0 and all the
j1, . . . , j� ∈ B1 (the reverse case is handled in the same way). Since P,P ′ is useful
and j ∈ B0, we have that ν(B) = 0, and for Q0 := [P,P ′]B,0,

∣∣f (P ′) − f (Q0)
∣∣ ≤ 1

4
osc(P,P ′). (4.8)

But we also have
∣∣f (P ) − f (Q0)

∣∣ ≤ 2ε + ∣∣Ij(g)(P ) − Ij(g)(Q0)
∣∣ = 2ε, (4.9)

where we have used the fact that Ij(g)(P ) = Ij(g)(Q0) because B0 does not contain
any change coordinate from j. Combining (4.8) and (4.9), we obtain

osc(P,P ′) = ∣∣f (P ′) − f (P )
∣∣ ≤ 1

4
osc(P,P ′) + 2ε.

Hence osc(P,P ′) ≤ 8
3ε. This shows that osc(j) ≤ 8

3ε, and proves the lemma. �

Our main result of this section is the following theorem:

Theorem 4.5 Suppose that f ∈ C(Ω) and there exists a function g ∈ As and a vector
j = (j1, . . . , j�) such that ‖f − Ij(g)‖C(Ω) ≤ ε. Then the function f̂ created by GA
Algorithm 2 satisfies

‖f − f̂ ‖C(Ω) ≤ |g|As hs + (C0 + 1)(28� + 1)ε, (4.10)

where C0 is the constant of Approximation Property (ii). The number of point values
used in the algorithm is

≤ (L + 1)�#(A) + 2�#(A)#(B).

Proof The algorithm requires the values of f at each of the base points whose num-
ber is (L + 1)�#(A) and then for each maximal pair (there are �#(A) such pairs) it
asks for at most 2#(B) padding points to determine the maximal, useful pairs.
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To prove (4.10), we write f = Ij(g) + η, where ‖η‖C(Ω) ≤ ε. It follows that

f̂ = Ij′AhRA′Ij(g) + Ij′AhRA′(η).

From Approximation Property (ii), we obtain

‖f − f̂ ‖C(Ω) = ∥∥Ij(g) + η − Ij′AhRA′Ij(g) − Ij′AhRA′(η)
∥∥

C(Ω)

≤ ∥∥Ij(g) − Ij′AhRA′Ij(g)
∥∥

C(Ω)
+ ‖η‖C(Ω) + ∥∥Ij′AhRA′(η)

∥∥
C(Ω)

≤ ∥
∥Ij(g) − Ij′AhRA′Ij(g)

∥
∥

C(Ω)
+ (C0 + 1)ε.

To estimate the remaining term we let 1 ≤ j̄1 < · · · < j̄r ≤ N be the indices from
j that are ε-visible at scale h (see (4.5)). Recall that our algorithm has identified each
of them and hence they are all in j′. We define φ(x1, . . . , xN) := Ij(g)(x̄), where x̄

is identical to x in all coordinates with indices j̄1, . . . , j̄r and zero otherwise. Let us
first note that

∥
∥Ij(g) − φ

∥
∥

C(Ω)
≤ 14�ε. (4.11)

Indeed, for any coordinate in j that is not among j̄1, . . . , j̄r , incrementing just the
variable corresponding to this coordinate cannot change g more than 14ε because
these coordinates are not ε-visible at scale h. Since we can go from x̄ to x with ≤ �

such increments, we arrive at (4.11). This allows us to estimate

∥∥Ij(g) − Ij′AhRA′Ij(g)
∥∥

C(Ω)
≤ ∥∥Ij(g) − φ

∥∥
C(Ω)

+ ‖φ − Ij′AhRA′φ‖C(Ω)

+ ∥∥Ij′AhRA′
(
φ − Ij(g)

)∥∥
C(Ω)

≤ 14�(C0 + 1)ε + ‖φ − Ij′AhRA′φ‖C(Ω),

where we have used Approximation Property (ii). Now let A be the partition which
separates j. We can again assume jν ∈ Aν , ν = 1, . . . , �. Then Ij′AhRA′φ = IjAhRAφ

because of property (v) and the fact that j̄1, . . . , j̄r are in j and in j′ and φ only
depends on the variables indexed by j̄1, . . . , j̄r . Hence,

‖φ − Ij′AhRA′φ‖C(Ω) = ‖φ − IjAhRAφ‖C(Ω)

≤ ∥∥φ − Ij(g) − IjAhRA
(
φ − Ij(g)

)∥∥
C(Ω)

+ ∥∥Ij
(
g − AhRAIj(g)

)∥∥
C(Ω)

≤ 14�(C0 + 1)ε + |g|As hs,

which proves the theorem. �
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4.4 A Nonadaptive Version of GA Algorithm 2

Similarly to GA Algorithm 1, if we want to work nonadaptively, then we need to only
make the following modification in GA Algorithm 2. Since we do not know which
pair of base points P,P ′ is maximal, we need to define the padding points [P,P ′]B,ν ,
B ∈ B, ν = 0,1 for each partition A, each choice of points P,P ′ subordinate to this
partition, and each choice of a set Ai from A. The set Q of all such padding points
has cardinality 2�L(L + 1)�#(B)#(A). We can then proceed as in GA Algorithm 2
to find the maximal pairs P,P ′ and then check whether they are useful or not. As
before, we see that the total number of queries needed in the nonadaptive algorithm
is considerably more than in the adaptive case.

5 Constructing Separating Partitions

The algorithms we have given begin with a set A of partitions that satisfy the Partition
Assumption. It is important to know how large A needs to be for this assumption to
hold. Indeed, #(A) controls the size of the sets of base points P and padding points Q
where we sample f . For the completeness of our exposition, we give a probabilistic
proof that for any � there exists a set of partitions A which satisfies the Partition
Assumption and has reasonable cardinality.

We have already noted that the Partition Assumption is known in theoretical com-
puter science as perfect hashing. We would like to thank Professor Janos Körner for
pointing out bounds for the cardinality of such sets A, see [7, 9]. Here, we give a
simple probabilistic argument, which we learned from Tomasz Łuczak, for obtaining
upper bounds on the cardinality of A that gives estimates close to the best known.

Suppose we are given N and � < N . We are interested in partitions A =
(A1, . . . ,A�) of {1, . . . ,N} consisting of � disjoint sets A1, . . . ,A�. We view each
Ai as a bucket which will have in it a collection of integers from {1, . . . ,N}. To cre-
ate such sets, we make draws from a box of balls labeled 1, . . . , �. We randomly draw
the first ball. If this ball has label i then the integer one is placed into the bucket Ai .
We then replace the first ball and randomly draw again, receiving a ball with label
i′. We place the integer two into the bucket Ai′ . We continue in this way N times,
thereby putting each integer from {1, . . . ,N} into one of the sets A1, . . . ,A�. This
gives the first partition A = (A1, . . . ,A�). Notice that some of the sets A1, . . . ,A�

may be empty. We repeat this experiment m times, which results in m partitions. We
shall decide m later.

If we are given j = (j1, . . . , j�), then it is easy to see that the probability that a
random partition A separates the entries of j into distinct sets is �!/��. Indeed, the
probability that ji is in Ai , for each i = 1, . . . , �, is �−�. But any permutation of the
ji will do as well and we have �! of these. So the probability that a random partition
does not separate a given j is a := (1 − �!

�� ). Therefore, if we have m independent

partitions, the probability that none of them separates j is am. There are
(
N
�

)
�-tuples

j = (j1, . . . , j�), j1 < · · · < j�. Thus, if
(
N
�

)
am < 1, then a set of m random partitions

will separate every j with positive probability.
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To see how large we need to take m we use Stirling’s formula to find

(
N

�

)(
1 − �!

��

)m

≤
(

N

�

)(
1 −

√
2π�

e�

)m

≤ N�
(
1 − e−�

)m
. (5.1)

If we take m = 2�e� lnN and use the fact that (1 − 1/x)x ≤ e−1, for x > 1, the
right side of (5.1) is < N�e−2� lnN ≤ N−�. Thus, if we take m ≥ 2�e� lnN partitions
generated randomly, then with probability greater than 1 − N−�, the resulting set A
will satisfy the Partition Assumption.

We can also use perfect hashing to show the existence of sets B of partitions which
satisfy Partition Assumption II. We take a perfect hashing collection A which sepa-
rates all selections of � + 1 distinct integers chosen from {1, . . . ,N}. Each partition
A = (A1, . . . ,A�+1) generates �+1 partitions into two sets (Aj ,

⋃
i 
=j Ai). It is clear

that the collection B of all those partitions satisfy Partition Assumption II. There are
(� + 1)#(A) such partitions in B; We know from the above arguments that A can
be constructed with #(A) ≤ 2(� + 1)e�+1 lnN and so there are constructions which
give B with #(B) ≤ 2(� + 1)2e�+1 lnN . We note that we could also use a direct
probabilistic argument (similar to that above) which gives the slightly better bound
#(B) ≤ (� + 1)2� lnN .

It remains an interesting question to design partitions constructively which could
be used in conjunction with our algorithms for general �.
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