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1 Introduction

In recent times the tools borrowed from the foundations of quantum mechanics and quan-

tum information have been widely used to probe intriguing topics related to the under-

standing of the fundamental aspects of nature, such as the physics of the early universe.

This includes particle creation in an expanding universe [1, 2], quantum correlations in

curved spacetime such as deSitter space time [3–5] and scalar field models of an expanding

universe using the Robertson-Walker spacetime, conformally invariant to the Minkowski

spacetime [6–8]. A common theme in all these is two sets of vacuua connected by a Bogoli-

ubov transformation. The study of quantum correlations can shed light on these issues.

The ideas of quantum statistical mechanics such as decoherence and dissipation have

been applied, fruitfully to study phenomenon such as vacuum fluctuations and particle

creation. These enable a deeper understanding as well as provide a statistical interpreta-

tion [9] for the well known effects such as the Unruh [10, 11], Hawking [12], and Gibbons-

Hawking [13] effects. Interestingly, in recent times, finite time aspects of the Unruh effect

have revealed an inverse relation between the acceleration and the temperature, a phe-

nomenon known as the anti-Unruh effect [14, 15]. This sets the scene for the present work

where the ideas of open quantum systems and quantum foundations are used to provide

a common platform to address the above problems. This would invoke a detailed under-

standing of various aspects of decoherence and dissipation, natural artifacts of application
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of open system ideas to the above scenarios. Here, in particular, we study the Unruh ef-

fect [10, 11, 16] which predicts thermal like effects from observing uniform acceleration of

the Minkowski vacuum. This has attracted intense interest [17–27] and has emerged as a

natural quest in the direction of relativistic quantum information [28–41].

In brief, open quantum system is the study of the dynamics of the system of inter-

est taking into account the effect of the system’s environment. In general, open system

dynamics can be broadly classified into (a) quantum non-demolition (QND), involving de-

coherence without any dissipation and (b) dissipative, where decoherence is accompanied

with dissipation. QND evolution has its roots in gravitational wave detection [42, 43] and

is the precussor for Laser Interferometer Gravitational-Wave Observatory (LIGO) [44].

The squeezed generalized amplitude damping (SGAD) [45, 46] is a very general dissipa-

tive channel of the Lindblad class and incorporates the well known amplitude damping

and generalized amplitude damping channels as limiting cases. The role of the squeezed

thermal bath in the present context is very pertinent as squeezing is connected to para-

metric amplification which is known to play an important role in the context of particle

creation [1, 2, 9] and at the same time plays a constructive role in preserving quantum

coherence in the presence of decoherence [45, 47, 48].

It is important to realize here that a monochromatic Minkowski mode is associated

to a Rindler mode which corresponds to a (highly) non-monochromatic field excitation,

as first observed in [49]. As noted there, this is essentially because the relevant Bogoli-

ubov transformation linking the Minkowski to Rindler modes are such that a plane-wave

(monochromatic) Minkowski creation operator cannot be written, in general, as a combi-

nation of monochromatic Rindler modes. In fact, the assumption that it can be so written

is applicable to a class of Minkowski wave packets that are appropriately peaked to satisfy

constraints from a suitable Fourier transform. In this work, for simplicity we shall adopt

this assumption.

Technically, this means that the entangled state analyzed here corresponds to an en-

tanglement between a Minkowski mode and a specific Unruh mode, namely one for which

qR = 1 and qL = 0 in eq. (16) of [49]. Fortunately, as noted already there, the exact, poly-

chromatic treatment reproduces qualitatively all the degrading effects of noise associated

with the single-mode assumption.

Another justification for this assumption is that it suffices to exhibit in a simple fashion

two features not often studied in the literature:

• to distinguish between the influence of a dissipative or damping environment and

non-dissipative or nondemolition environment;

• to highlight the role of squeezing in the external environment, as against a purely

thermal effect.

Here, we study various facets of quantum correlations, such as nonlocality, entangle-

ment, teleportation fidelity, coherence and quantum measurement-induced disturbance (a

discord-like measure) for the Unruh channel of a Dirac field mode. We highlight the dis-

tinction between dephasing and dissipative environmental interactions, by considering the
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actions of QND and SGAD channels, respectively. The Unruh effect is conventionally seen

as a thermal radiation by a uniformly accelerated detector coupled to an appropriate quan-

tized field. The detector is typically a localized and controllable quantum system that is

locally coupled to the ambient field. The Unruh channel for the Dirac qubit, i.e., the qubit

acted upon by the Unruh channel of a Dirac field mode, under the influence of possible in-

teractions of the QND and SGAD type, is characterized by constructing the corresponding

Kraus operators. The trade-off between quantum coherence, a fundamental characteristic

of quantumness in the system and mixing is studied. Useful parameters characterizing

channel performance are the gate fidelity [50] as well as the average gate fidelity [51]. They

represent how well a (noisy) gate performs the operation it is supposed to implement. How

well a gate preserves the distinguishability of states is captured by another channel perfor-

mance parameter, the channel fidelity, introduced in [46]. These channel parameters are

applied here to the Unruh channel, both with and without external influences.

Experimental progress in this direction is now attracting considerable attention from

the community. Circuit quantum electrodynamics, using Superconducting Quantum In-

terferometric Devices, is a promising effort in this direction. Here tuneable boundary

conditions are possible, corresponding to mirrors moving at speeds close to the speed of

light in the medium. This was used to experimentally simulate the scenario of dynamical

Casimir effect [52]. This paved the way for investigations into various facets of relativistic

quantum information.

The plan of the work is as follows. In section II, we briefly discuss the Unruh channel for

the Dirac qubit. This is followed by studying how external influences, characterized by pa-

rameters like temperature, squeezing and evolution time, effect various aspects of quantum

correlations, such as nonlocality, entanglement, teleportation fidelity and measurement-

induced disturbance. Quantum coherence is a characteristic of a quantum operation. Mix-

ing, which is inevitable with evolution, will result in the degradation of coherence. In order

to have an operational estimation of the utility of a quantum task, it is imperative to have

an understanding of the trade-off between the two [53]. This is done for the Unruh channel,

pure as well as in the presence of ambient effects. We then study the average gate and

channel fidelities in order to gain insight into the nature of the Unruh channel. In the

penultimate section, we discuss how one can address the problems treated here by going

beyond the single mode approximation. We then make our conclusions.

2 Invitation to Unruh effect

We consider two observers, Alice (A) and Rob (R) sharing a maximally entangled initial

state of two qubits at a point in flat Minkowski spacetime. Then Rob moves with a

uniform acceleration and Alice stays stationary. Moreover, we assume that the observers

are equipped with detectors that are sensitive only to their respective modes and share the

following maximally entangled initial state:

|ψ〉A,R =
|00〉A,R + |11〉A,R√

2
. (2.1)
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Suppose R gets uniformly accelerated with acceleration a. Under the caveat about

the scope and limitations of the monochromaticity assumption in light of [49], as discussed

above, from R’s frame the Minkowski vacuum state transforms to the Unruh mode giving

a two mode squeezed state

|0〉R = cos r|0〉I |0〉II + sin r|1〉I |1〉II ,

and the excited state is

|1〉R = cos r|1〉I |0〉II ,

where cos r = 1√
1+e−

2πωc
a

and ω is Dirac particle frequency with acceleration a, c being

the speed of light in vacuum. In the above equations, the regions I and II are causally

disconnected regions, in Rindler’s spacetime. The state in eq. (2.1) has contribution from

the regions I and II. Since these regions are disconnected, the mode corresponding to II

can be traced out to obtain the following density matrix

ρA,I =
1

2

[
cos2 r|00〉〈00|+ cos r(|00〉〈11|+ |11〉〈00|) + sin2 r|01〉〈01|+ |11〉〈11|

]
. (2.2)

It would be pertinent, here, to have a discussion related to the choice of tensor prod-

uct decomposition in a fermionic system. This arises from the issues related to supers-

election rules, restricting the superpositions of bosons and fermions [54]. A careful use

of the superselection rules is important for determining the class of states permissible for

describing a composite system of, for e.g., two fermions [55–58]. Thus, for e.g., given a

fermionic vacuum state |0, 0〉, one could generate the states |1, 0〉 = a†1|0, 0〉, |0, 1〉 = a†2|0, 0〉,
|1, 1〉 = a†2a

†
1|0, 0〉. Here the operators acting in the space C2⊗C2 have the form a1 = a⊗I2,

a2 = I2⊗a, with analogous creation operators. However, the tensor product ⊗, used here,

is a modified tensor product defined by the graded multiplication rule [59]

(O ⊗m) (n⊗ P ) = (−1)F (n)F (m)On⊗mP, (2.3)

where m, n are monomials in the annihilation and creation operators and F (n) is the

fermion number, equal to the access of the number of creation operators to the number of

annihilation operators required to build n.

Consider the maximally entangled two mode state in which the second mode is Unruh

accelerated. The state is represented by

ρu =
1

2


cos2 r 0 0 cos r

0 sin2 r 0 0

0 0 0 0

cos r 0 0 1

 . (2.4)

Leaving out the factor 1/2 in ρu, the corresponding Choi matrix [60, 61] is

|i〉〈i|E(|j〉〈j|), from which the Kraus representation of the Unruh channel can be obtained.

Following the procedure for constructing Kraus operators we have

Ku
1 =

(
cos r 0

0 1

)
, Ku

2 =

(
0 0

sin r 0

)
. (2.5)
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The above Kraus operators are similar to

K1 =

(√
1− γ 0

0 1

)
, K2 =

(
0 0
√
γ 0

)
, (2.6)

which represents the dissipative interaction of a qubit with the vacuum bath, i.e., an

amplitude damping channel [45, 46]. Here γ = 1

e
ω

kBT
. However, this identification is not

strict in the sense that the Unruh channel, though resembling the effect of a vacuum bath

is not exactly synonymous with it, a point that was elucidated in [62]. This also brings

into focus a point raised recently in [15] by the question whether the influence of the Unruh

effect on the system of interest, there a topological qubit, was same as a thermal one or

not. From the above, we have provided an answer to this.

Once we have the Kraus operators of the Unruh channel, we can calculate its effect on

a qubit in pure state given by

ρ =

(
cos2(θ/2) eiφ cos(θ/2) sin(θ/2)

e−iφ cos(θ/2) sin(θ/2) sin2(θ/2)

)
. (2.7)

The action of the Unruh channel on the state ρ is

Eu(ρ) =

(
cos2 r cos2(θ/2) cos reiφ cos(θ/2) sin(θ/2)

cos re−iφ cos(θ/2) sin(θ/2) sin2 r cos2(θ/2) + sin2(θ/2)

)
. (2.8)

3 Degradation of quantum information under Unruh channel

The nonclassicality of quantum correlations can be characterized in terms of nonlocality B

(for e.g., Bell inequality violation [63, 64]), entanglement, characterized here by concurrence

C [65], teleportation fidelity Fmax [66] or weaker nonclassicality measures like measurement

induced disturbance M [67, 68]. In the accelerated reference frame, the Unruh effect

degrades the quantumness of the state (2.2) [40, 62]. To achieve our goal, we consider the

scenario wherein only Rob’s qubit is interacting with a noisy environment, for e.g., a scalar

field. The other case in which both the qubits of the two observers interact with a noisy

environment is not seen here to produce any qualitatively useful insight and hence is not

considered in what follows.

3.1 Effect of QND noise

QND is a purely dephasing noise channel whose action on a qubit, characterized by fre-

quency ω0, can be studied using the following Kraus operators [69–71]

K1 =

√
1− e−ω2

0γ(t)

2

(
eiω0t 0

0 −1

)
; K2 =

√
1 + e−ω

2
0γ(t)

2

(
eiω0t 0

0 1

)
. (3.1)
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Assuming an Ohmic bath spectral density with an upper cut-off frequency ωc, it can

be shown that

γ(t) =

(
γ0kBT

π~ωc

)
cosh(2s)

(
2ωct tan−1(ωct) + ln

[
1

1 + ω2
c t

2

])
−
(
γ0kBT

2π~ωc

)
sinh(2s)

(
4ωc(t− a) tan−1[2ωc(t− a)]− 4ωc(t− 2a) tan−1[ωc(t− 2a)]

+ 4aωc tan−1(2aωc) + ln

[(
1 + ω2

c (t− 2a)2
)2

1 + 4ω2
c (t− a)2

]
+ ln

[
1

1 + 4a2ω2
c

])
. (3.2)

Here T is the reservoir temperature, while a and s are bath squeezing parameters. Now,

the corresponding Choi matrix have the form
cos2 r 0 0 eiω0te−ω

2
0γ(t) cos r

0 sin2 r 0 0

0 0 0 0

e−iω0te−ω
2
0γ(t) cos r 0 0 1

 , (3.3)

The new Kraus operators are

K1 =

√
cos 2r + 3− 2e−

1
4(ω2

0γ(t))
√
A

2

√
1
4 sec2 r

(√
A+ e

1
4
ω2
0γ(t) sin2 r

)2
+ 1

×

(
−1

2e
iω0t sec r

(√
A+ e

1
4
ω2
0γ(t) sin2 r

)
0

0 1

)

K2 =

√
cos 2r + 3 + 2e−

1
4(ω2

0γ(t))
√
A

2

√
1
4 sec2 r

(√
A− e

1
4
ω2
0γ(t) sin2(r)

)2
+ 1

×

(
1
2e
itω sec r

(√
A− e

1
4
ω2
0γ(t) sin2 r

)
0

0 1

)

K3 =

(
0 0

sin r 0

)
, (3.4)

where A = e
1
2
ω2
0γ(t) sin4 r + 2 cos 2r + 2 and the Kraus operators satisfy the completeness∑3

i K
†
iKi = I.

For the initial time t = 0, when the QND interaction has not begun, e−ω
2
0γ(t) = 1 and

the above Kraus operators reduce to that in eq. (2.5). The composition of the dephasing

channel with the Unruh channel has 3 Kraus operators, essentially because only three of

the resulting four operators obtained under composition, are linearly independent. To see

this, let the two Kraus operators of the amplitude damping channel be denoted

A1 ≡

(
1 0

0
√

1− λ

)
, A2 ≡

(
0 0√
λ 0

)
,

and those for the dephasing channel by

D1 ≡
√
p

(
1 0

0 1

)
, D2 ≡

√
1− p

(
1 0

0 −1

)
.
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The composition of these two channels has the Kraus operators D1A1, D2A1, D1A2 and

D2A2, where the last two terms, namely,

D1A2 =
√
pλ

(
0 0

1 0

)
and D2A2 =

√
pλ

(
0 0

−1 0

)
, (3.5)

are equivalent in that they produce the same noise effect. Thus, the composed noise channel

has a rank of three corresponding to the independent Kraus operators D1A1, D2A1, and

D1A2 orD2A2.

The QND channel acting on the Unruh qubit effects its quantum characteristics and

can be studied by the behavior of the different facets of quantum correlations. For the case

of QND noise acting on Rob, analytical expressions can be obtained for the corresponding

measures of quantum correlations which are as follows,

M =
1

8

[
4 +

3 + cos 2r − 2
√

4e−ω
4
0γ

2(t) cos2 r + sin4 r

8

× log

(
3 + cos 2r − 2

√
4e−ω

4
0γ

2(t) cos2 r + sin4 r

8

)

+
3 + cos 2r + 2

√
4e−ω

4
0γ

2(t) cos2 r + sin4 r

8

× log

(
3 + cos 2r + 2

√
4e−ω

4
0γ

2(t) cos2 r + sin4 r

8

)

−4 cos2 r log

(
cos2 r

2

)]
, (3.6)

Fmax =
1

2

[
1 +

cos r

3

(
2e−ω

2
0γ(t) + cos r

)]
, (3.7)

B = 2e−ω
4
0γ

2(t) cos2 r. (3.8)

The analytical expression for entanglement C turns out to be very involved. Hence we

only provide a numerical analysis. For the initial time t = 0 when QND interaction has

not begun, e−ω
2
0γ(t) = 1 and the expressions Fmax, B and M in the above equations reduce

to the pure Unruh-effect case.

The figures 1 to 4 correspond to the behavior of various aspects of quantum correlations

of the Unruh channel under the influence of QND noise. It can be seen from figure 1(a)

that as reservoir squeezing s increases, the channel becomes local even for a small external

temperature T . Also, from figure 1(b) the channel is seen to become local with increase

in the Unruh acceleration depicted, here, by r. Entanglement is seen, in figure 2(a), to

decrease with increase in s. This feature is more prominent for T > 1. From figure 2(b),

for a given value of r, entanglement is seen to decrease with time. For |s| < 2, figure 3(a)

shows that Fmax >
2
3 , 2

3 being the classical threshold, for the given temperature range.

Also, Fmax decreases with increase in r and time of evolution t, figure 3(b). M , figure 4, is

seen to decrease with increase in the parameters t, s, T and r.
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(a) (b)

Figure 1. (a) Plot of Bell’s inequality B against bath temperature T and squeezing s due to action

of QND channel on Rob’s qubit accelerated at r = π/8 and the qubit-bath interaction time t = 0.5.

(b) Plot of B against t and r while T = 0.5 and s = 0.5. The other parameters are ω0 = 1, a = 0

and γ0 = 0.1.

(a) (b)

Figure 2. (a) Plot of concurrence C against bath temperature T and squeezing s due to action of

QND channel on Rob’s qubit accelerated at r = π/8 and the qubit-bath interaction time t = 0.5.

(b) Plot of C against t and r while T = 0.5 and s = 0.5. The other parameters are ω0 = 1, a = 0

and γ0 = 0.1.

(a) (b)

Figure 3. (a) Plot of teleportation fidelity Fmax against bath temperature T and squeezing s due

to action of QND channel on Rob’s qubit accelerated at r = π/8 and the qubit-bath interaction

time t = 0.5. (b) Plot of Fmax t r while T = 1.5 and s = 1.5. The other parameters are ω0 = 1,

a = 0 and γ0 = 0.1.
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Figure 4. (a) Plot of M against bath temperature T and squeezing s due to action of QND channel

on Rob’s qubit accelerated at r = π/8 and the qubit-bath interaction time t = 0.5. (b) Plot of M

against t and r while T = 1.5 and s = 1.5. The other parameters are ω0 = 1, a = 0 and γ0 = 0.1.

3.2 Effect of SGAD noise

The Kraus corresponding to the SGAD channel are

K1 ≡
√
p1

[√
1− α 0

0 1

]
, K2 ≡

√
p1

[
0 0√
α 0

]
,

K3 ≡
√
p2

[√
1− µ 0

0
√

1− ν

]
, K4 ≡

√
p2

[
0

√
ν

√
µe−iφs 0

]
,

(3.9)

where p1 + p2 = 1 [45]. Here

p2 =
1

(A+B − C − 1)2 − 4D
×
[
A2B + C2 +A(B2 − C −B(1 + C)−D)− (1 +B)D

−C(B +D − 1)± 2
√
D(B −AB + (A− 1)C +D)(A−AB + (B − 1)C +D)

]
,

(3.10)

where

A =
2N + 1

2N

sinh2(γ0at/2)

sinh(γ0(2N + 1)t/2)
exp (−γ0(2N + 1)t/2) ,

B =
N

2N + 1
(1− exp(−γ0(2N + 1)t)),

C = A+B + exp(−γ0(2N + 1)t),

D = cosh2(γ0at/2) exp(−γ0(2N + 1)t). (3.11)

Also,

ν =
N

(p2)(2N + 1)
(1− e−γ0(2N+1)t),

µ =
2N + 1

2(p2)N

sinh2(γ0at/2)

sinh(γ0(2N + 1)t/2)
exp

(
− γ0

2
(2N + 1)t

)
,

α =
1

p1

(
1− p2[µ(t) + ν(t)]− e−γ0(2N+1)t

)
. (3.12)
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(a) (b)

Figure 5. (a) Plot of Bell’s inequality B against bath temperature T and squeezing s due to action

of SGAD channel on Rob’s qubit accelerated at r = π/8 and qubit-bath interaction time t = 0.5.

(b) Variation of B against t and r while T = 0.5 and s = 0.5. The other parameters are ω0 = 0.1,

γ0 = 0.1 and φs = 0.

(a) (b)

Figure 6. (a) Plot of concurrence C against bath temperature T and squeezing s due to action

of SGAD channel on Rob’s qubit accelerated at r = π/8 and qubit-bath interaction time t = 0.5.

(b) Variation of C against t and r while T = 0.5 and s = 0.5. The other parameters are ω0 = 0.1,

γ0 = 0.1 and φs = 0.

Also N = Nth[cosh2(s) + sinh2(s)] + sinh2(s), a = sinh(2s)(2Nth + 1) where Nth =

1/(e~ω0/kBT − 1) is the Planck distribution giving the number of thermal photons at the

frequency ω0; s and φs are bath squeezing parameters.

The analytical expressions are complicated and hence we resort to numerical discus-

sions. The figures 5–8 correspond to the behavior of various aspects of quantum correlations

of the Unruh channel under the influence of SGAD noise. From figure 5(a) it can be seen

that for certain range of T , squeezing enhances B. However, for the values of the param-

eters indicated, it never crosses the threshold of nonlocality (B > 1). From figure 5(b) it

can be seen that with increase in r and t, B decreases and the channel becomes local. From

figure 6(a), concurrence is seen to drop drastically to zero with increase in T . Also for large

values of s, concurrence is seen to fall to zero, irrespective of T . Figure 6(b) depicts the

decrease of concurrence with respect to time for any give value of r. From figure 7, Fmax

is seen to decrease with T , s, r and t. From figure 8, M is seen to decrease with increase

in the parameters r and t. However for certain range of T , M is seen to increase with bath

squeezing s, reiterating the usefulness of squeezing.
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(a) (b)

Figure 7. (a) Plot of teleportation fidelity Fmax against bath temperature T and squeezing s due

to action of SGAD channel on Rob’s qubit accelerated at r = π/8 and qubit-bath interaction time

t = 0.5. (b) Variation of Fmax against t and r while T = 0.5 and s = 0.5. The other parameters

are ω0 = 0.1, γ0 = 0.1 and φs = 0.

Figure 8. (a) Plot of measurement induced disturbance M against bath temperature T and

squeezing s due to action of SGAD channel on Rob’s qubit accelerated at r = π/8 and qubit-bath

interaction time t = 0.5. (b) Variation of M against t and r while T = 0.5 and s = 0.5. The other

parameters are ω0 = 0.1, γ0 = 0.1 and φs = 0.

4 Coherence and mixedness

Coherence plays a central role in quantum mechanics [37] enabling operations or tasks

which are impossible within the regime of classical mechanics. As a resource in quantum

operations, it has attracted much attention in recent times [53].

For a quantum state represented by density matrix ρ in basis {|i〉}, the l1 norm of

coherence is given by

C(ρ) =
∑
i 6=j
|ρi,j |. (4.1)

The mixedness, which is basically normalized linear entropy, of a d dimensional quan-

tum state ρ is given by [72]

M(ρ) =
d

d− 1
(1− Trρ2). (4.2)

The inequality relation between the C(ρ) and M(ρ) is [53]

C(ρ)2

(d− 1)2
+M(ρ) ≤ 1. (4.3)
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(a) (b)

Figure 9. Plot of (a) coherence C(ρ) and (b) mixedness M(ρ) due to action of QND channel on

Rob’s qubit parameterized by θ = π/4, φ = π/4 w.r.t. bath squeezing s and temperature T, while

qubit-bath interaction time t = 2 and Rob’s acceleration r = π/8. The other parameters are a = 0,

ω0 = 0.1 and γ0 = 0.1.

(a) (b)

Figure 10. Variation of (a) coherence C(ρ) and (b) mixednessM(ρ) due to action of QND channel

on Rob’s qubit parameterized by θ = π/4, φ = π/4 w.r.t. qubit-bath interaction time t and Rob’s

acceleration r, while bath temperature T = 0.5 and bath squeezing s = 0.5. The other parameters

are a = 0, ω0 = 0.1 and γ0 = 0.1.

When this inequality is saturated for certain values of C(ρ) andM(ρ), the situation corre-

sponds to states which have maximum coherence for a given mixedness in the states. Such

states are known as Maximally Coherent Mixed States (MCMS).

4.1 QND channel

The analytical expressions for coherence and mixedness of the Unruh channel under the

influence of the QND noise are

C(ρ) = cos
θ

2
sin

θ

2
cosr e−

ω20γ(t)

4 , (4.4)

M(ρ) = cos2 r

(
cos2

θ

2
(3− cos 2r − 2 cos2 r cos θ)− e−

ω20γ(t)

2 sin2 θ

)
, (4.5)

respectively.

From figure 9, coherence C is seen to decrease with increase in temperature T as well

as reservoir squeezing s. Mixing M increases with both T and s. From figure 10, it can
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(a) (b)

Figure 11. Plot of (a) coherence C(ρ) and (b) mixedness M(ρ) due to action of SGAD channel

on Rob’s qubit parameterized by θ = π/4, φ = π/4 w.r.t. bath squeezing s and temperature T,

while qubit-bath interaction time t = 2 and Rob’s acceleration r = π/8. The other parameters are

φs = 0, ω0 = 0.1 and γ0 = 0.1.

be seen that coherence decreases with t whereas mixedness increases with t as well as r, a

feature which is consistent with common intuition.

4.2 SGAD channel

The analytical expressions for coherence and mixedness of the Unruh channel under the

influence of the SGAD noise is

C(ρ) = cos r sin θ
√

(p1
√

1− α+ p2
√

(1− µ)(1− ν))2 + p22µν + 2 cos(2φ− φs)
√
µν(p1

√
1− α+ p2

√
(1− µ)(1− ν)),

(4.6)

M(ρ) = 2

(
1−

(
cos

θ

2

2

((p1 + p2 − p1α− p2µ) cos2 r + p2ν sin2 r) + p2ν sin2 θ

2

)2

−
(

(p1α+ p2µ) cos2 r cos2
θ

2
+ (p1 + p2 − p2ν)

(
cos2

θ

2
sin2 r + sin2 θ

2

))2

−1

2
e−iφ−i(φ+φs)

(
eiφs(p1

√
1− α+ p2

√
1− µ

√
1− ν) + e2iφp2

√
µ
√
ν
)

×
(
e2iφ(p1

√
1− α+ p2

√
1− µ

√
1− ν) + eiφsp2

√
µ
√
ν
)

cos2 r sin2 θ
)
, (4.7)

respectively. From figure 11(a), it is observed that for a certain range of temperature

T , coherence C increases with squeezing s while in another range, it decreases with s,

in consistence with the quadrature nature of squeezing. Also, finite s brings a notion of

stability in the behavior of coherence C as a function of external temperature T . Thus,

squeezing s once again emerges as a useful resource. The expected increase in mixing M
with increase in T is observed in figure 11(b). From figure 12, it can be seen that coherence

decreases with increase in t and r whereas mixedness increases rapidly with t.

From figure 13 and 14, it is clear that the inequality eq. (4.3) is respected for both

QND and SGAD noises, respectively. In particular, from figure 13(a), due to the action of

QND noise, it can be seen that for t = 2 and r = π/8, by varying parameters T and s we

cannot get any MCMS as the inequality is not saturated. However, fixing T and s to 0.5
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(a) (b)

Figure 12. Variation of (a) coherence C(ρ) and (b) mixednessM(ρ) due to action of SGAD channel

on Rob’s qubit parameterized by θ = π/4, φ = π/4 w.r.t. qubit-bath interaction time t and Rob’s

acceleration r, while bath temperature T = 0.5 and bath squeezing s = 0.5. The other parameters

are φs = 0, ω0 = 0.1 and γ0 = 0.1.

(a) (b)

Figure 13. (a) Plot of inequality I in eq. (4.3) due to action of QND channel on Rob’s qubit

w.r.t. bath temperature T and bath squeezing s while qubit-bath interaction time t = 2 and Rob’s

acceleration r = π/8. (b) I plotted against t and r while T = 0.5, s = 0.5. The other parameters

are a = 0, ω0 = 0.1, γ0 = 0.1 and the input state is parameterized by θ = π/4, φ = π/4.

(a) (b)

Figure 14. (a) Plot of inequality I in eq. (4.3) due to action of SGAD channel on Rob’s qubit

w.r.t. bath temperature T and bath squeezing s while qubit-bath interaction time t = 2 and Rob’s

acceleration r = π/8. (b) I plotted against t and r while T = 0.5, s = 0.5. The other parameters

are φs = 0, ω0 = 0.1, γ0 = 0.1 and the input state is parameterized by θ = π/4, φ = π/4.
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(a) (b)

Figure 15. (a) Plot of average gate fidelity Gav against bath temperature T and squeezing s

when Rob’s accelerated qubit is subjected to a QND channel, while Rob’s acceleration r = π/8 and

qubit-bath interaction time t = 0.5. (b) Plot of Gav against t and r, while T = 0.5 and s = 0.5.

The other parameters are ω0 = 1, γ0 = 0.1 and a = 0.

and varying r, MCMS can be achieved, as can be seen from figure 13(b). For the case of

SGAD noise, figure 14(a) depicts that for t = 2 and r = π/8, by varying the parameters T

and s MCMS states can be attained. Also, by fixing T and s to 0.5 and varying r and t,

MCMS can be achieved as can be seen from figure 14(b).

5 Average gate and channel fidelity

In this work we are trying to understand the Unruh channel under the influence of external

noisy effects. A useful way to understand this is to analyze the average gate and channel

fidelities [46] of the Unruh channel under the ambient environmental conditions.

The average gate fidelity [45, 50, 51] has a closed expression

Gav =
d+

∑
i |Tr(Ei)|2

d(d+ 1)
. (5.1)

For the Unruh channel Gav = 1
6

(
2 + (1 + cos r)2

)
, where d is the dimensionality of the

system on which channel E acts with operator sum representation elements Ei.

For the QND-Unruh channel

|Tr(Ei)|2 =

(
2
√
Ae−

1
4
γω2

0 + cos 2r + 3
)(

sec r cosω0t
(√
A− e

γω20
4 sin2 r

)
+ 1

4 sec2 r
(√
A− e

γω20
4 sin2 r

)2
+ 1
)

sec2 r
(√
A− e

γω20
4 sin2 r

)2
+ 4

+

(
− 2
√
Ae−

1
4
γω2

0 + cos r + 3
)(
− sec r cosω0t

(√
A+ e

γω20
4 sin2 r

)
+ 1

4 sec2 r
(√
A+ e

γω20
4 sin2 r

)2
+ 1
)

sec2 r
(√
A+ e

γω20
4 sin2 r

)2
+ 4

,

(5.2)

using which Gav can be calculated. In the limit t −→ 0 this reduces to the Unruh case.

Unlike the QND case, the analytical expression for Gav for the SGAD channel is very

involved, and hence we discuss this case numerically.
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(a) (b)

Figure 16. (a) Plot of average gate fidelity Gav against bath temperature T and squeezing s when

Rob’s accelerated qubit is subjected to a SGAD channel, while Rob’s acceleration r = π/8 and

qubit-bath interaction time t = 0.5. (b) Variation of Gav against t and r while T = 0.5 and s = 0.5.

The other parameters are ω0 = 0.1, γ0 = 0.1 and φs = 0.

From figure 15(a), it can be seen that Gav is stable for a certain range of squeezing,

after which it falls. Gav is also seen to decrease with r. However with time, Gav first

decreases and then is then seen to increase. Since the expression for Gav has the oscillatory

term cosω0t, oscillation is seen in figure 15(b) with time t.

From figures 16, a general trend is observed of average gate fidelity Gav, under the

influence of the SGAD channel, decreasing with increase in T as well as evolution time t,

for a given r. However, as can be observed from figure 16(a), for a certain range of T , Gav

is seen to increase with reservoir squeezing s. This indicates that squeezing can be a useful

quantum resource in this scenario.

Another quantity frequently used to access the channel’s performance is the channel

fidelity [45, 46]

χ = max
B

κ(B, E), (5.3)

where κ(B, E) is the Holevo bound for states prepared in basis B and passed through the

channel E . By numerical techniques it was learned that the maximum is achieved for the

states prepared in the basis states { 1√
2
(|0〉 + |1〉), 1√

2
(|0〉 − |1〉)}. κ signifies how well the

quantum input states are distinguishable after the action of the channel E . When classical

information is encodes in to the quantum states, it can also be interpreted as the amount

of extractable classical information.

From figure 17(a) it can be seen that χ, for the Unruh-QND channel, decreases with

both s and T . This behavior is due to the dephasing caused by QND channel and alteration

of the diagonal and off-diagonal terms by Unruh channel of the input states. The χ also

decreases with the r and t as seen from the figure 17(b). The Unruh-SGAD channel

drives the input states towards an asymptotic state determined by the channel parameters

reducing the distinguishability of the states, i.e., reducing the χ. By increasing the bath

squeezing, the coherence in the input states increases [46] leading to a rise in χ for a given

range of temperature, as seen in the figure 18(a). Figure 18(b) shows that as the Unruh-

SGAD channel acts χ decreases with both r and t as both the parameters drive the input

states towards an asymptotic state.
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(a) (b)

Figure 17. (a) Plot of channel fidelity χ against bath temperature T and squeezing s when Rob’s

accelerated qubit is subjected to QND channel, while Rob’s acceleration corresponds to r = π/8

and qubit-bath interaction time t = 0.5. (b) Variation of χ against t for and r, while T = 0.5 and

s = 0.5. The other parameters are ω0 = 0.1, γ0 = 0.1 and a = 0. In the figures input states used

are 1√
2
(|0〉 ± |1〉).

(a) (b)

Figure 18. (a) Plot of channel fidelity χ against bath temperature T and squeezing s when Rob’s

accelerated qubit is subjected to SGAD channel, while Rob’s acceleration corresponds to r = π/8

and qubit-bath interaction time t = 0.5. (b) Variation of χ against t for and r, while T = 0.5 and

s = 0.5. The other parameters are ω0 = 0.1, γ0 = 0.1 and φs = 0. In the figures input states used

are 1√
2
(|0〉 ± |1〉).

6 Limitations and future directions

In this article, we have worked with the combinations of Minkowski modes [49, 73–75], using

the single mode approximation [49] which attempts to relate a single frequency Minkowski

mode (observed by an inertial observer) with a single frequency Rindler mode (observed

by a uniformly accelerated observer). A monochromatic Minkowski mode is associated to

a Rindler mode which corresponds to a non-monochromatic field excitation. The relevant

Bogoliubov transformations are such that a plane-wave Minkowski creation operator cannot

be written, in general, as a combination of monochromatic Rindler modes [49].

The present analysis can be extended beyond the single mode approximation. As an

example, one can consider a general Unruh mode of the form

d†k,U = qR

(
D†k,R ⊗ IL

)
+ qL

(
IR ⊗D†k,L

)
, (6.1)
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where D†k,R, D†k,L are Unruh creation operators and qL, qR are complex numbers, the sum

of whose modulus square is equal to one. In our analysis qL = 0 and qR = 1. Inclusion of

both qL and qR in the analysis would enable the study of particle and antiparticle modes

of Rob and anti-Rob in the study of fermionic entanglement. This results in entangle-

ment redistribution between the particle and anti-particle sectors, a feature not possible

in the bosonic sector. As a result, there is non-vanishing minimum value of fermionic en-

tanglement in the limit of infinite acceleration, a result that is also seen in the case of a

single-mode approximation scheme [62]. However, keeping both qL and qR enables one to

reach a physical understanding of this residual entanglement [73, 74]. This is independent

of the choice of the Unruh mode. This was made explicit in [76].

Here we have investigated in detail, in terms of various aspects of quantum correla-

tions, how environmentally induced decoherence and dissipation, natural artifacts of open

quantum systems, modify the effect of the Unruh channel. The single-mode treatment,

such as that adopted here, can still be useful for exhibiting in a simple way important

facets of external noise, such as the differing effects of a dissipative or non-dissipative envi-

ronment, the role of squeezing, which is known to play an important role in the context of

particle creation, and finally, how external noise can enhance the Unruh effect’s degrading

effect on quantum information. Keeping in mind the bigger picture that emerges if one

were to go beyond the single mode approximation, it would be worth extending the present

analysis in this direction. This would be possible by a straightfoward application of the

tools developed in this work and would enable a deeper insight into the effect of external

noise channels on the tradeoff between the particle anti-particle sector.

Another key progress that has been made in the field of relativistic quantum infor-

mation in recent times, is the introduction and use of localized modes for Alice and the

accelerated observer, here the detector, Rob [77, 78]. The principle behind the degrada-

tion of quantum correlations emerged to be due to the mode mismatch between what was

received and what could be observed by the accelerated detector. It would be interest-

ing, albeit an algebraically involved procedure, to apply the tools of quantum statistical

mechanics, as used here, to the localized mode formulation of the problem.

7 Conclusions

In this work, we make use of ideas of statistical mechanics and quantum foundations on an

important facet of field theories in curved space time, viz. the Unruh effect. We study how

environmentally induced decoherence modifies the effect of the Unruh channel, essentially

by investigating the degradation of quantum correlations, as quantified by measures such

as nonlocality, mixed-state entanglement, teleportation fidelity, coherence and a discord-

like quantity. The differing effects of an environment that interacts dissipatively or non-

dissipatively are noted. In particular, the latter is shown to lead to a non-Pauli channel of

rank 3. Further, useful parameters characterizing channel performance such as gate and

channel fidelity are applied here to the Unruh channel, both with and without external

influences. Squeezing, which is known to play an important role in the context of particle
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creation, is shown to be a useful resource in a number of scenarios. We hope this work is

a contribution towards the understanding of the Unruh effect.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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