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Abstract

Cooperative communication can effectively mitigate the effects of multipath propagation fading by using relay
channels to provide spatial diversity. A relaying scheme suitable for half-duplex devices is the quantize-and-forward
(QF) protocol, in which the information received from the source is quantized at the relay before being forwarded to
the destination. In this contribution, the Cramer-Rao bound (CRB) is obtained for the case where all channel
parameters in a QF system are estimated at the destination. The CRB is a lower bound (LB) on the mean square
estimation error (MSEE) of an unbiased estimate and can thus be used to benchmark practical estimation algorithms.
Additionally, the modified Cramer-Rao bound (MCRB) is also presented, which is a looser but computationally less
complex bound. An importance sampling technique is developed to speed up the computation of the MCRBs, and
the MSEE performance of a practical estimation algorithm is compared with the (M)CRBs. We point out that the
parameters of the source-destination and relay-destination channels can be accurately estimated but that inevitably
the source-relay channel estimate is poor when the instantaneous SNR on the relay-destination channel is low;
however, in this case, the decoder performance is not affected by the inaccurate source-relay channel estimate.

Keywords: Cooperative communication; Estimation; Cramer-Rao bound; Modified Cramer-Rao bound

1 Introduction
In wireless communication, multipath signal propaga-
tion can cause destructive interference at the receiving
antenna, giving rise to fading and limiting the maximum
throughput of the system [1, 2]. This phenomenon can be
combatted by introducing diversity into the system, such
as frequency diversity provided by orthogonal frequency-
division multiplexing (OFDM) [3] or spacial diversity pro-
vided by multiple-input multiple-output (MIMO) systems
[4, 5]. A novel means of providing diversity is cooperative
communication, in which relays provide spatial diversity
by creating multiple signal paths between the source and
the destination [6]. Cooperative communication systems
take advantage of the broadcast nature of the wireless
medium. The information broadcast by the source termi-
nal is received not only by the destination but also by other
terminals nearby. Instead of ignoring this signal as is the
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case in a classical communication system, in a cooperative
system, these nearby terminals act as relays, forwarding to
the destination the information received from the source
and thus creating additional signal paths [7, 8].
Different strategies can be used to implement the infor-

mation forwarding, including amplify-and-forward (AF)
[9], quantize-and-forward (QF) [10], decode-and-forward
(DF) [11], and coded cooperation [12]. The AF protocol,
in which the relay amplifies the signal received from the
source before sending it to the destination, is well known
for its seemingly low-complexity implementation. How-
ever, when using half-duplex terminals which cannot send
and receive data simultaneously, the information received
from the source needs to be stored with high precision
at the relay awaiting retransmission to the destination,
requiring a large memory at the relay terminal. While this
memory requirement might not be a concern for high-end
mobile terminals, it can be of importance in low com-
plexity applications such as sensor networks, where the
sensor hardware complexity should be kept low in order
to minimize production cost and to maximize battery life

© 2015 Avram et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81912464?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-015-0461-8-x&domain=pdf
mailto: iancu.avram@telin.ugent.be
http://creativecommons.org/licenses/by/4.0/


Avram et al. EURASIP Journal onWireless Communications and Networking  (2015) 2015:231 Page 2 of 14

[13]. In order to meet these complexity demands, the QF
protocol has been introduced. In the QF protocol, the
data received from the source is coarsely quantized at the
relay before being stored into memory, requiring signifi-
cantly less memory space as compared to the AF protocol.
Despite its low complexity, it has been shown that the QF
protocol can achieve a very satisfactory error performance
that is very close to that of AF [10, 14].
The majority of the research on cooperative systems has

been performed under the assumption of perfect channel
state information (CSI). While this is useful for obtaining
various information-theoretical results, the real-life situ-
ation of imperfect CSI presents new challenges that need
to be tackled. In contrast to a non-cooperative communi-
cation system where only the source-destination channel
needs to be estimated, cooperative communication sys-
tems must also acquire the state of the source-relay and
the relay-destination channels. Channel parameter esti-
mation for QF has been discussed in [14, 15] for a protocol
in which the relay estimates the source-relay (SR) chan-
nel and forwards its estimate to the destination, while [16]
describes a QF system in which all channel parameters
are estimated at the destination. The latter system bene-
fits from the decreased relay-side complexity. However, it
poses a more complex estimation problem, as the source-
relay channel is not directly observed by the destination.
In order to tackle this estimation problem, in [16], the
source-relay channel is abstracted to be a discrete chan-
nel, characterized by a finite set of transition probabilities.
In doing so, the estimation of the source-relay channel is
greatly simplified, and the computational complexity at
the destination is reduced. Furthermore, this makes the
estimation of the estimation of the source-relay channel
transition probabilities independent of the channel model
and quantizationmethod, making the results applicable to
a large variety of systems.
Once an estimation algorithm has been obtained for

a certain estimation problem, different approaches exist
to benchmark the performance of the considered algo-
rithm. A first approach is to compare the decoding error
rate of a system in which the channel parameters are esti-
mated to that of a system in which the channel parameters
are considered to be known. The difference between the
two error rates provides an indication about the perfor-
mance of the estimation algorithm. A more fundamental
way of studying the performance of an estimation algo-
rithm is provided by the Cramer-Rao bound (CRB), which
is a lower bound (LB) on the error variance of an unbi-
ased estimate [17]; when an estimate exhibits an error
variance that is close to the CRB, there is little room
to improve the accuracy of the considered estimate. The
opposite holds for an estimate having an error variance
that is much higher as compared to the CRB. The CRB
for the estimation of the channel parameters in a one-way

AF cooperative system using flat-fading channels has been
obtained in [18], while in [19], the CRB is obtained for an
AF and DF system in which multiple frequency offsets are
considered. Lower bounds for the two-way relaying chan-
nel, in which two terminals aided by a relay communicate
with one another, have been obtained in [20–23] for the
AF protocol.
In this contribution at hand, the (CRB) is obtained for

a QF system in which all relevant channel parameters are
jointly estimated at the destination. It is identified which
channels are the most difficult to accurately estimate and
to which degree the different channel estimates are cou-
pled. By interpreting the cascade of the source-relay chan-
nel and the quantization operation as a single discrete-
input discrete-output channel, the results obtained in this
contribution can be used to benchmark a wide variety of
cases with minimal adjustments, such as a multi-hop QF
relaying scheme often found in sensor networks. Because
the CRB is difficult to evaluate in some cases, themodified
Cramer-Rao bound (MCRB) is also considered, which has
a lower complexity compared to the CRB and converges
to the latter at high SNR [24, 25]. The MCRB for a sim-
ilar system has been obtained in [26]. However, because
the MCRB is not a tight bound at low SNR values, obtain-
ing the value of the CRB is important in order to be able
to benchmark the estimation performance over the com-
plete SNR range. Moreover, the comparison between the
CRB and MCRB also provides valuable insights.
The remainder of this contribution is organized as fol-

lows. In Section 2, the system model is introduced. In
Section 3, an expression is obtained for the CRB, where-
after the MCRB is derived in Section 4. Next, in Section 5,
the use of importance sampling (IS) is outlined, a tech-
nique that can be used to drastically shorten numerical
simulation times [28], without affecting the accuracy of
the obtained bounds. Finally, numerical results are pre-
sented in Section 6, whereafter conclusions are drawn in
Section 7.

2 Channel model
In this contribution, a cooperative network is analyzed
consisting of a direct path and a one-hop relaying channel,
as depicted in Fig. 1. The relay is considered to be a half-
duplex device, meaning that it cannot send and receive
information simultaneously. In a first frame, the source
broadcasts a sequence of K M1-PSK symbols, denoted
cs, which are received by both the relay and the destina-
tion. The relay quantizes the angle of the received samples
using log2(M2) bits. These quantized samples, repre-
sented by a sequence of K M2-PSK symbols denoted cr ,
are then forwarded to the destination in a second frame.
At the destination, maximum-ratio combining (MRC) is
used to combine the signals received from the source and
relay.
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Fig. 1 A relay channel consisting of half-duplex devices

2.1 Source-destination and relay-destination channels
The source-destination (SD) and relay-destination (RD)
channels aremodeled as flat Rayleigh fading channels with
additive white Gaussian noise. The SD and RD channel
coefficients are denoted h0 and h2, respectively. The sig-
nals received by the destination from the source and the
relay, denoted r0 and r2, respectively, are equal to

r0 = √
Escsh0 + n0

r2 = √
Ercrh2 + n2.

(1)

Assuming the normalization |cs|2 = |cr|2 = K , the
quantities Es and Er denote the transmitted energy per
symbol at the source and the relay, respectively. The chan-
nel coefficients h0 and h2 are considered to be constant
during a frame and have a zero mean circular symmetric
complex gaussian (ZMCSCG) distribution with variances
Nh0 = 1/d0nloss and Nh2 = 1/d2nloss , respectively. The
quantities d0 and d2 represent the distance between the
source and the destination and between the relay and the
destination, while nloss denotes the path loss exponent.
The components of the noise vectors n0 and n2 are also
ZMCSCG distributed with respective variances N0 and
N2.

2.2 Equivalent source-relay channel
Due to the quantization operation, both the source and
the relay transmit discrete symbols from a PSK constella-
tion. Hence, the cascade of the source-relay (SR) channel
and the quantization operation at the relay can be inter-
preted as an equivalent discrete-input discrete-output
communication channel with M1 input values and M2
output values. Assuming that the actual SR channel and
the quantizer are memoryless and time-invariant over a
frame, this equivalent SR channel is fully characterized by
M2 × M1 transition probabilities πq,m, which determine
the probability of a symbol sent by the relay conditioned
on the symbol sent by the source in the corresponding
symbol interval, i.e., for q = 0, · · · ,M2 − 1 and m =
0, · · · ,M1 − 1,

πq,m(k) = P
[
cr(k) = χM2(q) | cs(k) = χM1(m)

]
,

with χM(x) = e
j2πx
M . Denoting by r1(k) the kth sam-

ple at the input of the relay, the transition probabilities
πq,m can be computed from the SR channel likelihoods
p
(
r1(k) | cs(k) = χM1(m)

)
and the quantization rule that

maps r1(k) to χM2(q). Results in this paper will be derived
in terms of the transition probabilities, without specify-
ing the underlying SR channel likelihood and quantization
rule.
It is further assumed thatM2/M1 is integer and that the

quantization operation exhibits circular symmetry with
respect to the symbols sent by the source, so that

πq+M2
M1

m,m = πq,0 = τq. (2)

Hence, the equivalent SR channel is characterized by the
transition probabilities {τq, q = 0, · · · ,M2 − 1}.

3 The Cramer-Rao bound
The CRB is a lower bound (LB) on the mean square error
(MSE) of an unbiased estimate. In the current system
model, the SD and RD channel coefficients, h0 and h2, as
well as the SR transition probabilities τq are unknown and
need to be estimated before the information transmitted
by the source can be reliably detected at the destination.
In order to keep the complexity of the relay terminal low,
it is imposed that all parameters are estimated at the desti-
nation. It is further assumed that the destination does not
posses any a priori information on the different channel
parameters.
The unknown channel parameters are grouped into the

real-valued vector θ , which is given by

θ =
(
R(h0), I(h0), τT ,R(h2), I(h2)

)T
,

with τ = (τ0, τ1, · · · , τM2−2)T . Note that τM2−1 is not con-
tained in θ , because it is not an independent parameter
(τM2−1 = 1−τ0−. . .−τM2−2). In order to obtain the CRB,
the Fisher information matrix (FIM) J(θ) is introduced,
the elements of which are defined as [17]

J(θ)i,j = Er
[

∂
∂θi

ln p(r; θ) ∂
∂θj

ln p(r; θ)
]
, (3)

with r = (r0, r2). It is shown in Appendix A that the
elements of the FIM can be expressed as

J(θ)i,j = Er
[
Xi(r; θ)Xj(r; θ)

]
, (4)

where the expression for Xx(r; θ) is given in (23). In
order to evaluate Xx(r; θ), the a posteriori probabilities
p(cs(k) | r; θ) of the source symbols are needed. These
depend on the structure of the channel code and are
obtained at the destination using a soft decoder that oper-
ates on r. Using the notation x̂ to represent an unbiased
estimate of x, it follows from [17] that
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Er
[
(θ − θ̂)(θ − θ̂)H

]
≥ J−1(θ), (5)

where A ≥ B implies that A − B is positive-semidefinite
matrix. Using (5), a LB can be obtained on the mean
square estimation error (MSEE) of the various channel
parameters as is shown in the next subsections. Note that
the value of this LB depends on the specific realization of
θ . In order to obtain a LB that is independent of θ , the
obtained expressions need to be averaged over θ , as will
be done numerically in Section 6.

3.1 SD and RD channel coefficients
Once the elements of the FIM have been calculated, a LB
on the MSEE of the SD and RD channel coefficients is
obtained by noting that h0 and h2 can be expressed in
terms of θ as h0 = u θ and h2 = w θ , with u = (1, j, 0M2+1)
and w = (0M2+1, 1, j), where j2 = −1. This yields the fol-
lowing CRB on the MSE arising from the estimation of
h0:

Er
[
|h0 − ĥ0|2

]
≥ (

uJ−1(θ)uH
) = CRBh0(θ). (6)

The CRB on the MSE arising from the estimation of h2
is obtained by substituting u for w in (6).

3.2 SR transition probabilities
Considering that τ = Vθ with

V =
⎡
⎣ 0 0 0 0
0 0 IM2−1 0 0
0 0 −1 − 1 0 0

⎤
⎦ ,

the CRB on the MSE arising from the estimation of τ is
given by

Er
[
(τ − τ̂ )H(τ − τ̂ )

] ≥ Tr
(
V J−1(θ)VH) = CRBτ (θ).

(7)

3.3 Known parameter subset
It will be useful to also consider the CRB related to the
estimation of a parameter subset {θi, i ∈ C} under the
assumption that the complementary parameter set {θj, j ∈
C̃} is known, in order to evaluate the impact, on the
estimation of the former subset, of whether or not the lat-
ter subset is known. The corresponding FIM is obtained
by removing from the original FIM the jth rows and jth
columns that correspond to j ∈ C̃, leaving only the rows
and columns that correspond to the unknown parameters
{θi, i ∈ C}.

4 Themodified Cramer-Rao bound
As shown in Appendix A, the calculation of the elements
of the FIM involves the computation of the a posteriori
probabilities of the source symbols, making it difficult to
obtain a closed-form expression for the CRB. Therefore,
when using non-trivial channel codes, the CRB needs to

be obtained using numerical simulations methods (see
Section 5) that are quite time-consuming. In order to
avoid the computational complexity associated with the
CRB, we also consider the modified CRB (MCRB), which
does not need the a posteriori probabilities of the source
symbols (the MCRB assumes the source symbols are
known by the receiver). TheMCRB is a looser bound com-
pared to the CRB; the CRB approaches the MCRB at high
signal to noise ratios, where p(cs(k) | r, θ) ≈ 1 for cs(k)
equal to the symbol actually transmitted. Due to the less
complex mathematics of the MCRB, simulation times are
greatly reduced and in some cases closed-formed expres-
sions can be found. TheMCRB is obtained by substituting
in (6) and (7) the inverse of the FIM with the inverse of
the modified Fisher information matrix (MFIM), defined
as [25]

JM(θ)i,j = Ecs

[
Er | cs

[
∂

∂θi
ln p(r | cs; θ)

∂

∂θj
ln p(r | cs; θ)

]]
.

(8)

It follows from (2) that
p(r(k) | cs(k) = χM1(m); θ)

∣∣r(k)=y

= p(r(k) | cs(k) = χM1(0); θ)

∣∣∣r(k)=yχ∗
M1

(m) ,

so that in (8) the conditional expectation Er | cs [ .] does not
depend on the particular realization of cs. Hence, the outer
expectation in (8) can be omitted, yielding

JM(θ)i,j = Er | cs
[

∂

∂θi
ln p(r | cs; θ)

∂

∂θj
ln p(r | cs; θ)

]
.

(9)

As shown in Appendix B, JM is a block-diagonal matrix
equal to

JM =
[
JM,SD 0
0 JM,SRD

]
,

where JM,SD =
(
2KEs
N0

)
I2 and JM,SRD are the MFIMs

related to the estimation of the SD channel parameters
{θ0, θ1} and the source-relay-destination (SRD) channel
parameters θ̄ = {θi, i > 1}, respectively. It is shown in
Appendix B that the elements of JM,SRD can be expressed
as

JM,SRD(θ̄)i,j = KEr2 | cs
[
X̄i

(
r2, cs; θ̄

)
X̄j

(
r2, cs; θ̄

)]
,

(10)

where X̄i(r2, cs; θ̄) is given by (35). The expression for the
components of JM,SRD is given in (37) and (38). Because of
the block-diagonal nature of JM, the SD channel param-
eters are decoupled from the SRD channel parameters:
the MCRB corresponding to the SD (the SRD) chan-
nel parameters does not depend on whether or not the
parameters of the SRD (the SD) channel are known.
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4.1 SD channel
Given the value of JM,SD, the MCRB corresponding to the
estimation of the SD channel coefficient h0 becomes

E

[
|ĥ0 − h0|2

]
≥ N0

KEs
= MCRBh0 .

4.2 SRD channel
In order to obtain the MCRB for the parameters (τ , h2)
of the SRD channel, the expectation in (10) must be com-
puted using Monte-Carlo (MC) methods (see Section 5).
However, in a few special cases considered below, closed-
form expressions can be obtained.

4.2.1 Perfect RD channel
When the RD channel is perfect, the destination receives
the message from the relay unaltered, i.e., r2 = cr . In
this case, the estimation of the SRD channel parame-
ters reduces to the estimation of the transition proba-
bilities of the equivalent SR channel. Introducing θ̃ =(
τ0, τ1, . . . , τM2−2

)T , the resulting FIM has dimension
(M2 − 1) × (M2 − 1), and is equal to

JM,SR(θ̃)i,j = KEcr |cs

[
∂

∂θ̃i
ln p(cr | cs; θ̃)

∂

∂θ̃j
ln p(cr | cs; θ̃)

]
.

(11)

Using (37), (11) can be written as

JM,SR(θ̃)i,j = K
(

δi−j

τi
+ 1

τM2−1

)
, (12)

where δx denotes the Kronecker delta function. Hence, the
MFIM can be represented as:

JM,SR(θ̃) = K
(
D−1 + τ−1

M2−11
T
M2−11M2−1

)
,

with D a diagonal matrix with diagonal elements equal to
(τ0, τ1, . . . , τM2−2). Using the Woodbury matrix identity
[27] to calculate the inverse of the MFIM yields

J−1
M,SR(θ̃) = 1

K

(
D − θ̃

H
θ̃
)
. (13)

The MCRB corresponding to the estimation of τ

is obtained by substituting (13) into (7) with V =(
IM2−1,−1TM2−1

)T
, yielding

E
[
(τ − τ̂ )H(τ − τ̂ )

] ≥ 1
K

⎛
⎝1 −

M2∑
q=1

τ 2q

⎞
⎠ . (14)

4.2.2 Perfect equivalent SR channel
When the equivalent SR channel is perfect, a symbol
transmitted by the relay is completely determined by the
corresponding symbol transmitted by the source; stated
differently, all but one transition probabilities are zero, and
the nonzero transition probability equals one. In this case,

the estimation of the SRD parameters reduces to the esti-
mation of the RD channel coefficient h2 . It can be shown
that one obtains JM,RD =

(
2KEr
N2

)
I2, and subsequently

E

[
|ĥd − hd|2

]
≥ N2

KEr
. (15)

5 Importance sampling
In general, the evaluation of the FIM (4) and the MFIM
(9) involves expectations that cannot be obtained in closed
form, so that we must resort to MC techniques. However,
when some of the transition probabilities of the SR chan-
nel are very small, the computational effort required to
obtain an accurate value for the (M)CRB can be very high.
This can be understood by calculating the MCRB corre-
sponding to the case of a perfect RD channel and using
a MC approach instead of an analytical one. A straight-
forward MC approach to obtain JM,SR(θ̃)i,j involves the
following approximation of (12):

JM, SR(θ̃)i,j ≈ K
N

N∑
n=1

(
I(n)
i δi−j

τ 2i
+ I(n)

M2−1

τ 2M2−1

)
i, j = 0, 1, . . . ,M2 − 2,

(16)

where I(n)
q = 1 if c(n)

r = cse
j2πq
M2 and 0; otherwise, cs is an

arbitrary symbol from theM1-PSK constellation (say, cs =
1), and

{
c(n)
r , n = 1, 2, . . . ,N

}
is a sequence of i.i.d random

variables, generated according to Pr
[
c(n)
r = cse

j2πq
M2

]
=

τq, q = 0, 1, . . . ,M2 − 1. Suppose that for given N, τi1 and
τi2 are both much smaller than 1/N , so that it is likely to
have I(n)

i1 = I(n)
i2 = 0 for n = 1, 2, . . . ,N . In this case, the

estimate (16) of the MFIM is singular (it has identical i1th
and i2th rows), so that its inverse does not exist. Hence,
to obtain meaningful results using (16), very large values
of N (and, therefore, long simulation times) are required
when some of the transition probabilities are very small.
These simulation times can significantly be shortened

by the use of importance sampling (IS) [28]. For the exam-
ple of the perfect RD channel, this involves generating{
c(n)
r , n = 1, 2, . . . ,N

}
according to a biased distribution

Pr
[
c(n)
r = cse

j2πq
M2

]
= κq, q = 0, 1, . . . ,M2 − 1, and replac-

ing (16) by

JM, SR(θ̃)i,j ≈ K
N

N∑
n=1

(
I(n)
i δi−j

τ 2i
.
τi
κi

+ I(n)
M2−1

τ 2M2−1
.
τM2−1
κM2−1

)
,

(17)

with i, j = 0, 1, . . . ,M2 − 2. We select all κq to be much
larger than 1/N , so that it is unlikely for any q to have
I(n)
q = 0 for n = 1, 2, . . . ,N . This yields 1

N
∑N

n=1 I
(n)
q ≈ κq
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for all q, so that (17) is close to the analytical result (12).
By using IS, we have thus
In the general case, J(θ)i,j from (3) and JM,SRD(θ̄)i,j from

(10) are approximated as

J(θ)i,j ≈ 1
N

N∑
n=1

Xi
(
r(n); θ

)
Xj

(
r(n); θ

)
.
p
(
r(n); θ

)
p
(
r(n); ζ

)
(18)

JM,SRD(θ̄)i,j≈ K
N

N∑
n=1

X̄i
(
r(n)
2 , cs; θ̄

)
X̄j

(
r(n)
2 , cs; θ̄

)
.
p
(
r(n)
2 | cs; θ

)
p
(
r(n)
2 | cs; η

) ,
(19)

where
{
r(n), n = 1, 2, . . . ,N

}
and

{
r(n)
2 , n = 1, 2, . . . ,N

}
are N independent realizations generated according to the
biased distributions p

(
r(n); ζ

)
and p

(
r(n)
2 | cs; η

)
, with

ζ = (R(h0), I(h0), κ0, κ1, . . . , κM2−2,R(h2), I(h2))T

η = (κ0, κ1, . . . , κM2−2,R(h2), I(h2))T .

Note that the expression (18) of the FIM is much more
time-consuming to evaluate than the expression (19) of
the MFIM; indeed, the former requires the generation
of observation vectors of K components and the com-
putation of the a posteriori source symbol probabilities,
whereas for the latter the observations to be generated are
scalar, and no a posteriori source symbol probabilities are
needed.

6 Numerical results
In this section, the value of the CRBs and MCRBs related
to the various channel parameters is obtained for different
SNRs. The IS technique from Section 5 has been applied
to evaluate the MCRBs. No IS is used when computing
the CRBs, due to the complexity involved in evaluating the
factor p

(
r(n); θ

) /
p
(
r(n); ζ

)
in (18).

In this section, the value of the CRB and MCRB is
obtained for different SNR ratios using the IS technique
from Section 5. First, the simulation parameters are spec-
ified, whereafter the LBs on the MSEE of the different
channel parameters are discussed. The tightness of the
obtained LBs is evaluated by comparing the latter with the
MSEE of the estimation algorithms from [16], which are
briefly discussed in Appendix C.

6.1 System parameters
The SD and RD channels are as described in Section 2.1.
The actual SR channel is modeled as a flat Rayleigh
fading channel with additive white Gaussian noise, char-
acterized by the channel coefficient h1. The latter is

constant during a frame and has a ZMCSCG distribu-
tion with variance Nh1 = 1/d1nloss , with d1 the distance
between the source and the relay terminal. The noise on
the SR channel also has a ZMCSCG distribution with
variance N1.
The instantaneous SNRs on the SD, SR, and RD chan-

nels are γ0 = Es|h0|2/N0, γ1 = Es|h1|2/N1, and γ2 =
Er|h2|2/N2, respectively; the corresponding average SNRs
are Es/N0, Es/N1 and Er/N2. The source, relay, and desti-
nation terminals are located at the vertices of an equilat-
eral triangle with normalized edge length, i.e., d0 = d1 =
d2 = 1, yielding E[ |hn|2]= 1 for n = 0, 1, 2. All noise vari-
ances are taken equal (i.e., N0 = N1 = N2). The source
symbols and the relay symbols have the same energy (i.e.,
Es = Er).
The source broadcasts BPSK symbols (i.e.,M1 = 2). The

samples received by the relay are quantized to QPSK sym-
bols (i.e., M2 = 4) without knowledge of the SR channel,
i.e., cr(k) = ej

π
2 �0.5+ 2

π
arg(r1(k))� with r1(k) denoting the kth

sample received by the relay. The corresponding transition
probabilities of the equivalent SR channel are obtained
as function of the SR channel parameters h1 and Es/N1
using the techniques described in [10, 16]. For the calcu-
lation of the CRB, channel encoding is performed using a
(1, 13/15)8 RSCC turbo code [29] that is punctured to a
rate of 2/3. A frame contains 1024 information bits, which
corresponds to 1536 data symbols after channel encoding
and BPSK mapping. In addition to these BPSK data sym-
bols, 12 pilot symbols are added to each frame, to help
the destination to obtain estimates for the various chan-
nel parameters; this yields a total frame size of K = 1548
BPSK symbols.
The CRB for a given realization of θ is obtained by per-

forming the averaging in (4) by means of a MC simulation
involving N = 5000 independent realizations of r; this
corresponds to the generation of 2K · N ≈ 1.5 · 107 scalar
observations. Subsequently, 104 realizations of θ are used
to average the CRB over θ .
The calculation of the MCRB for a given realization of

θ is performed using MC simulation with IS. The biased
transition probabilities κ to be used in (19) are generated
by assuming that γ1 is always equal to 0 dB, irrespective of
the actual value of γ1. In doing so, only 5000 realizations
of the scalar observation r2 that corresponds to cs = 1 are
generated to compute the conditional average over r2 in
(10). When compared to the 1.5 · 107 iterations required
for the CRB where no IS is used, IS reduces the simu-
lation time by a factor of 3000. While the calculation of
the (M)CRB is typically not a time-critical application, the
simulation time reduction can prove very valuable when
prototyping a system, where the changes applied to it can
be rapidly benchmarked by means of the MCRB. After
averaging over r2, 104 realizations of θ are used to average
the MCRB over θ .
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6.2 Estimation of the SD channel
The MSEE of the SD channel coefficient is analyzed as a
function of Es/N0, while keeping the instantaneous SNR
on the SR channel, represented by γ1, fixed. We set Er/N2
equal to Es/N0. Figure 2 shows the MSE resulting from
the EM algorithm, the CRB and the MCRB related to the
estimation of h0 for various values of γ1. The MCRB is
independent of γ1, as was pointed out in Section 4. How-
ever, the CRB is affected by the value of γ1, because γ1
determines the transition probabilities τ , which in turn
impact the a posteriori source symbol probabilities that
are used in the computation of the CRB.
As the figure shows, the state of the SR channel, repre-

sented by γ1, has only little impact on the MSEE of the
SD channel coefficient. As expected, this effect further
diminishes at high SNRs, where the CRB approaches the
MCRB.

6.3 Estimation of the SR channel
We consider the bounds on the MSEE of the equiva-
lent SR channel transition probabilities τ , as a function
of Es/N1, with the SD channel being characterized by
Es/N0 = Es/N1. We take fixed values for γ2, the instan-
taneous SNR of the RD channel. Figures 3, 4, and 5 show
the CRB, theMCRB, and theMSEE resulting from the EM
algorithm, for various γ2. In order to evaluate the impact
of an imperfect RD channel estimate ĥ2 on the estimation
performance of the SR channel transition probabilities τ ,
the aforementioned figures also show the results corre-
sponding to the estimation of τ when h2 is known to the
destination. As a LB on the obtained results, the MCRB
corresponding to the case of a perfect RD channel (see
Section 4.2.1) is also plotted.

Several key observations can be made from the afore-
mentioned figures. At high γ2 values, shown in Fig. 5,
the CRB converges to the MCRB for moderate and
high Es/N1 when all channels are unknown and, at high
Es/N1, both the CRB and MCRB converge to the MCRB
corresponding to a perfect RD channel. Assuming the
RD channel is known to the destination when estimat-
ing, the SR channel yields only a slight decrease in
MSE. Figure 5 also shows that at high γ2 values, the
CRB is a tight LB on the MSE of the actual estimation
algorithm.
For lower γ2 (see Figs. 3 and 4), the CRB still approaches

the MCRB at high Es/N1 when all channels are unknown,
but there remains a substantial (especially at very low
γ2 values) gap in MSE as compared to the case where
the RD channel is known to the destination; a still
larger gap occurs as compared to the case of a per-
fect RD channel. The former gap is caused by the poor
accuracy of ĥ2 at low γ2, which in turn deteriorates
the estimate of τ , even at large Es/N1; this indicates
a considerable coupling between the estimates ĥ2 and
τ̂ . The difference in MSE between the cases of known
RD channel and perfect RD channel is caused by the
noise on the RD channel, and therefore increases with
decreasing γ2.
Next, we observe a MSE floor that occurs at high Es/N1

when γ2 is low. This phenomenon is explained by calcu-
lating the MCRB corresponding to the estimation of the
SR channel transition probabilities at the high SNR limit.
For very high Es/N1, the transition probabilities τ satisfy
τk ≈ 1 for a certain index k = �0.5 + (2/π) arg(h1)� and
τl ≈ 0 for l �= k. Under this assumption, (37) can be
written as
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Fig. 2MSEE of ĥ0 as a function of the Es/N0 ratio for various values of γ1
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Fig. 3MSEE of τ̂ as a function of the Es/N1 ratio for γ2 = −6 dB

∂

∂θ̄i
ln p(r2 | cs; θ̄) =

P
[
r2

∣∣ cr =χM2

(
i+ M2

M1
m
)
; θ̄
]
−P

[
r2
∣∣cr =χM2

(
M2(M1+m)

M1
−1

)
; θ̄
]

P
[
rd

∣∣ cr = χM2

(
k + M2

M1
m
)
; θ̄
] .

(20)

Using (20) when evaluating (9) yields Fig. 6, in which the
high Es/N1 limit of the MCRB related to estimating τ is
plotted as a function of γ2. As the figure shows, the value
of the MSE floor observed on Figs. 3 and 4 is determined
by the instantaneous RD channel quality γ2. The figure
also shows that this MSE floor drops very steeply when

γ2 > 0 dB, explaining the apparent absence of an MSE
floor on Fig. 5.
Figures 3, 4 and 5 indicate that the MSEE resulting from

the EM algorithm does not approach the CRB at low val-
ues of γ2. This is due to the fact that the estimation scheme
described in [16] fails to obtain accurate estimates for
the SR transition probabilities at low γ2, accounting for
the gap between the MSEE of the EM algorithm and the
(M)CRB.
It should be noted that the inability to accurately esti-

mate the SR transition probabilities at low γ2 has only
a minor effect on the error performance of the decoder
at the destination, as observed in [16]. Indeed, at low
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Fig. 4MSEE of τ̂ as a function of the Es/N1 ratio for γ2 = 0 dB
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Fig. 5MSEE of τ̂ as a function of the Es/N1 ratio for γ2 = 6 dB

γ2, the decoder basically ignores the signal r2 received
from the relay and exploits only the SD signal r0; in this
case, the error performance of the decoder is essentially
independent of the quality of the SR channel estimate.

6.4 Estimation of the RD channel
The MSE resulting from the estimation of the RD chan-
nel coefficient is shown in Figs. 7, 8 and 9 as a function of
Er/N2. We take Es/N0 = Er/N2, while keeping fixed val-
ues for γ1, the instantaneous SNR on the SR channel. As a
reference, the figures also show the results for a known SR
channel (i.e., τ̂ = τ ) and for a perfect SR channel (in which
case the relay symbols are deterministically determined by
the source symbols).
As the aforementioned figures show, the CRB converges

to the MCRB at high Er/N2, and this irrespective of γ1.
Unlike the LBs associated with the estimation of the SR
channel transition probabilities, the CRB and MCRB of

the RD channel coefficient do not exhibit an MSE floor
and, for any γ1, both converge to the (M)CRB correspond-
ing to a known SR channel (τ̂ = τ ), and also to the MCRB
corresponding to a perfect SR channel. This can be under-
stood by considering p(cr(k) | cs(k), r2(k); θ̄) from (38) for
very small γ1, so that τq ≈ 1

M2
,∀q; this yields

p(cr(k) | r2(k), cs(k); θ̄) = p(r2(k) | cr(k); θ̄)∑
r2(k) p(r2(k) | cr(k); θ̄)

.

For large Er/N2, we obtain p(cr(k) | cs(k), r2(k); θ̄) ≈ 1
when cr(k) equals the relay symbol actually transmitted.
This indicates that, in spite of the very small γ1, the relay
symbols can be considered known at the destination for
large Er/N2. This also enables the estimation algorithms
discussed in [16] to obtain accurate estimates of h2, mak-
ing the CRB a tight LB on the estimation performance,
especially so at high Er/N2 ratios. Hence, seen from an
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Fig. 6MCRBτ at infinite SR channel SNR as function of the instantaneous RD channel SNR
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Fig. 7MSEE of ĥ2 as a function of the Er/N2 ratio for γ1 = −6 dB

estimation point of view, it is advantageous to place the
relay terminal close to the destination, as this enables the
latter to obtain a good estimate of both the SR channel
(due to a high average γ2 value) and the RD channel (due
to the robustness of the estimate of h2 with respect to low
γ1 values).
Comparison of the results obtained in this subsection to

the bounds obtained for the SD channel in Subsection 6.2
indicates that due to the presence of the SR link, the RD
channel is more difficult to accurately estimate. This effect
diminishes as the SR channel quality is increased and
especially if the SR channel is assumed to be known. In
the case of a perfect SR channel, the MCRB related to the

estimation of the RD channel corresponds to that of the
SD channel, as is to be expected.

7 Conclusions
In this contribution, the CRB was obtained for all chan-
nels in a QF cooperative system. By maintaining a general
description of the SR channel and the quantization opera-
tion, the obtained results can be applied to a wide variety
of cases such as a Rice fading SR channel or a cascade of
different channels. In order to reduce the complexity asso-
ciated with the CRB, we also presented the MCRB , which
is a looser bound compared to the CRB but which con-
verges to the latter at high SNR. Except for a few special
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Fig. 8MSEE of ĥ2 as a function of the Er/N2 ratio for γ1 = 0 dB
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Fig. 9MSEE of ĥ2 as a function of the Er/N2 ratio for γ1 = 6 dB

cases in which closed-formed expressions were found for
the MCRB, the CRB and MCRB were obtained using
numerical simulation methods. By using the proposed IS
technique in the numerical computation of theMCRB, the
simulation times were substantially reduced, allowing for
fast benchmarking when making variations on a system
under investigation.
The presented results show that it is possible to obtain

accurate estimates of the SD and RD channels, irrespec-
tive of the state of the other channels. On the other hand,
accurately estimating the SR proves more difficult. The
(M)CRB corresponding the estimation of the SR channel
exhibits high MSEE values when the RD channel quality
is poor. Furthermore, the MSEE of the SR channel param-
eters is bounded by an error floor, the value of which
depends on the state of the RD channel. Fortunately, the
decoder performance is virtually unaffected by the accu-
racy of the SR channel estimate when the RD channel
quality is poor.

Notations
a Scalar
a Column vector
A Matrix
0N Row vector of length N with all elements equal

to 0
1N Row vector of length N with all elements equal

to 1
IN Identity matrix of rank N

(.)T , (.)H Transpose and Hermitian transpose
Tr(.) Matrix trace
(.)∗ Complex conjugate
|.| Absolute value

R(.), I(.) Real and imaginary part
Ex[ .] Expectation with respect to the random vector x

Appendix A: Calculation of the FIM
In the following section, the calculation of the elements
of the FIM is outlined. These elements are obtained by
evaluating

J(θ)i,j = Er

[
∂

∂θi
ln p(r; θ)

∂

∂θj
ln p(r2; θ)

]
= Er

[
Xi(r; θ)Xj(r; θ)

]
,

(21)

with Xi(r; θ) = ∂
∂θi

ln p(r; θ). By conditioning on the sym-
bols cs and cr sent by the source and the relay, Xi can be
written as

Xi(r; θ) = ∂

∂θi
ln

∑
cs,cr

p(r | cr , cs; θ)p(cr | cs; θ)p(cs)

=
∑
cs,cr

F(r, cr , cs; θ)p(cr , cs | r; θ)

= Ecs,cr | r [F(r, cr , cs; θ)] ,
(22)

where

F(r, cr , cs; θ) = ∂

∂θi
ln p(r | cr , cs; θ) + ∂

∂θi
ln p(cr | cs; θ).

Taking into account that

p(r | cr , cs; θ) = p(r0 | cs; h0)p(r2 | cr ; h2)

and p(cr | cs; θ) depends only on the transition probabili-
ties of the equivalent SR channel, we obtain
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Xi(r; θ)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ecs | r

[
∂

∂θ(i) ln p(r0|cs ; h0)
]

for i = 0, 1

Ecs,cr | r
[

∂
∂θ(i) ln p(cr|cs ; τ)

]
for 1< i≤M2

Ecs,cr | r
[

∂
∂θ(i) ln p(r2|cr ; h2)

]
for M2 < i

.

(23)

These expressions can be expanded as

Xi(r ; θ) = (24)⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑K
k=1

∑
cs(k)

∂
∂θ(i) ln p(r0(k)|cs(k); h0)p(cs(k) | r ; θ)

for i = 0, 1∑K
k=1

∑
cs(k),cr(k)

∂
∂θ(i) ln p(cr(k)|cs(k);τ )p(cs(k),cr(k)|r; θ)

for 1< i≤M2∑K
k=1

∑
cs(k),cr(k)

∂
∂θ(i) ln p(r2(k)|cr(k); h2)p(cs(k),cr(k)|r;θ)

for M2 < i

,

(25)

where the summations over cs(k) and cr(k) run over all
points in their respective constellations. In (25), the a
posteriori probabilities p(cs(k) | r; θ) of the source sym-
bols depend on the structure of the channel code, and are
obtained from a soft decoder that operates on r. The joint
a posteriori probabilities p(cs(k), cr(k) | r; θ) in (25) can be
decomposed as

p(cs(k), cr(k) | r; θ) = p(cr(k) | cs(k), r2(k); θ)p(cs(k) | r; θ).

The probabilities p(cr(k) | cs(k), r2(k); θ) are obtained as

p(cr(k) | cs(k), r2(k); θ)

= p(r2(k) | cr(k); h2)p(cr(k) | cs(k); τ )∑
α p(r2(k) | cr(k) = α; h2)P[ cr(k) = α | cs(k); τ ] .

(26)

The derivative in the first line of (25) reduces to

∂

∂θi
ln p(r0(k)|cs(k); h0)=

{
2
N0

√
EsR

(
r0(k)cs(k)∗−√

Esh0
)

i = 0
2
N0

√
EsI

(
r0(k)cs(k)∗−√

Esh0
)

i = 1

(27)

and a similar expression holds for the derivative in the
third line of (25). The derivative in the second line of (25)
is expressed as

∂

∂θ(i)
ln p(cr(k) | cs(k) ; τ )

= ∂

∂θ(i)
lnP

[
cr(k)=χM2

(
q+M2

M1
m
)∣∣∣ cs(k)=χM1(m); τ

]

=

⎧⎪⎨
⎪⎩

1
τq

for q = i − 2
−1

τM2−1
for q = M2 − 1

0 otherwise
.

Based on the above expressions, the quantities Xi(r; θ)

can be evaluated for any (r, θ); the associated computa-
tional complexity is rather high, because the calculation of

the a posteriori source symbol probabilities p(cs(k) | r; θ)

requires a soft decoding operation.

Appendix B: Calculation of theMFIM
The elements of theMFIM are defined by (9) and are equal
to

JM(θ)i,j = Er | cs
[

∂

∂θi
ln p(r | cs; θ)

∂

∂θj
ln p(r | cs; θ)

]
= Er | cs

[
Xi(r, cs; θ)Xj(r, cs; θ)

]
, (28)

with Xi(r, cs; θ) = ∂
∂θi

ln p(r | cs; θ). As p(r | cr , cs; θ) =
p(r0 | cs; θ)p(r2 | cr ; θ), Xi can be written as

Xi(r, cs; θ) = ∂

∂θi
ln p(r0 | cs; θ) + ∂

∂θi
ln p(r2 | cs; θ).

(29)

As p(r0 | cs; θ) and p(r2 | cr , cs; θ) depend only on h0 and
(τ , h2), respectively, the first term in (29) is zero for i > 1,
and the second term is zero for i ≤ 1. Substituting (29) in
(28) and evaluating the terms for which θi is a parameter
of the SD channel and θj is a parameter of the SRD channel
(i.e., i ≤ 1, j > 1) yields

JM(θ)i,j= Er | cs
[

∂

∂θi
ln p(r0|cs; θ)

∂

∂θj
ln p(r2|cs; θ)

]

=
∫∫

∂

∂θi
ln p(r0|cs; θ)

∂

∂θj
lnp(r2|cs;θ)p(r|cs; θ)dr0dr2

=
∫

∂

∂θi
p(r0|cs; θ)dr0

∫
∂

∂θj
p(r2 | cs; θ)dr2 = 0,

(30)

so that JM(θ) is a block-diagonal matrix which we repre-
sent as

JM =
[
JM,SD 0
0 JM,SRD

]
.

It can be shown from (27) that JM,SD =
(
2KEs
N0

)
I2. By

grouping the parameters from the SRD channel into the
vector θ̄ = {θi, i > 1} we obtain

∂

∂θ̄ i
ln p(r2 | cs; θ̄) =

K∑
k=1

∂

∂θ̄i
ln p(r2(k) | cs(k); θ̄),

(31)

with

p(r2(k) | cs(k); θ̄) =
∑
cr(k)

p(r2(k) | cr(k); θ̄)p(cr(k) | cs(k); θ̄),

where the summation over cr(k) runs over points of the
M2-PSK constellation. Using (31), the elements of JM,SRD
can be written as
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JM,SRD(θ̄)i,j =

Er2|cs

⎡
⎣ K∑
k,k̃=1

∂

∂θ̄i
ln p(r2(k)|cs(k); θ̄)

∂

∂θ̄j
ln p(r2(k̃)|cs(k̃); θ̄)

⎤
⎦ .

(32)

Evaluation of the terms for which k �= k̃ yields

Er2|cs

[
∂

∂θ̄i
ln p(r2(k)|cs(k); θ̄)

∂

∂θ̄j
ln p(r2(k̃) | cs(k̃); θ̄)

]
=

Er2(k)|cs(k)
[

∂

∂θ̄i
ln p(r2(k)|cs(k); θ̄)

]
Er2(k̃) | cs(k̃)

[
∂

∂θ̄j
ln p(r2(k̃)|cs(k̃); θ̄)

]
,

(33)

with

Er2(k)|cs(k)
[

∂

∂θ̄i
ln p(r2(k)|cs(k); θ̄)

]
=
∫

∂

∂θ̄i
p(r2(k)|cs(k); θ̄)dr2(k)=0.

(34)

Substituting (33), (34) into (32) yields

JM,SRD(θ̄)i,j =
K∑

k=1
Er2(k)|cs(k)

[
∂

∂θ̄i
ln p(r2(k)|cs(k); θ̄)

∂

∂θ̄j
ln p(r2(k)|cs(k); θ̄)

]

= KEr2(0) | cs(0)
[
X̄i(r2, cs; θ̄)X̄j(r2, cs; θ̄)

]
,

(35)

where

X̄i(r2, cs; θ̄) = ∂

∂θ̄i
ln p(r2 | cs; θ̄) (36)

and r2 and cs are short-hand notations for r2(0) and cs(0).
The functions X̄i(r2, cs; θ̄) can further be expressed as

X̄i(r2, cs; θ̄) =
p
[
r2
∣∣cr =χM2

(
i+ M2

M1
m
)
; θ̄
]
−p

[
r2
∣∣cr =χM2

(
M2(M1+m)

M1
−1

)
; θ̄
]

p
(
r2
∣∣cs=χM1 (m)

)
(37)

for 0 < i ≤ M2 − 2 and

X̄i(r2, cs; θ̄) =
∑
cr

∂

∂θ̄i
ln p(r2 | cr ; θ̄)p(cr | r2, cs; θ̄) (38)

for i > M2 − 2. Having obtained closed-form expres-
sions for X̄i(r2, cs; θ̄), the expectation in (35) is evaluated
by means of the importance sampling method outlined in
Section 5.

Appendix C: Estimation of the unknown channel
parameters
In order to evaluate the tightness of the obtained lower
bounds, the latter are compared to the MSE results from
the estimation algorithms described in [16], where maxi-
mum likelihood (ML) pilot-based estimates of the various

channel parameters are refined using the expectation-
maximization (EM) algorithm. In this section, we will
briefly outline the estimation process. The reader is
referred to [16] for further reading. When using the chan-
nel model outlined in Section 6.1, the likelihood of the
symbols received at the destination is equal to

p(r0, r2|cs, h0, h2, τ )

=
K∏

k=1
p(r0(k)|cs(k), h0)

∑
cr(k)

p(r2(k)|cr(k), h2)p(cr(k)|cs(k), τ ),

with

p(r0(k)|cs(k), h0,N0) = 1
πN0

exp
(

−|r0(k) − h0cs(k)|2
N0

)

p(r2(k)|cr(k), h2,N2) = 1
πN2

exp
(

−|r2(k) − h2cr(k)|2
N2

)
.

The ML estimates of the parameters h0, h2 and τ are
calculated in two steps. In a first step, pilot-based esti-
mates of these parameters are obtained. To this purpose,
Kp pilot symbols are added to data symbols broadcast by
the source in the first timeslot, resulting in frames consist-
ing of K + Kp symbols. These pilot symbols are received
by the destination, where they are used to calculate an
estimate of h0. They are also received by the relay, where
they are quantized together with the data symbols, and are
broadcast to the destination in the second timeslot. The
destination uses the pilot symbols received from relay to
calculate an estimate of τ and h2. Using csp to denote the
pilot symbols transmitted by the source, and r0p and r2p to
denote the part of r0 and r2, respectively, that corresponds
to the received pilot symbols, the pilot-based ML esti-
mates of the unknown channel parameters are obtained
by solving the following equations:

ĥ0,p = argmax
h0

p(r0p|h0, csp)

(τ̂ p, ĥ2p) = arg max
(τ ,h2)

p(r2p|τ , h2, csp).
(39)

The first equation from (39) can be solved analytically,
while the second is solved using the EM algorithm, where
the quantized pilot symbols transmitted by the relay
are considered to be nuisance parameters. The reader is
referred to [16], section III-C, for a detailed resolution
of (39).
After pilot-based estimates of h0, h2 and τ are obtained,

they are refined using a code-aided EM approach. To this
purpose, the data symbols transmitted by the source and
the quantized symbols transmitted by the relay are con-
sidered to be nuisance parameters. Each EM iteration i,
refined estimates of h0, h2 and τ are obtained by solving
the following equation:
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(
ĥ0

(i)
, ĥ2

(i)
,τ̂ (i)

)
=arg max

(h0,h2,τ )
Q
(
h0, h2, τ , ĥ0

(i−1)
, ĥ2

(i−1)
, τ̂ (i−1)

)
,

(40)

with

Q
(
h0, h2, τ , ĥ0

(i−1)
, ĥ2

(i−1)
, τ̂ (i−1)

)
= Ecs ,cr[

ln p(r0, r2|cs, cr , h0, h2) + ln p(cr|cs, τ )

∣∣∣r0, r2, ĥ0(i−1)
, ĥ2

(i−1)
, τ̂ (i−1)

]
.

The reader is referred to [16], section III-B, for the
solution of (40). Using the results from [16], it can eas-
ily be shown that the obtained estimates of h0, h2 and
τ are unbiased, so that the CRB is indeed a LB for the
considered estimates.
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