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Abstract A theory of relations is presented that provides a detailed account
of the logical structure of relational complexes. The theory draws a sharp
distinction between relational complexes and relational states. A salient
difference is that relational complexes belong to exactly one relation, whereas
relational states may be shared by different relations. Relational complexes are
conceived as structured perspectives on states ‘out there’ in reality. It is argued
that only relational complexes have occurrences of objects, and that different
complexes of the same relation may correspond to the same state.

Keywords Relational complex · Relational state · Substitution

1 Introduction

Many of us will consider Willem-Alexander’s loving Máxima as a fact—as a
true state ‘out there’ in the world. Many of us will also agree that this state can
be broken up into parts: a binary relation with Willem-Alexander and Máxima
as relata. But we can also conceive of this state as being composed of a unary
relation (the property of loving Máxima) and Willem-Alexander as relatum.
Is there a principled reason to prefer one analysis above the other? Going
a step further, we can pose the fundamental question: Do states ‘out there’
have in any genuine sense a unique underlying relation and a unique set of
relata?

According to Bertrand Russell in ‘The Principles of Mathematics’, a whole
that has more than two parts may be analyzed in a plurality of ways, but

J. Leo (B)
Department of Philosophy, Utrecht University, Utrecht, The Netherlands
e-mail: joop.leo@phil.uu.nl

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81912439?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


358 J. Leo

two wholes composed of different terms must be different when all terms are
simple [22, p. 77]. And later, in ‘Theory of Knowledge’, he writes:

A ‘complex’ is anything analyzable, anything which has constituents. [. . . ]
It may be questioned whether a complex is or is not the same as a ‘fact’,
where a ‘fact’ may be described as what there is when a judgement is true,
but not when it is false. [. . . ] However this may be, there is certainly a one-
one correspondence of complexes and facts, and for our present purposes
we shall assume that they are identical [23, pp. 79–80].

In his paper ‘Neutral Relations’, Kit Fine expresses a similar view. He
refers to states and facts as complexes, and writes: “We wish to adopt a
conception of relations and their completions for which Uniqueness holds”,
where Uniqueness is the assumption that “no complex is the completion of two
distinct relations” [7, pp. 4–5].

What makes a view that identifies states ‘out there’ with relational com-
plexes attractive is its apparent simplicity. I think this view suffers from serious
problems, however, when combined with Uniqueness. In many cases it is not
clear what the underlying relation—if any—of a given state would be.

It seems natural to regard states ‘out there’ as empirical entities, that is, as
empirically distinguishable entities, where empirical distinctions are ones that
make a possible difference to the world. (See [6, p. 58].) But then states are in
general decomposable in several ways. It is even conceivable that no ultimate
decomposition in simple parts exists.

In order to retain a one-to-one correspondence between states and com-
plexes, suppose we were to give up Uniqueness. Now let us assume that
the state of Willem-Alexander’s loving Máxima has a single corresponding
complex. Then this complex would not only be the completion of a binary
relation, but of two unary relations as well. This, however, is not a desir-
able situation, since it obscures the interrelatedness of the complexes of a
relation.1 This suggests that giving up Uniqueness should not be the first
choice.

It may perhaps be argued that an identification of states with complexes
should be taken in a more restricted sense, namely that it applies only to
the class of atomic or elementary relations. It could be maintained that the
states of such relations are mutually independent and that each state has a
unique corresponding complex or is even identical to it. This view, however,
is also problematic since it makes a strong metaphysical claim that is far
from evident. No one has ever given a convincing example of an atomic
relation. Furthermore, an account of other relations would still be needed.
What Russell said about this issue in ‘My Philosophical Development’ is
interesting:

I have come to think, however, that, although many things can be known
to be complex, nothing can be known to be simple, and, moreover, that

1In Section 2.2, other examples will be given that illustrate this point more dramatically.
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statements in which complexes are named can be completely accurate, in
spite of the fact that the complexes are not recognized as complex. [...] It
follows that the whole question whether there are simples to be reached
by analysis is unnecessary [24, p. 123].

Another attempt to ‘save’ a one-to-one correspondence between states and
complexes, is to argue that each state ‘out there’ has a unique canonical
corresponding complex. This could possibly be a complex with exactly one
occurrence for each essentially involved object of the state.2 So, for the state of
Narcissus’s loving Narcissus we could get a canonical complex of the monadic
self-love relation, and for Apollo’s loving Daphne we could get a canonical
complex of the dyadic love relation (unless Eros is essentially involved, as
well). It may, however, not always be clear what the essentially involved
objects of a state are. For example, if we accept the existence of disjunc-
tive states, then the notion of essentially involved objects requires further
clarification.

A related issue concerns the structure of thoughts.a In ‘Begriffs-
schrift’ [11, Section 9], Frege discusses the notion of functions
and considers the proposition that Cato killed Cato. Frege notes
that if we think of “Cato” as replaceable at its first occurrence,
then “to kill Cato” is the function, but we also have a function
“to be killed by Cato” and a function “to kill oneself”. There
is, however, controversy about the question whether the different
decompositions correspond to different thoughts.

José Luis Bermúdez [4, pp. 94–95] claims that ““Cato killed Cato”
can express four different thoughts”, and that this also has to be
Frege’s position. On the other hand, Harold Hodes [14, p. 162]
argues that “Frege thought thoughts to be compositionally poly-
morphous”. In the same vein, David Bell [3, p. 596] talks about “the
mistake of taking function/argument analysis to reveal intrinsic
structure”, and admits that he is more and more convinced that
thoughts do not have a determinate, intrinsic structure.

aOr maybe it is the same issue. In ‘Der Gedanke’, Frege said: “Was ist eine
Tatsache? Eine Tatsache ist ein Gedanke, der wahr ist.”[12, pp. 57–58] (“What is
a fact? A fact is a thought that is true.”)

2This approach may be advanced in particular by someone who regards (first-class) relations as
universals, involving no particular particulars. (See [1, pp. 92–93].)
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By the way, Hodes [14, p. 176] leaves open the possibility that some-
thing is wrong with the notion of Fregean thought itself: “Perhaps
the Fregean notion of a thought is a hybrid, born of confusions
created by divided reference.” With ‘divided reference’ he means,
on the one hand, reference in terms of possible worlds, and, on the
other hand, reference in terms of something like Carnap’s notion
of intensional isomorphism. I think the confusion pointed at might
also be formulated as a confusion between the notions of relational
states and relational complexes.

Wittgenstein struggled with a similar issue and talked about “Das
alte Problem von Komplex und Tatsache” [28, entry 14.5.15]. Peter
Simons [25, p. 319] argues that “the Sachverhalte of the Tractatus
are best seen not as atomic facts, but as atomic complexes”. Fur-
thermore, Simons [25, p. 335] claims that “Wittgenstein thought the
Tractatus embodied a confusion between complex and fact”. In the
note ‘Complex and fact’ [27, pp. 301–303], Wittgenstein talks about
a “muddle” and alludes to remarks in the Tractatus.

I started this short analysis of the correspondence between states and
complexes with the assumption that states ‘out there’ are empirical entities.
There might be good reasons to concede that many states ‘out there’ are non-
empirical, but I think it is hard to deny that there is an important class of states
‘out there’ that are empirical. Therefore, my conclusion is that for a general
account of relations we had better give up a one-to-one correspondence
between states and complexes, and take another course.

In this paper, I present a rigorous theory of relations that explicitly dis-
tinguishes relational complexes from relational states. More specifically, a
relational complex is conceived as a structured perspective on a relational state.
The theory is polymorphic in a strong sense, since it not only allows that
a state ‘out there’ may belong to more than one relation, but also that for
a given relation more than one relational complex can correspond to the
same state.

I will not presuppose any particular view on the nature of relational states,
or more generally, of states ‘out there’. I will not even make any assumption
about the existence of atomic complexes or states. The theory presented does
not exclude the possibility that all states ‘out there’ are infinitely complex in
the sense that all states are composed of simpler ones. Furthermore, it is not
assumed (but not excluded either) that relational states themselves have an
intrinsic structure. The theory can, for example, be combined with viewing
states as David Lewis’s sets of possible worlds [18], or as being akin to Kit
Fine’s worldly facts [6], or David Armstrong’s states of affairs [1].

I call the theory the polymorphic theory of relations. It is presented in the
form of a number of principles postulated throughout the paper (P-1 to P-14).
In Appendix the principles are also listed for easy access.
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2 Polymorphic View on Relations

In the polymorphic view on relations, a key role is played by the notions
relational states, relational complexes, and occurrences of objects. I will not try
to give an exact definition of these notions. My objective is to characterize
them in terms of a system of metaphysical principles.

2.1 Structural Principles

I postulate the following structural principles:

P-1 Each relation ‘has’ one or more relational complexes and each relational
complex belongs to one and only one relation.

P-2 Each relational complex corresponds to one state ‘out there’ and each
state ‘out there’ may correspond to one or more relational complexes.

P-3 Each relational complex may contain one or more occurrences of objects
and each occurrence belongs to one and only one relational complex.

P-4 Each occurrence is the occurrence of one object and each object may be
the content of one or more occurrences.

I call a state ‘out there’ that corresponds to a relational complex ξ of a
relation � a relational state of �, and denote it as S(ξ). I denote the occurrences
of objects in a complex ξ as Oc(ξ), and the object of an occurrence α as Ob(α).
Furthermore, I call the objects of the occurrences in a relational complex the
objects of the complex, and the objects of the complexes of a relation the objects
of the relation itself.

The number of occurrences in a relational complex ξ is called the degree or
adicity of ξ . The least upper bound of the degrees of the relational complexes
of a relation � is called the degree or adicity of �. If all relational complexes of a
relation have the same degree, then the relation has a f ixed degree, otherwise
the relation has a variable degree. Relations of fixed degree are also called
unigrade relations, and relations of variable degree are also called multigrade
relations. An example of a multigrade relation is being surrounded by.

I consider a property as nothing but a monadic relation.

Remark 2.1 In order to keep the presentation simple, I ignore the possibility
that each occurrence may be taken to have a type that corresponds to a domain
of objects. The required changes here and in the principles further on are
straightforward.

The structural principles are graphically represented in Fig. 1, which is a
so-called entity-relationship diagram.3

3Entity-Relationship Modeling is an established technique to model the information needs of or-
ganizations. (I used it myself frequently as a consultant for Oracle Corporation.) More information
about this technique can be found in [2] and [26].
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Fig. 1 Entity-relationship
diagram for the polymorphic
theory RELATION

STATE
‘OUT THERE’

RELATIONAL
COMPLEX

OCCURRENCE OBJECT

In such diagrams, a relationship between entities of type A and B, where for
each instance of A there is exactly one instance of B, and for each instance of
B there may be one or more instances of A, is represented by:

BA

If for each instance of B there is at least one related instance of A, then the
right part of the line between the entities is also solid:

BA

I don’t expect that the structural principles will raise serious concerns,
except perhaps Principle P-2. This principle will be evident for those who
regard any set of possible worlds as a state ‘out there’, but those who think of
states ‘out there’ as sparse, may perhaps consider it more adequate to make this
correspondence optional. The exact consequences of this alternative choice
are not immediately clear; we would have to find a satisfactory interpretation
of complexes without corresponding states. Another possibility might be to let
several states correspond to a given complex. For example, the complex of x’s
being red or round might correspond both to the state of x’s being red and the
state of x’s being round.

The structural principles leave open whether a relation may have multiple
relational complexes for the same state ‘out there’. However, the principles in
the next subsection will make this inevitable for certain relations.
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2.2 Substitution Principles

I do not assume that the occurrences in relational complexes are ordered,
nor do I assume that relations have argument-places. The basic means by
which relational complexes of a relation are thought to form a genuine unity is
through substitution of objects for occurrences.

The notion of substitution is taken by Fine [7] as a primitive operation for his
so-called antipositionalist view on relations. In models for relations I developed
in [15, 17], substitution of objects also play a central role. There I assumed that
substitution takes place directly in relational states, but here I take a different
approach. The next principles concern substitution of objects for occurrences
in relational complexes:

P-5 Any substitution of objects for occurrences in a relational complex results
in exactly one relational complex of the same relation.

P-6 For any complex, the identity substitution results in the same complex.
P-7 Composition principle: If a substitution σ in a relational complex ξ

results in ξ ′, then there is a bijection μ from the occurrences in ξ to the
occurrences in ξ ′, such that

(a) μ maps each occurrence α in ξ to an occurrence of the object
substituted by σ for α,

(b) any substitution σ ′ in ξ ′ gives the same result as substituting in ξ for
each occurrence α the object that σ ′ substitutes for μ(α).

A mapping μ satisfying (a) and (b) of the composition principle is said to
correspond to the substitution σ . Because of the injectivity of μ, substitution is
said to be coalescence-free.

Denotation Let � be a relation, ξ a relational complex of �, and σ a mapping
from the occurrences in ξ to the objects of �. I denote the result of substituting
in ξ according to σ as ξ ·� σ or ξ · σ . Furthermore, I denote the composition of
a mapping f followed by a mapping g as f · g.

With this denotation, part (b) of Principle P-7 says that

(ξ · σ) · σ ′ = ξ · (μ · σ ′).

Let me make a few comments on the substitution principles.
Ad P-5. Certain substitutions result in complexes corresponding to impossi-

ble states. This happens, for example, when substituting a for the occurrence of
b in the complex a’s being next to b . If you want to exclude impossible states,
then you could of course postulate a weaker principle than P-5, namely one
stating that any substitution results in at most one relational complex.

Instead of assuming that any occurrence is an occurrence for which objects
can be substituted, we might also consider introducing ‘fixed’ or ‘hidden’
occurrences of objects. In Section 3.2 the operation of hiding occurrences will
be discussed.
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Ad P-7. The composition principle forms the heart of the theory developed
in this paper. It expresses the way different relational complexes form some
kind of unity or resemble each other. This may be illustrated as follows:

μ

Substσ Substσ'

Substµ·σ'

' ''

It should be noticed that for a given substitution σ , a corresponding mapping
μ is not necessarily unique; for symmetric relations the uniqueness may fail.

An important consequence of the principles P-1 to P-7 is that—for an empir-
ical account of states ‘out there’—certain relations are inevitably polymorphic
in the sense that some states need to have more than one corresponding
complex within the same relation:

Example 2.2 Suppose that states ‘out there’ are sets of possible worlds. Let
� be the parthood relation. The state that my nose is a part of myself has a
corresponding complex with one occurrence of my nose and one of myself. It
seems reasonable to assume that in no possible world I am a part of my nose
and neither are you. But this means that the relation � has a state—to wit,
the empty state—that necessarily has more than one corresponding complex
within �.

It could be objected that in the example we are dealing with a borderline
case, since the state with multiple complexes is a vacuous state. So, let me also
give another example.

Example 2.3 Let � be the binary love relation with states x −→♥ y, and let �′
be the unary relation with states x −→♥ d with d a fixed object. Now consider
the conjunction of � and �′.4 Let a, c be distinct objects. Then the conjunctive
state a −→♥ d � c −→♥ d has in this relation two corresponding complexes.

To see this, let b be another object and let ξ be a complex corresponding
to the state a −→♥ b � c −→♥ d. This complex has three occurrences. We might
say that the occurrence of c is connected to a hidden occurrence of d. If we
substitute in ξ the object d for the occurrence of b , then in the resulting
complex the occurrence of c is still connected to a hidden occurrence of d.
But if we would have started with a complex for the state c −→♥ b � a −→♥ d,

4In Section 3, conjunction of relations and hiding occurrences of objects will be discussed in more
detail.
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then substituting d for b , would have given a complex with the occurrence of
a connected to a hidden occurrence of d. Thus, this complex is not identical to
ξ , but they obviously have the same corresponding state ‘out there’.

One could adopt an extremely refined notion of states ‘out there’ and argue
that in the example the relations � and �′ have no states in common. But if
one regards states ‘out there’ as really being ‘out there’, this view is highly
implausible. Alternatively, one could disallow ‘object-involving’ relations like
�′, but I see no reason to do so for a general theory of relations.

In Principle P-7 the mapping μ is required to be bijective. As a result,
complexes that can be obtained one from the other by substitution have a
very uniform structure. I consider this as an advantage, although this may also
give rise to multiple complexes for the same state. For example, consider a
ternary relation � with all states being (commutative) conjunctions of the form
x −→♥ y � y −→♥ z. Then for distinct objects a, b the state a −→♥ b � b −→♥ a
has two corresponding complexes in �, namely a complex with one occurrence
of a and two of b , and another complex with two occurrences of a and
one of b .

In [17] I questioned the validity of a coalescence-free account. My expecta-
tion was that by allowing coalescence we could develop a satisfactory theory
without multiple complexes for the same state within a single relation. But,
as we have seen in Examples 2.2 and 2.3, then not all relational states can be
conceived of as empirical entities. Of course, there may be other arguments for
allowing coalescence for a general theory of relations. One of them could be
the way substitution works for set-like relations. I discuss this issue in the next
subsection.

2.2.1 Understanding Substitution

The notion of substitution may need further explanation. Postulating a notion
as primitive does not imply that its meaning is immediately clear. As I said
before, I regard a relational complex as a structured perspective on a state ‘out
there’. But what does this mean? It might be tempting to entertain a picture-
like representation for a relational complex, and to consider substitution
simply as literally replacing in such a picture objects by other objects. But how
accurate is such a representation?

Consider the adjacency relation. Suppose you have in front of you a cup
adjacent to a glass. Then switching these objects obviously changes the scene.
But, if the objects of a corresponding relational complex are switched, then it
seems reasonable to assume that the result should be exactly the same rela-
tional complex. However, in working with a naive picture-like representation
this may not be so easy to accomplish. Or suppose you want to substitute
a chair for the glass. Then in such a representation you may have trouble
deciding where exactly to put the chair. A naive picture-like representation
may also be problematic for other relations. Take, for example, the relation
of an object x being wedged between objects y and z. Then substituting for x
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an object of a different size, may require that the other objects are moved
in the representation as well. What these examples show is that a picture-
like representation for relational complexes may only be adequate if it is
sufficiently abstract to accommodate these situations.

Another issue is how to understand substitution for a relation like forming
a group. Suppose the group consisting of Groucho, Harpo and Chico has a
corresponding complex with one occurrence for each person. Now what do we
get if we substitute Groucho for the occurrence of Harpo? According to the
substitution principles we get a complex with two occurrences of Groucho and
one of Chico. But the state of Groucho and Chico forming a group also has
a corresponding complex with one occurrence of each. Apparently the states
with a set-like character have corresponding complexes with a multiset-like
character. This might look a bit odd or artificial, but I don’t see this as an
objection to a coalescence-free account of substitution. Rather, I would say
that each complex reflects precisely the way it can be obtained by substitution.
In addition, we can of course assign to each state a canonical complex with
one occurrence for each person. Alternatively, we could consider leaving
substitution undefined in this case and postulate that substitution is only a
partial function. (See also the discussion above of P-5.) In the next subsection,
a complementary operation will be discussed that is relevant for relations like
forming a group, namely subtracting occurrences from complexes.

2.3 Connectivity Principles

A relation is given as a unity. But what exactly constitutes this unity; how do
the complexes of a relation form a coherent whole?

For most ordinary relations, the relational complexes all have the same
finite number of occurrences of objects. For this class of relations, the next
principle characterizes the interrelatedness between the relational complexes.

P-8 For any relation � of fixed finite degree, any relational complex of � can
be obtained from any other relational complex of � via substitution.

With this principle it becomes possible to give positional representations for
any relation of fixed finite degree. (See [15] and [16].)

The principle is limited to relations of f inite degree because certain relations
of fixed infinite degree may have for a subset of its occurrences a kind of
variable degree. Take for example the conjunction of a multigrade relation
whose complexes have finite degree and a relation of fixed infinite degree.
For such a conjunctive relation a connectivity principle like P-8 obviously does
not hold. Another, perhaps more natural, counterexample is the relation of
x1, x2, . . . , xn being a f inite segment of y1, y2, . . ., with n variable and y1, y2, . . .

an infinite list.
Note that by Principle P-8, a structure with complexes of the form x1, . . . , xn

playing against y1, . . . , ym with n, m variable, but n + m fixed, is not a re-
lation. However, I do not consider this limitation of particular metaphysical
significance. The polymorphic theory presented in this paper could be relaxed
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so that structures like this would be relations as well. A possibility could be to
accept as a relation any substructure of a relation as long as it is closed under
substitution.

For an arbitrary relation, I do not have a satisfactory solution for charac-
terizing the unity of its complexes. However, for multigrade relations with
a set-like character, like forming a team, collectively supporting, and being
surrounded by the notion of subtracting occurrences may be helpful. We
simply remove certain occurrences from a relational complex and get another
complex.

For the operation of subtraction of occurrences additional principles can
be proposed, in particular, a generalized composition principle that involves
substitutions and/or subtractions. Care should be taken, however, not to
confuse the subtraction of an occurrence with substituting the object of the
occurrence with ‘nothing’, resulting in some kind of ‘empty’ occurrence.

For the multigrade relation of x1, . . . , xn forming a team, there is for any
pair of relational complexes a substitution and/or subtraction from one of the
complexes to the other. But for some other multigrade relations, we may need
a third relational complex to make a connection. This might even be the case
when the first two relational complexes have the same finite degree. We have
such a situation for the relation of x1, . . . , xn playing against y1, . . . , ym with
n, m variable.

As a connectivity principle for multigrade relations with a (multi)set-like
character, it could be proposed that the relational complexes (with substitu-
tions and/or subtractions as arrows) form a weakly connected graph.5

An important question is whether subtraction is a basic operation for
multigrade relations. Kit Fine remarked [private communication, November
2008] that he is inclined to regard the possibility of subtraction as a symptom
of variable adicity and not as an explanation. I agree that subtraction is maybe
not an explanation of variable adicity, but it may be a way to characterize the
unity of the relational complexes of a multigrade relation.

Alternatively, could we not simply deny that there are multigrade relations?
Could we not say that a relation like being surrounded by has only two
occurrences: one for the surrounded entity and one for the set of surrounders?

By taking sets, wholes or aggregates as compound objects of relations,
relations that at first sight appear to have variable adicity may turn out to have
in fact a fixed adicity. The strategy, which goes back to Bolzano [5, pp. 2–3] and
to Frege [10, p. 246], looks attractive, but does it work?

A difficulty with the strategy has been brought forward by Fraser MacBride
[20, pp. 583–584]. He points out that rendering a multigrade relation unigrade
appears to presuppose the existence of at least one apparently multigrade re-
lation, namely the constitution relation, to manufacture compound objects. To
remove the multigrade appearance of the constitution relation would involve
another multigrade relation, and so on. In other words, a complete removal of

5A directed graph is called weakly connected if its underlying undirected graph is connected.



368 J. Leo

multigrade relations leads to an infinite regress. But, as Macbride notes, the
regress can be avoided by admitting a multigrade relation of constitution.

There may, however, be an additional complication with rendering multi-
grade relations to unigrade relations if we start with a multigrade relation
where the n objects have a relative order, but no object can in any genuine
sense be said to be the first one. This is, for example, the case for a ‘linked’ love
relation with states x1 −→♥ x2 −→♥ . . . −→♥ xn. If we want to render this relation
as a unigrade relation, then the question is whether we have a neutral choice for
the structure of the compound objects. Choosing sequences seems a bad idea,
because then the compound objects of the resulting relation would have a first
element, and this would conflict with taking the love relation as directionless.6

Unfortunately, I do not see an acceptable artifact-free alternative. We could
consider to introduce a new sort of compound object with the required
structure, but it is not very clear to me what the ontology of such compound
objects would be.

For characterizing arbitrary multigrade relations, the notion of subtracting
occurrences is too limited. But, as I said, I have as yet no satisfactory general
solution.

2.4 Identity Criteria

Because more than one relational complex for a given relation may correspond
to the same relational state, identity criteria for relations and relational com-
plexes may be useful to prevent an unjustifiable abundance of relations with
exactly the same relational states. The basic idea behind the criteria proposed
is that a relational complex is a purely extensional notion.

2.4.1 Identity of Relations

Relations with fully matching complexes—with respect to substitution—are
called qualitatively the same. They are formally defined as follows.

Definition 2.4 Relations �, �′ are called qualitatively the same (or qualitatively
identical) if there is a bijection π from the complexes of � to the complexes of
�′ such that for every complex ξ of �,7

1. S(π(ξ)) = S(ξ),
2. there is a bijection τ : Oc(ξ) → Oc(π(ξ)) such that

(a) for each occurrence α in ξ , Ob(τ (α)) = Ob(α),
(b) for each substitution σ in ξ , π(ξ · σ) = π(ξ) · (τ−1 · σ).

6This argument is related to Fine’s objection against what he calls the standard view on rela-
tions [7].
7Recall that S(ξ) denotes the state corresponding to the complex ξ , that Oc(ξ) denotes the
occurrences of objects in ξ , and that Ob(α) denotes the object of the occurrence α.
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The love relation and the hate relation are obviously not qualitatively the
same, because they have different states. But let � be a unary relation with �x
being the complex x’s loves himself or x does not love himself, and let �′ be a
unary relation with �′x being the complex x’s hates himself or x does not hate
himself, and suppose that for any x the states corresponding to the complexes
�x and �′x are the same. Then � and �′ are qualitatively the same.

The next lemma shows that there is a completely structure-preserving
correspondence between the occurrences of objects in matching complexes of
qualitatively the same relations.

Lemma 2.5 Suppose � and �′ are qualitatively the same. Then in the following
commuting diagram

Oc( ) Oc(π ( ))

Oc( σ)

μ

Oc(π ( σ))

μ

ξ

ξ ξ

ξ

with π, τ, τ̃ in line with Def inition 2.4, with μ a mapping corresponding to
substitution σ in ξ , and with μ′ = τ−1 · μ · τ̃ , the mapping μ′ corresponds to
substitution τ−1 · σ in π(ξ).

Proof Because μ′ maps each occurrence α in π(ξ) to an occurrence of the
object (τ−1 · σ)(α), Condition (a) of the composition principle P-7 holds for μ′.
To prove Condition (b) of P-7, let σ ′ be an arbitrary substitution in π(ξ · σ).
Then

(π(ξ) · (τ−1 · σ)) · σ ′ = π(ξ · σ) · σ ′

= π((ξ · σ) · (̃τ · σ ′))

= π(ξ · (μ · τ̃ · σ ′))

= π(ξ) · (μ′ · σ ′).

Thus, because μ′ is bijective, μ′ corresponds to substitution τ−1 · σ in π(ξ). ��

I postulate the following identity criterion for relations:

P-9 Relations are identical if and only if they are qualitatively the same.

The criterion expresses that a relation is completely determined by the
network of interconnections of substitution in which the complexes with their
corresponding states stand to each other. We might say that the complexes
themselves have no internal complexity.

A bolder identity criterion could be considered, namely that relations are
identical if and only if they have the same states. This could not be right,
however, for some accounts of states ‘out there’. For suppose that states ‘out
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there’ are sets of possible worlds. Then the relation � with complexes x and
y are the same number and the relation �′ with complexes x and y are not the
same number have the same states, namely the set of all possible worlds and
the empty set. But � and �′ are obviously not identical.

The identity criterion P-9 is stated for arbitrary relations. To play on the
safe side, we might consider to limit it to relations where all complexes are
connected to each other via substitution. I consider this as an issue for future
investigation.

2.4.2 Identity of Relational Complexes

For relational complexes I also define the notion of qualitative sameness. The
idea is that two complexes of the same relation are qualitatively the same if
substitutions in them are fully matching.

Definition 2.6 Relational complexes ξ of � and ξ ′ of �′ are called qualitatively
the same (or qualitatively identical) if there is a bijection τ from the occurrences
in ξ to the occurrences in ξ ′ such that

1. for each occurrence α in ξ , Ob(τ (α)) = Ob(α),
2. a substitution σ in ξ is defined iff the τ -corresponding substitution in ξ ′ is

defined, and S(ξ · σ) = S(ξ ′ · (τ−1 · σ)).

A non-trivial (but somewhat artificial) example of complexes that are
qualitatively the same can be obtained as follows. Consider the ternary relation
� with �xyz the complex x is not identical to itself and y loves z. Then in
a possible worlds conception of states ‘out there’, the complexes �xyz and
�xzy have the same corresponding state. It follows that the complexes are
qualitatively the same.

Note that qualitative sameness of relational complexes is an equivalence
relation. Moreover, the equivalence is preserved under substitution:

Lemma 2.7 Suppose ξ and ξ ′ are qualitatively the same relational complexes,
and let τ be as in Def inition 2.6. Then for every substitution σ in ξ , the complexes
ξ · σ and ξ ′ · (τ−1 · σ) are qualitatively the same as well.

Proof Let μ : Oc(ξ) → Oc(ξ · σ) correspond to substitution σ in ξ , and let μ′
correspond to substitution τ−1 · σ in ξ ′. Then, by Principle P-7, the mapping
τ̃ = μ−1 · τ · μ′ is a bijection. So, we have the following commuting diagram:

Oc(ξ) Oc(ξ )

Oc(ξ σ)

μ

Oc(ξ ( 1 σ))

μ
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The mapping τ̃ obviously fulfills Condition 1 of Definition 2.6. Furthermore,

S((ξ · σ) · σ ′) = S(ξ · (μ · σ ′))

= S(ξ ′ · (τ−1 · μ · σ ′))

= S(ξ ′ · (μ′ · τ̃−1 · σ ′))

= S(ξ ′ · (τ−1 · σ) · (̃τ−1 · σ ′)).

Thus, τ̃ also fulfills Condition 2 of Definition 2.6. ��

For many relations, we neither want nor need multiple relational complexes
for the same state. For example, for the adjacency relation we want that the
state of a’s being next to b has only one relational complex. Substituting a
for the occurrence of b and b for the occurrence of a should give the same
relational complex. To take care of such situations, I propose the following
identity criterion for relational complexes:

P-10 Relational complexes that belong to the same relation are identical if
and only if they are qualitatively the same.

Principle P-10 has the following nice property. If � were to be a relation that
does not fulfill P-10, then � can be stripped down to a structure �̆ that fulfills
this principle, and in which everything that seems essential to � is preserved.
In particular, �̆ also fulfills the composition principle P-7.

To see this, define �̆ as a relation-like structure whose complexes are
arbitrarily chosen representatives of qualitatively the same complexes in �,
and with substitution defined by

ξ ·�̆ σ = ξ ′ with ξ ′ qualitatively the same as ξ ·� σ .

For ξ ·� σ and ξ ·�̆ σ let τ be a bijection as in Definition 2.6. Let μ

be a mapping that corresponds—in accordance with Principle P-7—to the
substitution σ applied to ξ . Then (ξ ·�̆ σ) ·�̆ σ ′ = ξ ·�̆ (μ · τ · σ ′). It follows that
�̆ also fulfills the composition principle.

Note that to obtain a relation as a result of this stripping process, it is
essential that the stripping is done simultaneously for all relational complexes
of �.

The next lemma shows that the identity of a relation can be expressed in
terms of qualitatively the same complexes.

Lemma 2.8 Let � and �′ be relations. If for every complex in � there is a
qualitatively identical complex in �′, and vice versa, then � and �′ are identical.

Proof Assume that for every complex ξ in � there is a qualitatively identical
complex ξ ′ in �′, and vice versa. Then, since qualitative sameness of complexes
is an equivalence relation, it follows from Principle P-10 that ξ ′ is the only
complex in �′ that is qualitatively the same as ξ . Because, conversely, ξ is also
the only complex in � that is qualitatively the same as ξ ′, there is a bijection
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π that maps the complexes of � to their qualitatively identical counterparts
in �′. Now, by using Lemma 2.7, we see that this bijection π makes � and �′
qualitatively the same relations. Thus, by P-9, they are identical. ��

It is interesting to note that, as a consequence of Principle P-10, the
identity mapping is the only bijection π in Definition 2.4 that makes a relation
qualitatively identical to itself.

2.4.3 Justifying the Identity Criteria

The identity criteria for relations and for relational complexes have some
consequences that at first sight may strike us as odd:

Example 2.9 Let �0 be a nullary relation with as its only state the state of
everyone’s loving and trusting everyone. If the conjunction of this relation with
the binary love relation is again a relation, say �1, then how does �1 look
like? It seems reasonable to assume that �1 is a binary relation. Furthermore,
if relational states are conceived of as sets of possible worlds, then �1 would
obviously also have just one state. Now by the identity criterion for relational
complexes, it would also have for any (unordered) pair of objects a, b just one
complex with one occurrence of a and one b (and two of a if a and b are
identical). So, if α, β are the occurrences in a complex in �1, then we cannot
say which of them fulfills the role of lover and which the role of beloved.

In a similar way, we can define a relation �2 as the conjunction of �0 with
the binary trust relation. According to the identity criterion for relations, �1
and �2 would be identical. Thus, in the resulting relation no traces are left of
either a ‘love’ or a ‘trust’ origin.

One might wonder whether a more refined account of relations that retains
more of the origin of the underlying complexes and occurrences would be more
adequate. Although I do not exclude the possibility of such an account, I think
there are strong arguments in favor of the proposed identity criteria.

An important feature of the proposed criteria is their def initeness: the
question whether two relations or relational complexes are identical has a
clear, definite answer. Another strong feature of the proposed criteria is, as
we will see in Section 3, that they allow us to define various operations on
relations in a very natural way in terms of operations on relational states.

3 Operations on Relations

I discuss operations on relations that I consider as very basic, namely conjunc-
tion, disjunction, negation, and restriction. With these operations all kinds of
complex relations can be constructed. Of course, other basic operations are
conceivable as well. Besides, it is not excluded that certain relations supervene
on others without any possible reduction. By this I mean that the existence
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of certain relations might be entailed by other relations, but that they are not
explicitly definable in terms of these other relations.

3.1 Logical Operations

Suppose we want to define the conjunction of relations with sets of complexes
C1 and C2. Then for the complexes of the conjunction we cannot simply
take C1 × C2, because this may yield too many complexes, and because the
ordering in the elements is undesirable. For the occurrences in the conjunction
of complexes ξ and ξ ′ we also cannot simply take the union of the occurrences
in ξ and ξ ′, because ξ and ξ ′ may be identical, and because other complexes
may have the same conjunction. We must be more cautious, but we can define
logical operations on relations in a clear and uniform way in terms of logical
operations on states:

Definition 3.1 Let �1, . . . , �n be relations with sets of states S1, . . . , Sn and
sets of complexes C1, . . . , Cn. Let f be a mapping from S1 × . . . × Sn to some
set of states S.

We say that a relation � with set of complexes C is induced by f if there
is a surjection ρ : C1 × . . . × Cn → C, and for every ξ1 ∈ C1, . . . , ξn ∈ Cn, a
bijection τ : X → Oc(ρ(ξ1, . . . , ξn)), with X = ⋃n

i=1(Oc(ξi) × {i}), the disjoint
union of Oc(ξ1), . . . , Oc(ξn), such that

1. for each (α, i) ∈ X, Ob(τ (α, i)) = Ob(α),
2. for each substitution σ in ρ(ξ1, . . . , ξn) and τ -corresponding substitutions,

S(ρ(ξ1, . . . , ξn) · σ) = f (S(ξ1 · σ1), . . . , S(ξn · σn)).

The identity criteria for relations and relational complexes guarantee that �
is thus uniquely defined:

Lemma 3.2 For the given collection of relations �1, . . . ,�n, there is at most one
relation � induced by f .

Proof Suppose that � and �′ are both induced by f . Then for every complex
ρ(ξ1, . . . , ξn) in � there is a qualitatively identical complex ρ ′(ξ1, . . . , ξn) in �′,
and vice versa. So, by Lemma 2.8, � and �′ are identical. ��

If for given relations �1, . . . , �n there is a relation induced by f , then it is
denoted as f (�1, . . .�n) and its complexes are denoted as f (ξ1, . . . ξn).

Note that the degree of f (�1, . . .�n) is equal to the sum of the degrees of
the relations �1, . . .�n. Also note that if f is the identity mapping from S1
to S1, then f (�1) = �1.

Suppose f is a binary mapping with for all states f (s1, s2) = f (s2, s1). Then
clearly also for all complexes f (ξ1, ξ2) = f (ξ2, ξ1), if defined. The next lemma
establishes a more general similarity between identities of compositions of
states and identities of compositions of complexes.
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Lemma 3.3 Let �1, . . . , �n be relations with sets of states S1, . . . , Sn and
sets of complexes C1, . . . , Cn. Let π be a permutation of {1, . . . , n}, and let
f1, . . . , fm, g, h be mappings such that for all s1 ∈ S1, . . . , sn ∈ Sn,

g( f1(sπ(1), . . . , sπ(k)), f2(sπ(k+1), . . .), . . . , fm(. . . , sπ(n))) = h(s1, . . . , sn).

Then for all ξ1 ∈ C1, . . . , ξn ∈ Cn,

g( f1(ξπ(1), . . . , ξπ(k)), f2(ξπ(k+1), . . .), . . . , fm(. . . , ξπ(n))) = h(ξ1, . . . , ξn),

if def ined.

Proof Suppose g( f1(�π(1), . . .), . . . , fm(. . . , �π(n))) and h(�1, . . . , �n) are rela-
tions. Let us call them � and �′, respectively. Let ρ be the mapping from the
complexes of � to the complexes of �′ defined by

g( f1(ξπ(1), . . . , ), . . . , fm(. . . , ξπ(n))) 	→ h(ξ1, . . . , ξn).

From the given equations for the states, it follows that ρ is well-defined. Now
let σ be an arbitrary substitution in a complex ξ of �, and let σ ′ be the
corresponding substitution in ρ(ξ). It is easy to see that S(ξ · σ) = S(ρ(ξ) · σ ′).
It follows that � and �′ are qualitatively the same relations, and thus by P-9
they are identical. The equations for the complexes follow directly from this.

��

In the next subsections the lemma will be applied to standard logical
operations, but let me already mention a few applications: (1) If the conjunc-
tion of any two states is commutative, then the conjunction of complexes is
commutative as well. (2) If the double negation of any state is the state itself,
then the double negation of any complex is the complex itself. (3) If we have
De Morgan’s laws for all states, like −(s � s′) = −s � −s′, then we also have
identities like −(ξ � ξ ′) = −ξ � −ξ ′. But note that if for all s, s � s = s, then
this does not imply that ξ � ξ = ξ .

3.1.1 Conjunction of Relations

Russell [21, pp. 209–211] sees no reason to accept conjunctive facts, for the
truth of a proposition p � q depends only on the fact corresponding to p and
the fact corresponding to q. Wittgenstein is also said to consider conjunctive
facts as unnecessary (for example in [19, p. 382]), but he does not deny their
existence, since he writes in response to a question of Russell [28, p. 130]:
“Sachverhalt is, what corresponds to an Elementarsatz if it is true. Tatsache is
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what corresponds to the logical product of elementary props when this product
is true.” A different opinion is held by Armstrong. He accepts conjunctive facts
and points out that there could perhaps be conjunctive universals ‘all the way
down’ [1, p. 32].

For the theory developed in this paper, I assume that for all states ‘out there’
s, s′ the conjunction s � s′ is a well-defined state ‘out there’, although certain
conjunctive states might be more natural than others.

Which properties you attribute to the conjunctive states ‘out there’ will
depend on your specific view, but commutativity and associativity seem to
be evident. Frege, for example, remarks about commutativity for compound
thoughts [13, p. 89]: “Dass “B und A” denselben Sinn hat wie “A und B” sieht
man ein ohne Beweis nur dadurch, dass man sich des Sinnes bewusst wird.”,
and he adds in a footnote [note 5]: “Ein anderen Fall dieser Art ist der, dass
“A und A” denselben Sinn hat wie “A”.”8

I define the conjunction of relations in terms of the conjunction of their
states, and by making use of Definition 3.1:

Definition 3.4 Let � and �′ be relations. Then, if it exists, the conjunction of
� and �′ is defined as the relation induced by the conjunctive operation on
states. It is denoted as � � �′, and its complexes as ξ � ξ ′.

I postulate that the conjunction of any pair of relations is also a relation:

P-11 Relation � � �′ exists for any relations �, �′.

As we have seen in Example 2.3, if for each relation each relational state
may only have one corresponding relational complex, then the conjunction
of relations would not always exist. Also the next example shows that a
conjunction of relations might introduce multiple relational complexes of the
same relational state.

Example 3.5 Consider the conjunctive relation � � (� � �). Suppose con-
junction of states is commutative, associative and idempotent. Then the com-
plexes ξ � (ξ � ξ ′) and ξ ′

� (ξ � ξ ′) correspond to the same relational state,
but, in many cases, the complexes will be distinct. Note that if in a relation
no multiple relational complexes were allowed for a single relational state,
then substitution would in these cases inevitable lead to a coalescence of
occurrences.

8Translation [9, pp. 4–5]: “That “B and A” has the same sense as “A and B” can be seen without
proof by merely taking account of the sense.” Note 5: “Another case of this sort is that “A and A”
has the same sense as “A”.”
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The next theorem follows directly from Lemma 3.3.

Theorem 3.6 If conjunction of states is commutative (associative), then con-
junction of complexes is commutative (associative) as well.

So, it also follows that if conjunction of states is commutative (associative),
then conjunction of relations is commutative (associative) as well.

Note that the theorem is not true for every theory of relations. For a theory
where the arguments of the relations come in a certain order, conjunction of
complexes and of relations is obviously not commutative. Also for a theory
where the relations come with argument-places, conjunction of complexes is
not commutative, but conjunction of relations can be commutative, provided
that there are suitable identity criteria for sets of argument-places.

Besides a conjunction of two relations, we also might define a conjunction of
an infinite number of relations, provided that we accept an infinite conjunction
of states ‘out there’.

3.1.2 Disjunction of Relations

Is the Statue of Liberty’s being made of metal a fact? This should be denied
by those who deny that there are any disjunctive facts.9 A problem with such
an austere view is that it may make it practically impossible to determine of
anything whether it is indeed a fact. As the quote from Russell I mentioned in
the introduction says, “nothing can be known to be simple”. It might be just as
hard to determine of something that it is not disjunctive as to determine that it
is not conjunctive.

Nevertheless, many philosophers have mixed feelings about disjunctive
facts. Russell [21, p. 215] is inclined to think that there are no disjunctive
facts, but he also notes that the denial of disjunctive facts lead to certain
difficulties. According to Fine [6, p. 55] there are disjunctive propositional
facts, but no disjunctive worldly facts. Armstrong [1, pp. 43–46] denies the
existence of disjunctive f irst-class facts, but he has no problem with dis-
junctive second-class and third-class facts, where these notions are defined
in terms of classes of relations: first-class relations are universals; second-
class relations have the necessary and sufficient condition that when truly
predicated of particulars, the resultant truth is a contingent one; third-class
relations are relations that are not contingent (for example, being identical
with a). Armstrong explicitly notes that he has no objection to admitting

9At least if being of metal means being of iron or being of copper or being of copper, steel and
gold, etc.
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disjunctive and negative relations, provided they are at best second-class
relations.

Although I do not use Armstrong’s classification for states and relations,
I assume that for all states ‘out there’ s, s′ there exists a disjunctive state
s � s′, and thus I define a disjunction � � �′ of relations analogously to
the conjunction of relations. As an aside, I want to remark that, if de-
sired, Armstrong’s classification can be superimposed on the theory devel-
oped here.

The disjunction of relations is defined in a similar way as the conjunction of
relations:

Definition 3.7 Let � and �′ be relations. Then, if it exists, the disjunction of �
and �′ is defined as the relation induced by the disjunctive operation on states.
It is denoted as � � �′, and its complexes as ξ � ξ ′.

I postulate that the disjunction of any pair of relations is a relation as well:

P-12 Relation � � �′ exists for any relations �, �′.

The next theorem also follows directly from Lemma 3.3.

Theorem 3.8 If disjunction of states is commutative (associative), then disjunc-
tion of complexes is commutative (associative) as well.

3.1.3 Negation of Relations

Russell once remarked [21, p. 211]: “I argued that there were negative facts,
and it nearly produced a riot: the class would not hear of there being negative
facts at all.” I want to sidestep the discussion of whether there really are
negative facts, but nevertheless admit for any state ‘out there’ s the existence
of the negation of s, denoted as −s. In general, −s should not be conceived as a
negative state, since s itself may also seen as the negation of −s.

The definition of the negation of a relation is straightforward.

Definition 3.9 Let � and �′ be relations. Then, if it exists, the negation of �
is defined as the relation induced by the negation operation on states. It is
denoted as −�, and its complexes as −ξ .

I postulate that the negation of any relation is a relation as well:

P-13 Relation −� exists for any relation �.

The next theorem about the double negation of states and complexes also
follows directly from Lemma 3.3.
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Theorem 3.10 If for all states s in � we have −−s = s, then for all complexes ξ in
� we also have −−ξ = ξ .

Note that, by the Theorem 3.10, atomic relations may in a certain sense also
be regarded as complex.

When we combine the logical operations, we get again by Lemma 3.3 other
interesting identities, like De Morgan laws:

Theorem 3.11

1. If for all states s in �, s′ in �′ we have −(s � s′) = −s � −s′, then for all
complexes ξ in �, ξ ′ in �′ we also have −(ξ � ξ ′) = −ξ � −ξ ′.

2. If for all states s in �, s′ in �′ we have −(s � s′) = −s � −s′, then for all
complexes ξ in �, ξ ′ in �′ we also have −(ξ � ξ ′) = −ξ � −ξ ′.

3.2 Restriction of Relations

Consider the dyadic love relation with relational complexes of the form
x −→♥ y. Starting with this relation, we may construct a self-love relation as
follows. (1) Select a relational complex of the original love relation with two
occurrences of the same object, say Venus. (2) Merge these two occurrences to
obtain a single one. (3) Define as relational complexes of the self-love relation
the complexes that can be obtained via substitutions for this single occurrence.

In a similar way, we may define the relation of loving Venus. First, select
a relational complex of the original love relation corresponding to a state
of someone loving Venus. Then hide the occurrence of Venus, and define
relational complexes with only one occurrence, namely an occurrence in the
role of lover.

I call relations constructed in this way restrictions. For the love relation we
have the following (classes of) restrictions:

1. For any object a, a monadic relation with relational complexes a −→♥ y.
2. For any object b , a monadic relation with relational complexes x −→♥ b .
3. A monadic relation with relational complexes x −→♥ x.
4. For any objects a and b , a medadic relation with just one relational

complex a −→♥ b .10

Note that from the conjunction of the love relation with itself it is possible
to regain the love relation by merging corresponding occurrences in a complex
a −→♥ b � a −→♥ b . (I presuppose here that for all love-states s � s = s, and
use the identity criterion P-9.)

10It is perhaps questionable whether we should regard relations of arity 0 as ‘real’ relations, but I
see no compelling reason to exclude them.
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The approach for restricting the love relation may be generalized in a
straightforward way to other relations:

Definition 3.12 Let � be a relation, and ξ be one of its complexes. Let P be
a partition of a subset of Oc(ξ) such that each element of P contains only
occurrences of the same object.

We say that a relation �′ is a restriction induced by P if there is a complex ξ ′
in �′ and a bijection τ : P → Oc(ξ ′) such that

1. each α′ ∈ Oc(ξ ′) and α ∈ τ−1(α′) are occurrences of the same object,
2. for each complex ξ ′′ of �′ there is a σ ′ such that ξ ′ · σ ′ = ξ ′′,
3. a substitution σ ′ in ξ ′ is defined iff the substitution σ in ξ is defined with

σ(α) =
{

σ ′(α′) with α ∈ τ−1(α′) if such an α′ exists,
the object of α otherwise,

and S(ξ ′ · σ ′) = S(ξ · σ).

Note that this operation does two things at once. It hides the occurrences
not in

⋃

P , and it merges the occurrences in each element of P .
The identity criteria for relations and relational complexes guarantee that

restrictions are thus uniquely defined:

Lemma 3.13 There is at most one relation a restriction induced by P .

Proof Suppose that � and �′ are both restrictions induced by P . Then for
every complex in � there is a qualitatively identical complex in �′, and vice
versa. So, by Lemma 2.8, � and �′ are identical. ��

I postulate for restrictions the following principle:

P-14 Any restriction of a relation is also a relation.

Note that the definition of a restriction of relations allows us to choose P = ∅.
This gives a medadic relation with only one complex. Also note that if in a
relation all complexes can be obtained from each other by a substitution, then
choosing P = {{α} | α ∈ ξ} results in the original relation.

Although the definition of restrictions is simple, there are certain subtleties
that need to be discussed.
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A state may have more corresponding relational complexes in a restriction
than in the original relation:

Example 3.14 Let � be the ‘double’ love relation with relational complexes
of the form x −→♥ y � u −→♥ v. Then each state of this relation has one corre-
sponding relational complex. But in the restriction �′ obtained by merging the
occurrences of b in the relational complex a −→♥ b � b −→♥ c, the state corre-
sponding with a −→♥ b � b −→♥ a has two corresponding relational complexes:
one complex with one occurrence of a and two of b and another complex with
two occurrences of a and one of b . (See Fig. 2.)

A state may also have fewer corresponding relational complexes in a
restriction than in the original relation:

Example 3.15 For the relation �′ of Example 3.14, we can define a further
restriction �′′ by also merging the occurrences of a in the relational complex
corresponding to the state of a −→♥ b � b −→♥ a. This state has two relational
complexes in �′, but only one in �′′, as follows from the definition of
restrictions.

As we would expect of any robust theory of relations, restriction is a
transitive operation:

Theorem 3.16 If �′′ is a restriction of �′ and �′ is a restriction of �, then �′′ is
also a restriction of �.

Furthermore, if �′
1 is a restriction of �1 and �′

2 is a restriction of �2, then
�′

1 � �′
2 , �′

1 � �′
2, −�′

1 are restrictions of �1 � �2, �1 � �2, �1, respectively.

Proof Let �′ be the restriction of � induced by P , and let �′′ be the restriction
of �′ induced by P ′. Let τ : P → Oc(ξ ′) be a bijection fulfilling the conditions
of Definition 3.12. Now define ˜� as the restriction of � induced by

{⋃

τ−1[x] | x ∈ P ′}.
Since substitution is coalescence-free, it follows that ˜� is qualitatively the same
as �′′. So, by P-9, the identity criterion for relations, it follows that they are
identical.

The second part of the theorem can be proved in a similar way. ��

Fig. 2 Two complexes for the same state
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By the identity criterion for relations (Principle P-9), it follows that we
can regain the relation � by a restriction of � � � if each state of � can be
obtained from any other state via substitution.

Coordinating Occurrences By merging occurrences, the original occurrences
are no longer present in the resulting relation. This would be different if we
had a mechanism for linking occurrences. In his book ‘Semantic Relationism’
[8], Fine introduces the notion of coordination among certain entities as the
strongest relation of synonymy. One of the forms of coordination concerns
constituents of thought. In line with this, we might consider introducing coor-
dination among occurrences of the same object in relational complexes. This
would allow us to distinguish, for example, between (1) the relational complex
of Cicero loving Cicero with two uncoordinated occurrences of Cicero, (2) the
relational complex of Cicero loving Cicero with two coordinated occurrences
of Cicero, and (3) the relational complex of Cicero loving himself with only one
occurrence of Cicero. However, the applicability of coordination for elements
of thought does not automatically mean that coordination is also needed on the
level of relational complexes. I regard this as a topic for future investigation.

4 Alternative Theories

The polymorphic theory is of course not the only possible theory for relations.
In this section we consider some alternative theories. In particular, we will take
a look at theories that do not posit both states ‘out there’ and complexes.

4.1 A Theory Without Complexes

Can we build a theory with only states ‘out there’ and in which the states
themselves have occurrences? The answer may depend on how refined the
states are, but let us suppose that the states ‘out there’ are empirical entities.
Then, as I will show, such a theory has unacceptable limitations.

There are basically two choices for a theory with only states:

(i) a theory in which each state belongs to only one relation;
(ii) a theory in which a state may belong to more than one relation.

The first option would accommodate only a very small class of relations. It
would, for example, not be possible to define the conjunction and disjunction
of a relation with itself, and also restrictions of a relation could not be defined,
because these operations would yield states that were already in the original
relations.

So, let us consider the more liberal kind of relational theory, where a state
‘out there’ may belong to more than one relation, and in which the states
have occurrences relative to a relation. Equivalently, we may assume that
relations do have complexes with occurrences, but no two complexes of the
same relation correspond to the same state. This option gives considerably
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more freedom than the first one, but unfortunately, also this kind of theory
has severe problems.

As follows from Example 2.2, a theory without complexes cannot accommo-
date a relation like the parthood relation if states are conceived of as possible
worlds. Furthermore, for some relations the conjunction cannot be defined in
such a theory. This is not only the case for conjunctions where s � ¬s and
s′

� ¬s′ are taken as identical states, but also for some conjunctions without
‘negative’ components. We have already seen this in Example 2.3. There we
considered the conjunction of the binary love relation with states x −→♥ y, and
the unary relation with states x −→♥ d with d a fixed object. We showed that the
composition principle for substitution (P-7) cannot be fulfilled if each state has
only one corresponding complex in the conjunctive relation. The problem is
that for the state a −→♥ d � c −→♥ d the non-hidden occurrence of d should on
the one hand be ‘part of’ the conjunct a −→♥ d, and on the other of the conjunct
c −→♥ d. This shortcoming shows that a theory with only (empirical) states ‘out
there’ cannot give a fully adequate account of the logical structure of relations.

4.2 A Theory Without States

It might be argued that in the polymorphic theory, the states ‘out there’ play a
rather modest role. They may be looked at as a means for classifying relational
complexes. If we could develop a plausible theory of relations without states,
then that theory might be the first choice.

There are two ways to go. We can try to develop a theory that makes use
of an equivalence relation on complexes or we can try to develop a completely
free-standing theory of relations without such an equivalence relation. Let us
consider both options.

4.2.1 A Theory with Empirically Indistinguishable Complexes

We can define an equivalence relation ≈ on complexes, where ξ ≈ ξ ′ means
that ξ and ξ ′ are empirically indistinguishable from each other, that is, nec-
essarily ξ obtains just in case ξ ′ obtains. With this equivalence relation, we
can build a relational theory that makes no reference to states at all. Figure 3
depicts an entity-relationship (ER) diagram for this theory.

We can formulate principles for this state-less theory analogous to those
of the polymorphic theory, with instead of P-2 a principle that says that each
complex is empirically indistinguishable from one or more other complexes.
Furthermore, some definitions need modifications, but most of them are
straightforward. In particular, where S(ξ) = S(ξ ′) is used, this should be
replaced by ξ ≈ ξ ′. Only for the logical operations the modifications are a bit
less trivial. For example, in the definition of conjunction we should stipulate
that necessarily ξ � ξ ′ obtains iff ξ obtains and ξ ′ obtains.

Apparently, we can develop a relational theory that is very similar to
the polymorphic theory. The question is: which theory is to be preferred?
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Fig. 3 ER diagram for
a relational theory
without states RELATION

OCCURRENCE OBJECT

RELATIONAL
COMPLEX

empirically
indistinguishable

Unfortunately, I have no definite answer; there are strong arguments for both
positions.

If states ‘out there’ are nothing but abstractions from complexes and there
is no need for referencing them, then by the principle of parsimony, the state-
less theory may be more appealing. However, if states are really ‘out there’
and complexes are structured perspectives on them, then the polymorphic
theory seems more adequate. Or if the relational states are a proper subset
of the states ‘out there’, then this would also be a consideration in favor of
the polymorphic theory. The polymorphic theory is also more refined than the
state-less theory if not all relational states are empirical entities. Furthermore,
it may seem arbitrary to accept complexes in one’s ontology, but not states.

4.2.2 A Free-Standing Theory

Suppose our objective is to develop a completely free-standing relational
theory that neither refers to states nor makes use of the notion of empirical
indistinguishability. Then we cannot postulate identity criteria for relations
and relational complexes similar to the principles P-9 and P-10, because these
principles make essential use of an equivalence between complexes. For the
same reason, the operations on relations need to be redefined. Let us consider
how this could be done.

Logical operations. Any definition of conjunction of relations should pro-
vide clear identity criteria for conjunctive complexes. Probably we want
identities like ξ � ξ ′ = ξ ′

� ξ and (ξ � ξ ′) � ξ ′′ = ξ � (ξ ′
� ξ ′′), and pos-

sibly other identities as well (like ξ � ξ = ξ under certain conditions). We
could perhaps give an axiomatic specification, but what do we have for its
justification, and in what sense would such a specification be complete? If dis-
junction and negation are also taken into account, the challenge becomes even
bigger. Then we have, for example, also to justify—again without referencing
states or the like—whether or not ξ � ξ ′ = −(−ξ � −ξ ′).
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Restriction of relations. For restrictions we have to answer the following kind
of questions:

1. Is the binary relation with complexes �xy � �xy the same as the binary
relation with complexes �xy?

2. If � is a transitive, binary relation, then is the ternary relation with com-
plexes �xy � �yz � �xz the same as the ternary relation with complexes
�xy � �yz?

3. For a restriction with complexes �xxy, when do we have �xxy = �yyx?
4. Is restriction of relations a transitive operation?

These questions do not necessarily have unique answers, because more than
one restriction operation could perhaps be defined with different results.
An important requirement for any definition, however, is that all resulting
structures can be conceived of as genuine (complex) relations. Furthermore,
we do not want a multiplicity of relations for essentially the same entity ‘out
there’. From this perspective, the preferred answer to each of the questions
above would be “yes”. But I do not see, what a general identity criterion for
restrictions in a free-standing theory might be.

In conclusion, I don’t think that a free-standing theory is a good alternative.
What I regard as a key problem is how to understand the notion of complexes
without the notion of states ‘out there’ or the notion of empirical indistin-
guishability. Furthermore, as the previous discussion suggests, we may end up
with a complex and hard to justify set of identity rules.

4.3 A Theory Without Occurrences of Objects

For a theory without occurrences of objects, there are at least three options: (i)
a theory with only states, (ii) a theory with only complexes, and (iii) a theory
with states and complexes.

The first two options are not really worth considering here, since they have
at least the same drawbacks as the theories discussed in Sections 4.1 and 4.2.
The third option, however, seems more interesting.

We could define a simplified polymorphic theory with comparable prin-
ciples as of the original theory, but with substitution working directly on
objects. Equivalently, we could accept occurrences, but then all occurrences
in a complex should be occurrences of different objects.

For the simplified polymorphic theory, we could define notions like the
objects of a complex, the object-degree of a complex and the object-degree of
R itself. Roughly stated, the objects of a complex are the objects for which it
makes a difference for the resulting complex which objects are substituted for
them. See [15, 17] for more detailed definitions.

To every relation-like structure �̆ of the polymorphic theory there corre-
sponds a unique structure R of the simplified polymorphic theory. The idea is
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to define for each complex ξ in �̆ and function δ : O → O, with O the objects
of �,

ξ � δ

as the complex obtained by substituting in ξ simultaneously δ(a) for each
occurrence of each object a. The complexes of R may then be defined as equiv-
alence classes of complexes of �̆, where ξ and ξ ′ are considered equivalent if
S(ξ � δ) = S(ξ ′ � δ) for any δ : O → O.

An interesting question is under what conditions a relation-like structure �̆
of the polymorphic theory can be uniquely reconstructed from a structure R
of the occurrence-free theory. Let us look at a few simple cases.

1. Suppose that R has object-degree n, with n finite. Then R has exactly one
corresponding structure �̆ of the same degree. Furthermore, �̆ is the only
corresponding structure of degree ≤ the number of objects of R with no
dummy occurrences, where α is a dummy occurrence if S(ξ · σ) = S(ξ · σ ′)
for all substitutions σ, σ ′ with σ =Oc(ξ)−{α} σ ′.

2. Suppose again that R has object-degree n, with n finite. Then R may have
a corresponding structure �̆ of degree > the number of objects of R, and
without dummy occurrences, as shown in the following examples:

(i) Let R0 be a structure with two objects and four complexes in the
occurrence-free theory, and let R be the conjunction of R0 with itself.
Then R may have more than one corresponding structure �̆ of degree
4.

(ii) Let R have objects a, b , and complexes 〈a, b〉, 〈b , a〉, 〈a〉, 〈b〉 for
states s0, s1, s2, s3, respectively. Then R has an initial complex, that
is, a complex from which all other complexes can be obtained by
substitution, but nevertheless R has a corresponding structure �̆
without dummy occurrences of fixed degree 3, namely a structure
with two complexes for state s0, two complexes for s1, one complex
for s2, and one complex for s3.

These examples show that the polymorphic theory is more powerful than
the less refined theory without occurrences. The problem with the less refined
theory is that the total number of objects of a relation may not be sufficient to
express the interrelatedness of its complexes. In particular, certain complex
relations cannot adequately be defined in it. This makes the polymorphic
theory preferable from a metaphysical perspective.

5 Conclusions

Whether relations are really ‘out there’ or whether they are constructions of
our mind may be hard to say, but in any case it is of metaphysical importance
that they are a primary means for structuring the world. In this structuring,
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substituting objects for occurrences of other objects apparently plays a funda-
mental role. I find it difficult to imagine how to understand the world without
the idea of substitution.

Different theories could be developed around the idea that substitution
takes place in relational complexes. If complexes are conceived as structured
perspectives on what there is ‘out there’, and in particular on relational states,
then in principle the following views are possible for the correspondence
between complexes and states:

View 1: Every relational state corresponds to exactly one relational
complex.

View 2: Every relational state corresponds to one or more relational
complexes, but to no more than one within a given relation.

View 3: Every relational state corresponds to one or more relational
complexes, possibly even within the same relation.

The first view requires an ultra-refined notion of relational states or a very
limited class of relations. Also for the second view the class of relations is
seriously limited, among others because conjunction of relations might not
always be defined (see Example 2.3). Moreover, in both the first and the
second view, substitution might lead to a coalescence of occurrences for certain
conjunctions of relations, which in some cases appears to be quite unnatural
(see Example 3.5). I regard the third view as the most promising.

In this paper, I worked out a polymorphic theory of relations based on the
third view in combination with a coalescence-free account of substitution. It
is a very general theory in which no assumptions have been made about the
existence of atomic facts or universals, nor any assumptions regarding the
specific nature of relational states. In the remainder of this concluding section,
I will highlight some of the distinguishing features of the theory.

Substitution works in such a way that it yields a one-to-one correspondence
between the occurrences of the objects involved. A clear advantage of such
a completely coalescence-free account of substitution is that relational com-
plexes that can be obtained from each other by substitution have a uniform
structure. For set-like relations, however, multiple occurrences of the same
object in a complex may look a bit artificial. Although I see no objection in
principle to making an exception for set-like relations by allowing for them a
coalescence of occurrences, I have chosen not to do so since it would make the
theory a bit more complicated.

In the polymorphic theory each complex corresponds to one state ‘out
there’. What complexes are, is completely determined by the network of
substitutions between complexes and the corresponding states. This purely ex-
tensional view of complexes allows us to formulate a clear identity criterion for
relations. Complementary to this criterion, we also have an identity criterion
for relational complexes, where two complexes of a single relation are taken
to be identical if substitutions in them are fully matching. These criteria enable
us to define various operations on relations in a straightforward way in terms
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of operations on states, in particular conjunction, disjunction, negation and
restrictions of relations.

Although the theory does not insist on a particular account of states ‘out
there’, they most likely will be empirical entities. Nevertheless, mathematical
relations can easily be represented in the theory. For let us suppose that states
‘out there’ are conceived as sets of possible worlds. Then a mathematical
relation—modulo a certain equivalence—corresponds to the relational com-
plexes of a relation (or of a relation-like structure) with two states, namely the
set of all possible worlds and the empty set. (The equivalence is a consequence
of the identity principles for relations and relational complexes. We get, for
example, the same representation for the mathematical less than relation as
for the greater than relation.) I am not sure whether any specific value should
be attached to such representational possibilities of the polymorphic theory.

The principles of the polymorphic theory do not say which notions should
be taken as primitive. They leave open the possibility that states ‘out there’
are merely abstractions from relational complexes. They do not even exclude
the possibility that states are nothing but equivalence classes of relational
complexes. But by conceiving of complexes as structured perspectives on
relational states (as I did earlier), I certainly suggest that, in my view, states
‘out there’ are at least as primitive as complexes.

To the polymorphic theory of relations an objection could be raised that is
superficially similar to an objection to what Fine [7] calls the standard view on
relations. According to the standard view, arguments of a relation always come
in a certain order. This implies that certain states ‘out there’ do not belong
to a unique relation. But, according to Fine [7, pp. 5–6], “we are much more
inclined to suppose that there is a single underlying relation connecting the
things together”. Obviously, also for the polymorphic theory a state can belong
to more than one relation. However, the non-uniqueness of the polymorphic
theory is not objectionable in the same way. In the first place, in this theory the
non-uniqueness is not a representational artifact, as is the case in the standard
view. Secondly, the polymorphic theory does not exclude the existence of a
class of basic relations for which the uniqueness of relational states applies.

It is good to contrast the polymorphic theory also to what Fine [7] calls the
positionalist view on relations. In the positionalist view each relation comes
with argument-places. An objection raised by Fine is that such a view cannot
cope well with strictly symmetric relations, since switching objects assigned to
argument-places would give a different complex. The polymorphic theory does
not have this kind of problem. The identity criterion for relational complexes
P-10 guarantees single relational complexes for the states of such relations.

There is a close relationship between the polymorphic theory and Fine’s an-
tipositionalist view on relations [7]. This is of course not very surprising, since—
as I said in Section 2.2—the substitution mechanism of the theory is directly
based on the notion of substitution espoused by that view. The polymorphic
theory could be regarded as an elaboration of the antipositionalist view.

An interesting issue is how the states and complexes in the polymor-
phic theory relate to Fregean thoughts. Perhaps disputes about the question
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whether thoughts are polymorphic stem from not making a proper distinction
between states and complexes. It might not be a bad idea to divide Fregean
thoughts into two types: one type corresponding to states ‘out there’ and one
corresponding to relational complexes. Then the state of Willem-Alexander’s
loving Máxima could be identified with a single thought ‘out there’, and each
of the numerous complexes of this state with a thought having a determinate
structure.

The polymorphic theory of relations developed in this paper is quite de-
tailed. Nevertheless, more principles may need to be introduced and some may
require adjustments. A drastic departure that might be considered, would be
to renounce any reference to states ‘out there’, and to use instead the notion
of empirical indistinguishability for complexes. As discussed in Section 4.2,
with this approach a very similar theory can be developed. The required
modifications of the polymorphic theory are for the most part straightforward.

Should we choose a relational theory with states or one without states? For
both options there seem to be strong arguments. For example, it seems natural
to think of complexes as structured perspectives on states ‘out there’, and
therefore to admit states as real entities. On the other hand, a theory with fewer
entities is also appealing, although having fewer entities does not necessarily
mean that the theory is simpler.

In conclusion, the ontological status of states ‘out there’ is controversial.
But what I consider the main contribution of the analysis in this paper is that it
shows that relational complexes and relational states are essentially different
notions, and that taking the differences into account is necessary to understand
the logical structure of relations.
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Appendix: Principles of the Polymorphic Theory

Structural Principles

P-1 Each relation ‘has’ one or more relational complexes and each relational
complex belongs to one and only one relation.

P-2 Each relational complex corresponds to one state ‘out there’ and each
state ‘out there’ may correspond to one or more relational complexes.

P-3 Each relational complex may contain one or more occurrences of objects
and each occurrence belongs to one and only one relational complex.

P-4 Each occurrence is the occurrence of one object and each object may be
the content of one or more occurrences.
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Substitution Principles

P-5 Any substitution of objects for occurrences in a relational complex results
in exactly one relational complex of the same relation.

P-6 For any complex, the identity substitution results in the same complex.
P-7 Composition principle: If a substitution σ in a relational complex ξ

results in ξ ′, then there is a bijection μ from the occurrences in ξ to the
occurrences in ξ ′, such that

(a) μ maps each occurrence α in ξ to an occurrence of the object
substituted by σ for α,

(b) any substitution σ ′ in ξ ′ gives the same result as substituting in ξ for
each occurrence α the object that σ ′ substitutes for μ(α).
(Or in symbols, (ξ · σ) · σ ′ = ξ · (μ · σ ′).)

Connectivity Principle

P-8 For any relation � of fixed finite degree, any relational complex of � can
be obtained from any other relational complex of � via substitution.

Identity Criteria

P-9 Relations are identical if and only if they are qualitatively the same.
P-10 Relational complexes that belong to the same relation are identical if

and only if they are qualitatively the same.

Principles for Operations

P-11 Relation � � �′ exists for any relations �, �′.
P-12 Relation � � �′ exists for any relations �, �′.
P-13 Relation −� exists for any relation �.
P-14 Any restriction of a relation is also a relation.
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