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Abstract
Using a nonlinear alternative theorem of Krasnosel’skii type proved recently by Smaïl
Djebali and Zahira Sahnoun, we investigate, in this paper, the existence of solutions
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1 Introduction
The functional integral equations describe many physical phenomena in various areas
of natural science, mathematical physics, mechanics and population dynamics [–]. The
theory of integral equations is developing rapidly with the help of tools in functional analy-
sis, topology and fixed-point theory (see, for instance, [–]) and it serves as a useful tool,
in turn, for other branches of mathematics, for example, for differential equations (see
[, ]). A fixed point theorem, frequently used to solve integral equations, is a theorem
proved by Krasnosel’skii in  (see, for instance, [, ]). The Krasnosel’skii theorem
asserts that A + B has a fixed point in a closed, convex nonempty subset M of X if A, B
satisfy the following conditions:
• A is compact and continuous;
• B is a strict contraction;
• AM + BM ⊆M.
However, the Krasnosel’skii fixed point theorem sometimes turns out to be restrictive

for some equations due to the weak topology of the problem. In order to use this result and
its variant, one has to find a self-mapped closed convex set M so that A + B maps M into
itself or the weaker one: x = Ax+By (y ∈M) ⇒ x ∈ M. From the application point of view,
this condition is also generally strict and is hard to achieve. To relax these conditions, a
new effort is made in [] by establishing a new variant of nonlinear Krasnosel’skii type
fixed point theorem for nonself maps.
Let us first recall the nonlinear alternative Krasnosel’skii fixed point theorem established

in [], which plays a central role in our discussion.
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Theorem  Let S �  be an open subset of a Banach space X and let S be the closure of S.
Let A : S → X and B : X → X be two mappings satisfying:
• A is continuous, A(S) is relatively weakly compact, and A verifies the condition H.
• B is a contraction and verifies the condition H.

Then either the equation Ax + Bx = x admits a solution in S, or there exists an element
x ∈ ∂S (∂S denotes the boundary of S) such that x = λAx + λB( x

λ
) for some λ ∈ (, ), where

conditions H and H are given in Section .

The advantage of Theorem  lies in that in applying Theorem , one does not need to
verify that the involved operator maps a closed convex subset onto itself.
In this paper, we utilize the alternative Theorem  and employ the concept of measure

of weak noncompactness defined in [] to study the solvability of a nonlinear generalized
mixed-type operator equation of the form

y(t) = g
(
t, y(t)

)
+ Tf

(
t,

∫
�

u
(
t, s, f

(
s,Ay(s)

))
ds

)
, ()

where t ∈ �, g is a function satisfying a contraction condition with respect to the second
variable, y belongs to L(�,X), the space of Lebesgue integrable functions on a measur-
able subset� ofRn with values in a finite-dimensional Banach space X, while T and A are
bounded linear operators on L(�,X). Suppose thatNf is the superposition operator gen-
erated by the function f given by (Nf x)(t) = f (t,x(t)), t ∈ �, and U is a nonlinear Urysohn
integral operator defined by (Ux)(t) =

∫
�
u(t, s,x(s))ds, s, t ∈ �, then Eq. () may be written

in the form

y(t) = g
(
t, y(t)

)
+ (TNfUNfAy)(t). ()

The outline of this paper is as follows. In Section , we introduce some basic facts and
use them to obtain our aims in Section . In the last section, we present some examples
that verify the application of this kind of nonlinear integral equation.

2 Preliminaries
2.1 The weak MNC
We always use (X,‖ · ‖) to denote a Banach space with the norm ‖ · ‖. Denote by B(X)
the collection of all nonempty bounded subsets of X and by W (X) the subset of B(X)
consisting of all weakly compact subsets of X. Let Br be the closed ball in X centered at
origin with radius r. The measure of weak noncompactness introduced by De Blasi is a
map ω : B(X)→ [,∞) defined by

ω(M) = inf
{
r >  | there exists aW ∈W (X) withM ⊆W + Br

}

for eachM ∈ B(X).
The following Lemma  comes from [].

Lemma  Let M,M ∈ B(X). Then we have:
(i) M ⊆M implies ω(M) ≤ ω(M).
(ii) ω(M) =  if and only ifM is relatively weakly compact.

http://www.journalofinequalitiesandapplications.com/content/2013/1/235
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(iii) ω(Mw
 ) = ω(M) (where Mw

 is the weak closure ofM).
(iv) ω(M ∪M) =max{ω(M),ω(M)}.
(v) ω(λM) = |λ|ω(M) for all λ ∈R.
(vi) ω(co(M)) = ω(M) (co(M) refers to the convex hull ofM).
(vii) ω(M +M) ≤ ω(M) +ω(M).
The map ω(·) is called the De Blasi measure of weak noncompactness.

In [], it is shown that in the L space, ω(·) is of the following simple form:

ω(M) = lim sup
ε→

{
sup
ψ∈M

[∫
D

∥∥ψ(t)
∥∥
X dt|D ⊂ �,meas(D) ≤ ε

]}
()

for all bounded M ⊂ L(�,X), where meas(·) represents the Lebesgue measure, X is a
finite-dimensional Banach space.
Let J be a nonlinear operator from X into itself. In what follows, we need the following

two conditions:

H. If (xn)n∈N is a weakly convergent sequence in X , then (Jxn)n∈N has a strongly convergent
subsequence in X ;

H. If (xn)n∈N is a weakly convergent sequence in X , then (Jxn)n∈N has a weakly convergent
subsequence in X .

2.2 The superposition operator
In this subsection, we introduce the superposition (Nemytskii’s) operator. Let � be a
bounded domain of Rn and let X and Y be two separable Banach spaces. m(�,X) de-
notes the set of all measurable functions ψ : � → X. Consider a function f : � × X → Y .
We say that f satisfies Carathéodory conditions if

(i) for any x ∈ X , the map t → f (t,x) is measurable from � to Y ;
(ii) for almost all t ∈ �, the map x → f (t,x) is continuous from X to Y .

Definition  (Nemytskii’s operator) Let f : � × X → Y be a Carathéodory function,
Nemytskii’s operator associated with f , Nf : m(�,X) → m(�,Y ) is defined by Nf x(t) =
f (t,x(t)), ∀t ∈ �.

The superposition operator enjoys several nice properties. Specifically, we have the fol-
lowing results.

Lemma  [] Let X and Y be two separable Banach spaces. If f is a Carathéodory func-
tion, then Nemytskii’s operator Nf maps continuously L(�,X) into L(�,Y ) if and only if
there exist a constant b >  and a function a(·) ∈ L+(�) such that

∥∥f (t,x)∥∥Y ≤ a(t) + b‖x‖X ,

where L+(�) stands for the positive cone of the space L(�).

Lemma  [] Let X, Y be two finite-dimensional Banach spaces and let � be a bounded
domain of Rn. If f : � × X → Y is a Carathéodory function and Nf maps L(�,X) into
L(�,Y ), then Nf satisfies the condition H.

http://www.journalofinequalitiesandapplications.com/content/2013/1/235
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We give a fixed point lemma for bilinear forms.

Lemma  Let X be a Banach space and let B : X × X → X be a bilinear map. Let ‖ · ‖X
denote the norm in X. If for all x,x ∈ X, ‖B(x,x)‖X ≤ η‖x‖X‖x‖X . Then for all y ∈
X satisfying η‖y‖X < , the equation x = y + B(x,x) has a solution x ∈ X satisfying and
uniquely defined by the condition ‖x‖X ≤ ‖y‖X .

Remark  The proof of this lemma also shows that x = limk→∞ xk , where the approximate
solutions xk are defined by x = y and xk = y + B(xk–,xk–). Moreover, ‖xk‖X ≤ ‖y‖X for
all k.

3 Main results
In this section, we investigate the solvability of the nonlinear functional integral Eq. () in
the space L(�,X) by applying Theorem .
First notice that Eq. () may be written in the abstract form

y =Ay +By,

where (By)(t) = g(t, y(t)), and A = TNfUNfA is the composition of the linear operator T
and A with the nonlinear Urysohn integral operator U and the two superposition opera-
tors Nf , Nf generated by f, f, respectively, where Nfiy(t) = fi(t, y(t)), i = , . Our aim is
to prove that A + B has a fixed point in L(�,X). To do so, we assume that the following
conditions are satisfied:
(a) The function g :� ×X → X is a measurable function, g(·, ) ∈ L(�,X) and g is a

contraction with respect to the second variable, i.e., there exists an L ∈ [, ) such
that ‖g(t,x) – g(t, y)‖ ≤ L‖x – y‖ for almost all t ∈ � and all x, y ∈ X .

(b) fi :� ×X → X , i = ,  satisfy Carathéodory conditions and Nfi , i = , , act from
L(�,X) into itself continuously.

(c) The operators T and A are linear and bounded on L(�,X).
(d) The Urysohn operator U defined as before maps continuously L(�,X) into

L(�,X).
(e) ‖u(t, s,x)‖ ≤ κ(t, s){ξ (s) +μ‖x‖} for (t, s) ∈ � and x ∈ X , where ξ belongs to L+(�),

μ is a nonnegative constant and κ :� × � →R+ is a measurable function such that
its associated integral operator K defined by

(Kρ)(t) =
∫

�

κ(t, s)ρ(s)ds, ρ ∈ L(�), t ∈ �, ()

is continuous and maps L(�) into itself.
(f ) There exists a constant N >  independent of λ∗ ∈ (, ) such that any solution of

the integral equation

y(t) = λ∗g
(
t,


λ∗ y(t)

)
+ λ∗TNfUNfAy(t), t ∈ �,

satisfies ‖y‖L(�,X) �=N .

http://www.journalofinequalitiesandapplications.com/content/2013/1/235
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Remark  It is deserved to mention that though the Urysohn operator U maps L(�,X)
into itself, it does not have to be continuous. Sufficient conditions showing that U maps
L(�,X) into itself and is continuous can be found in [].

Before going on, we give crucial Lemma .

Lemma Let X be a finite-dimensional Banach space and let� be a compact subset ofRn.
If the conditions (b)-(e) are satisfied, then the operator NfUNfA satisfies the conditionH.

Proof For any nonempty subsetD of�, let ε be an arbitrary positive real number.We have

∫
D

∥∥NfUNfAy(t)
∥∥dt

=
∫
D

∥∥∥∥f
(
t,

∫
�

u
(
t, s, f

(
s,Ay(s)

))
ds

)∥∥∥∥dt

≤
∫
D

(∣∣a(t)∣∣ + b
∫

�

∥∥u(
t, s, f

(
s,Ay(s)

))∥∥ds
)
dt

≤ ‖a‖L(D) + b
∫
D

(∫
�

κ(t, s)
(
ξ (s) +μ

∥∥f(s,Ay(s))∥∥)
ds

)
dt

≤ ‖a‖L(D) + b‖K‖
(∫

D

(
ξ (s) +μ

∥∥f(s,Ay(s))∥∥)
ds

)

≤ ‖a‖L(D) + b‖K‖
(

‖ξ‖L+(D) +μ

∫
D

(∣∣a(s)∣∣ + b
∥∥Ay(s)∥∥)

ds
)

≤ ‖a‖L(D) + b‖K‖
(

‖ξ‖L+(D) +μ

(
‖a‖L(D) + b‖A‖

∫
D

∥∥y(s)∥∥ds
))

= ‖a‖L(D) + b‖K‖(‖ξ‖L+(D) +μ‖a‖L(D)
)
+μbb‖K‖‖A‖

∫
D

∥∥y(s)∥∥ds.

Now using reference [, Corollary , p.] together with (), we have

lim sup
ε→

{∫
D

(∣∣a(t)∣∣ + ∣∣ξ (t)∣∣ +μ
∣∣a(t)∣∣)dt

∣∣∣meas(D)≤ ε

}
= . ()

Accordingly,

ω(NfUNfAS) ≤ μbb‖K‖‖A‖ω(S) ()

for any bounded subset S of L(�,X).
Next, let (yn)n∈N be aweakly convergent sequence of L(�,X). Owing to (), we infer that

ω{NfUNfA(yn) : n ∈ N} = . This shows that the set {NfUNfA(yn) : n ∈ N} is relatively
weakly compact in L(�,X). This completes the proof. �

Remark  Due to the assumption (a), we get

‖By‖ =
∫

�

∥∥By(t)∥∥dt
≤

∫
�

(∥∥g(t, y(t)) – g(t, )
∥∥)

dt +
∫

�

∥∥g(t, )∥∥dt

http://www.journalofinequalitiesandapplications.com/content/2013/1/235
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≤ L
∫

�

∥∥y(t)∥∥dt +
∫

�

l(t)dt

= ‖l‖L(�) + L
∫

�

∥∥y(t)∥∥dt,

where l(t) = ‖g(t, )‖ ∈ L+(�).
This shows that the operator B is continuous and maps a bounded set of L(�,X) into a

bounded set of L(�,X). According to Lemma , we obtain B satisfies the condition H.

Now we are in a position to state our main result.

Theorem  Let X be a finite-dimensional Banach space and let � be a bounded domain
ofRn.Assume that the conditions (a)-(f) hold true.Then Eq. () admits at least one solution
in L(�,X).

Proof We apply Theorem  with

S =
{
y ∈ L(�,X) : ‖y‖L(�,X) <N

}
.

Claim . Let x, y ∈ L(�,X). It follows from the assumption (a) that

∥∥B(x) –B(y)
∥∥
L(�,X) =

∫
�

∥∥g(t,x(t)) – g
(
t, y(t)

)∥∥
X dt

≤ L
∫

�

∥∥x(t) – y(t)
∥∥
X dt

= L‖x – y‖L(�,X).

So, B is a strict contraction mapping on L(�,X), and from Remark , B satisfies the con-
dition H.
Claim . Clearly, by the assumptions (b)-(d),A = TNfUNfA is continuous on L(�,X).

Now we check that A satisfies the condition H. To do this, let (yn)n∈N be a weakly con-
vergent sequence of L(�,X). By Lemma , (NfUNfA(yn))n∈N has a weakly convergent
subsequence, say (NfUNfA(ynk ))k∈N . Furthermore, the continuity of the linear opera-
tor T implies its weak continuity on L(�,X) for almost all t ∈ �. Thus, the sequence
(TNfUNfA(ynk ))k∈N , i.e., (A(ynk ))k∈N converges pointwisely for almost all t ∈ �. By the
Vitali convergence theorem [, p.], we conclude that (A(ynk ))k∈N converges strongly
in L(�,X). Hence, A satisfies the condition H.
Claim .We show thatA(S) is relatively weakly compact. For this, we need to prove that

ω
(
A(S)

)
= lim sup

ε→

{
sup
y∈S

[∫
D

∥∥Ay(t)
∥∥
X dt

∣∣∣meas(D)≤ ε

]}
= 

for all D ⊆ �, and ∀y ∈ S. By Lemma , we have

∫
D

∥∥Ay(t)
∥∥
X dt

=
∫
D

∥∥TNfUNfAy(t)
∥∥dt

http://www.journalofinequalitiesandapplications.com/content/2013/1/235
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≤ ‖T‖
∫
D

∥∥NfUNfAy(t)
∥∥dt

≤ ‖T‖
(

‖a‖L(D) + b‖K‖(‖ξ‖L+(D) +μ‖a‖L(D)
)
+μbb‖K‖‖A‖

∫
D

∥∥y(s)∥∥ds
)

≤ ‖T‖(‖a‖L(D) + b‖K‖(‖ξ‖L+(D) +μ‖a‖L(D)
)
+μbb‖K‖‖A‖N)

.

Owing to (), we deduce that ω(A(S)) = , and hence A(S) is relatively weakly compact.
Finally, thanks to the assumption (f ), the second situation of Theorem  does not occur.

Now, applying Theorem , we get that A + B has a fixed point in S, that is to say, Eq. ()
has a solution in S. This completes the proof. �

Remark  The requirement that X should be a finite-dimensional Banach space comes
from the usage of the relation () proved in [] for bounded subsets in the space of
Lebesgue integrable functions with values in a finite-dimensional Banach space.

By Theorem , we can get a special existence criterion for Eq. ().

Corollary  Let X be a finite-dimensional Banach space and let � be a bounded domain
ofRn. Besides the assumptions (a)-(e), we make the following additional assumptions:

(i) There exists a continuous function h : [,∞) → [,∞) such that h(u) >  whenever
u >  and

∫
�

∥∥NfUNfAy(t)
∥∥
X dt ≤ h

(‖y‖L(�,X)
)

for every y ∈ L(�,X).

(ii)

sup
θ∈[,∞)

(
( – L)θ

‖l‖L+ + ‖T‖h(θ )
)
> ,

where l(t) := ‖g(t, )‖ and L is the constant in the assumption (a). Then Eq. () has a
solution in L(�,X).

Proof Thanks to Theorem , we only need to show that (i) and (ii) imply (g). Let N > 
satisfy

( – L)N
‖l‖L+ + ‖T‖h(N)

> . ()

The condition (ii) ensures the existence of such an N . Let y ∈ L(�,X) be any solution of
the operator equation

y = λ∗Ay + λ∗B
(

y
λ∗

)
, λ∗ ∈ (, ). ()

Then, for t ∈ �, we have the estimate

∥∥y(t)∥∥ ≤ λ∗
∥∥∥∥g

(
t,
y(t)
λ∗

)
– g(t, )

∥∥∥∥ + λ∗∥∥g(t, )∥∥ + λ∗‖T‖∥∥NfUNfAy(t)
∥∥

≤ L
∥∥y(t)∥∥ + l(t) + ‖T‖∥∥NfUNfAy(t)

∥∥,

http://www.journalofinequalitiesandapplications.com/content/2013/1/235
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and so
∫

�

∥∥y(t)∥∥dt ≤ L
∫

�

∥∥y(t)∥∥dt +
∫

�

l(t)dt + ‖T‖h(‖y‖).

Therefore

( – L)‖y‖L(�,X)

‖l‖L+ + ‖T‖h(‖y‖L(�,X))
≤ . ()

Assuming that ‖y‖L(�,X) =N . Equation () implies (–L)N
‖l‖L++‖T‖h(N) ≤  contradicting (). So,

each solution of () satisfies ‖y‖L+ �=N . Accordingly, by Theorem , Eq. () has a solution
y ∈ L(�,X). This completes the proof. �

Corollary  Let X be a finite-dimensional Banach space and let � be a bounded domain
ofRn. Assume that hypotheses (a)-(f) hold true with the additional assumption that
(iii) L +μbb‖K‖‖A‖ < , where the constants b, b, μ are these in Lemma  and the

hypothesis (f), ‖K‖ denotes the norm of the operator K defined in ().
Then Eq. () has a solution in L(�,X).

Proof Let y ∈ L(�,X). By the formula of Lemma , we have

∫
�

∥∥Ay(t)
∥∥dt

≤ ‖T‖
∫

�

∥∥NfUNfAy(t)
∥∥dt

≤ ‖T‖(‖a‖L(D) + b‖K‖(‖ξ‖L+(D) +μ‖a‖L(D)
)
+μbb‖K‖‖A‖‖y‖L(�,X)

)
.

On the other hand, with the same arguments as in the proof of Corollary , we have the
following estimate:

‖y‖L(�,X) ≤ L‖y‖L(�,X) + ‖l‖L+ + λ∗‖Ay‖
≤ L‖y‖L(�,X) + ‖l‖L+ + λ∗‖T‖δ(‖y‖L(�,X)

)
,

where δ(γ ) = ‖a‖L(D) + b‖K‖(‖ξ‖L+(D) + μ‖a‖L(D)) + μbb‖K‖‖A‖γ . For the sake of
simplicity, we can set ‖a‖L(D) + b‖K‖(‖ξ‖L+(D) +μ‖a‖L(D)) = ν . Hence

{
 – L –μbb‖T‖‖K‖‖A‖}‖y‖L(�,X) ≤ ‖l‖L+ + ‖T‖ν. ()

Let

N >
‖l‖L+ + ‖T‖ν

 – L –μbb‖T‖‖K‖‖A‖ .

If ‖y‖L(�,X) =N , then () implies that

N ≤ ‖l‖L+ + ‖T‖ν
 – L –μbb‖T‖‖K‖‖A‖ ,

http://www.journalofinequalitiesandapplications.com/content/2013/1/235
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which is a contradiction. So, the hypothesis (g) is satisfied and the result then follows from
Theorem . This completes the proof. �

4 Examples
In this section, we provide some examples of a classical integral and functional equation
considered in nonlinear analysis which are a particular case of Eq. ().

Example  The existence of solutions of the equation

x(t) = g
(
t,x(t)

)
+ λ

∫
�

k(t, s)f
(
s,x(s)

)
ds

has been investigated in [] by this method under proper assumptions. We denote that it
is a special case of Eq. () with T = C, where C is the Fredholm operator defined as

C : L(�,Y ) → L(�,X),

ψ �→ Cψ :� → X; Cψ(t) =
∫

�

k(t, s)ψ(s)ds.

Example  The following equation proposed in []

ψ(t) = g
(
t,ψ(t)

)
+ (BNf UAψ)(t)

is also a special case of Eq. () with T = B and f(t, y) = y.

Example  The solvability of the nonlinear integral equation of a mixed type

x(t) = g(t) +
∫ 


k(t, s)f

(
s,

∫ s


k(s, τ )f

(
τ ,x(τ )

)
dτ

)
ds, t ∈ (, )

is discussed in the space L(, ) in []. If let X =R, T = K (defined in []) and u(t, s,x) =
k(t, s)x with � = [, ], then the above equation is a particular case of Eq. () and it is
applied to solve fractional order integro-differential equations

y(t) = g(t) +
∫ 


k(t, s)f

(
s,

∫ s



(s – τ )–β

�( – β)
y(τ )dτ

)
ds, t ∈ (, ).

Example  Consider the following integral equation of the form

x(t) =



[
t exp(–t) + tx(t)

]
+ T

(
ln( + t)
 + t

+
∫ t



exp(–s)
exp(t) + 

(
exp(s) + sin s + x(s)

)
ds

)

with ≤ s ≤ t ≤ .
Let us take g : [, ]×R→R, fi : [, ]×R→R, i = ,  and u : [, ]× [, ]×R→R

defined by, respectively,

g(t,x) =



(
t exp(–t) + tx

)
,

f(t,x) =
ln( + t)
 + t

+ x,
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f(t, y) = sin t + y,

u(t, s,x) =
exp(–s)
exp(t) + 

(
exp(s) + x

)
.

We can suppose T to be an arbitrary linear bounded operator on L[, ]. It is easy to
see that the function g satisfies the assumption (a) with L = 

 , the function |u(t, s,x)| ≤
exp(–s)
exp(t) (exp(s) + x) with k(t, s) = exp(–s)

exp(t) and μ = .
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