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Abstract
We propose a new algorithm for solving systems of nonlinear equations with convex
constraints which combines elements of Newton, the proximal point, and the
projection method. The convergence of the whole sequence is established under
weaker conditions than the ones used in existing projection-type methods. We study
the superlinear convergence rate of the new method if in addition a certain error
bound condition holds. Preliminary numerical experiments show that our method is
efficient.
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1 Introduction
Let F :Rn →R

n be a continuous mapping and C ⊂R
n be a nonempty, closed, and convex

set. The inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖, respectively. Consider the
problem of finding

x* ∈ C such that F
(
x*

)
= . (.)

Let S denote the solution set of (.). Throughout this paper, we assume that S is
nonempty and F has the property that

〈
F(y), y – x*

〉 ≥ , for all y ∈ C and all x* ∈ S. (.)

The property (.) holds if F is monotone or more generally pseudomonotone on C in the
sense of Karamardian [].
Nonlinear equations have wide applications in reality. For example, many problems aris-

ing from chemical technology, economy, and communications can be transformed into
nonlinear equations; see [–]. In recent years, many numerical methods for problem
(.) with smooth mapping F have been proposed. These methods include the Newton
method, quasi-Newtonmethod, Levenberg-Marquardtmethod, trust regionmethod, and
their variants; see [–].
Recently, the literature [] proposed a hybrid method for solving problem (.), which

combines the Newton, proximal point, and projection methodologies. The method pos-
sesses a very nice globally convergent property if F is monotone and continuous. Under

© 2012 Zheng; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81912332?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.journalofinequalitiesandapplications.com/content/2012/1/180
mailto:zhenglian66@yahoo.com.cn
http://creativecommons.org/licenses/by/2.0


Zheng Journal of Inequalities and Applications 2012, 2012:180 Page 2 of 14
http://www.journalofinequalitiesandapplications.com/content/2012/1/180

the assumptions of differentiability and nonsingularity, locally superlinear convergence of
themethod is proved. However, the condition of nonsingularity is too strong. Relaxing the
nonsingularity assumption, the literature [] proposed amodified version for themethod
by changing the projection way, and showed that under the local error bound condition
which is weaker than nonsingularity, the proposed method converges superlinearly to the
solution of problem (.). The numerical performances given in [] show that themethod
is really efficient. However, the literatures [, ] need the mapping F to be monotone,
which seems too stringent a requirement for the purpose of ensuring global convergence
property and locally superlinear convergence of the hybrid method.
To further relax the assumption of monotonicity of F , in this paper, we propose a new

hybrid algorithm for problem (.) which covers one in []. The global convergence of
our method needs only to assume that F satisfies the property (.), which is much weaker
than monotone or more generally pseudomonotone. We also discuss the superlinear con-
vergence of our method under mild conditions. Preliminary numerical experiments show
that our method is efficient.

2 Preliminaries and algorithms
For a nonempty, closed, and convex set � ⊂ R

n and a vector x ∈ R
n, the projection of x

onto � is defined as

��(x) = argmin
{‖y – x‖|y ∈ �

}
.

We have the following property on the projection operator; see [].

Lemma . Let � ⊂R
n be a closed convex set. Then it holds that

∥∥x –��(y)
∥∥ ≤ ‖x – y‖ – ∥∥y –��(y)

∥∥, ∀x ∈ �, y ∈R
n.

Algorithm . Choose x ∈ C, parameters κ ∈ [, ), λ, β ∈ (, ), γ, γ > , a,b ≥ ,
max{a,b} > , and set k := .
Step . Compute F(xk). If F(xk) = , stop. Otherwise, let μk = γ‖F(xk)‖/,

σk =min{κ,γ‖F(xk)‖/}. Choose a positive semidefinite matrix Gk ∈R
n×n.

Compute dk ∈R
n such that

F
(
xk

)
+ (Gk +μkI)dk = rk , (.)

where

∥∥rk∥∥ ≤ σkμk
∥∥dk∥∥. (.)

Stop if dk = . Otherwise,
Step . Compute yk = xk + tkdk , where tk = βmk and mk is the smallest nonnegative

integer m satisfying

–
〈
F
(
xk + βmdk),dk 〉 ≥ λ( – σk)μk

∥∥dk∥∥. (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/180
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Step . Compute

xk+ = �Ck

(
xk – αkF

(
yk

))
,

where Ck := {x ∈ C : hk(x)≤ } and

hk(x) :=
〈
aF

(
xk

)
+ bF

(
yk

)
,x – yk

〉
+ atk

〈
F
(
xk

)
,dk 〉, (.)

αk :=
〈F(yk),xk – yk〉

‖F(yk)‖ .

Let k = k +  and return to Step .

Remark . When we take parameters a = , b = , and the search direction dk = x̄k –
xk , our algorithm degrades into one in []. At this step of getting the next iterate, our
projection way and projection region are also different from the one in [].

Now we analyze the feasibility of Algorithm .. It is obvious that dk satisfying condi-
tions (.) and (.) exists. In fact, when we take dk = –(Gk +μkI)–F(xk), dk satisfies (.)
and (.). Next, we need only to show the feasibility of (.).

Lemma . For all nonnegative integer k, there exists a nonnegative integer mk satisfy-
ing (.).

Proof If dk = , then it follows from (.) and (.) that F(xk) = , which means Algo-
rithm . terminates with xk being a solution of problem (.).
Now, we assume that dk �= , for all k. By the definition of rk , the Cauchy-Schwarz in-

equality and the positive semidefiniteness of Gk , we have

–
〈
F
(
xk

)
,dk 〉 = (

dk)T (Gk +μkI)
(
dk) – (

dk)Trk
≥ μk

∥∥dk∥∥ –
∥∥rk∥∥∥∥dk∥∥

≥ ( – σk)μk
∥∥dk∥∥. (.)

Suppose that the conclusion of Lemma . does not hold. Then there exists a nonnegative
integer k ≥  such that (.) is not satisfied for any nonnegative integer m, i.e.,

–
〈
F
(
xk + βmdk

)
,dk

〉
< λμk ( – σk )

∥∥dk
∥∥, ∀m. (.)

Letting m → ∞ and by the continuity of F , we have

–
〈
F
(
xk

)
,dk

〉 ≤ λμk ( – σk )
∥∥dk

∥∥.

Which, together with (.), dk �= , and σk ≤ κ < , we conclude that λ ≥ , which con-
tradicts λ ∈ (, ). This completes the proof. �

http://www.journalofinequalitiesandapplications.com/content/2012/1/180
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3 Convergence analysis
In this section, we first prove two lemmas, and then analyze the global convergence of
Algorithm ..

Lemma . If the sequences {xk} and {yk} are generated by Algorithm ., {xk} is bounded
and F is continuous, then {yk} is also bounded.

Proof Combining inequality (.) with the Cauchy-Schwarz inequality, we obtain

μk( – σk)
∥∥dk∥∥ ≤ –

〈
F
(
xk

)
,dk 〉

≤ ∥∥F(
xk

)∥∥∥∥dk∥∥.
By the definition of μk and σk , it follows that

∥∥dk∥∥ ≤ ‖F(xk)‖
μk( – σk)

≤ ‖F(xk)‖/
γ( – κ)

.

From the boundedness of {xk} and the continuity of F , we conclude that {dk} is bounded,
and hence so is {yk}. This completes the proof. �

Lemma . Let x* be a solution of problem (.) and the function hk be defined by (.). If
condition (.) holds, then

hk
(
xk

) ≥ λbtk( – σk)μk
∥∥dk∥∥ and hk

(
x*

) ≤ . (.)

In particular, if dk �= , then hk(xk) > .

Proof

hk
(
xk

)
=

〈
aF

(
xk

)
+ bF

(
yk

)
,xk – yk

〉
+ atk

〈
F
(
xk

)
,dk 〉

= a
〈
F
(
xk

)
, –tkdk 〉 + b

〈
F
(
yk

)
, –tkdk 〉 + atk

〈
F
(
xk

)
,dk 〉

= –btk
〈
F
(
yk

)
,dk 〉 (.)

≥ λbtk( – σk)μk
∥∥dk∥∥, (.)

where the inequality follows from (.).

hk
(
x*

)
=

〈
aF

(
xk

)
+ bF

(
yk

)
,x* – yk

〉
+ atk

〈
F
(
xk

)
,dk 〉

= a
〈
F
(
xk

)
,x* – xk

〉
+ a

〈
F
(
xk

)
,xk – yk

〉
+ b

〈
F
(
yk

)
,x* – yk

〉
+ atk

〈
F
(
xk

)
,dk 〉

≤ ,

where the inequality follows from condition (.) and the definition of yk .
If dk �= , then hk(xk) >  because σk ≤ κ < . The proof is completed. �

Remark . Lemma . means that the hyperplane

Hk :=
{
x ∈R

n|〈aF(
xk

)
+ bF

(
yk

)
,x – yk

〉
+ atk

〈
F
(
xk

)
,dk 〉 = 

}
strictly separates the current iterate from the solution set of problem (.).

http://www.journalofinequalitiesandapplications.com/content/2012/1/180
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Let x* ∈ S and dk �= . Since

〈
aF

(
xk

)
+ bF

(
yk

)
,xk – x*

〉
= a

〈
F
(
xk

)
,xk – x*

〉
+ b

〈
F
(
yk

)
,xk – x*

〉
= a

〈
F
(
xk

)
,xk – x*

〉
+ b

〈
F
(
yk

)
,xk – yk

〉
+ b

〈
F
(
yk

)
, yk – x*

〉
≥ b

〈
F
(
yk

)
,xk – yk

〉
≥ λbtkμk( – σk)

∥∥dk∥∥

> ,

where the first inequality follows from condition (.), the second one follows from (.),
and the last one follows dk �= , which shows that –(aF(xk) + bF(yk)) is a descent direction
of the function 

‖x – x*‖ at the point xk .

We next prove our main result. Certainly, if Algorithm . terminates at Step k, then xk

is a solution of problem (.). Therefore, in the following analysis, we assume that Algo-
rithm . always generates an infinite sequence.

Theorem . If F is continuous on C, condition (.) holds and supk ‖Gk‖ < ∞, then the
sequence {xk} ⊂R

n generated by Algorithm . globally converges to a solution of (.).

Proof Let x* be a solution of problem (.). Since xk+ = �Ck (x
k – αkF(yk)), it follows from

Lemma . that

∥∥xk+ – x*
∥∥ ≤ ∥∥xk – αkF

(
yk

)
– x*

∥∥ –
∥∥xk+ – xk + αkF

(
yk

)∥∥

=
∥∥xk – x*

∥∥ – αk
〈
F
(
yk

)
,xk – x*

〉
–

∥∥xk+ – xk
∥∥ – αk

〈
F
(
yk

)
,xk+ – xk

〉
,

i.e.,

∥∥xk – x*
∥∥ –

∥∥xk+ – x*
∥∥ ≥ αk

〈
F
(
yk

)
,xk – x*

〉
+

∥∥xk+ – xk
∥∥ + αk

〈
F
(
yk

)
,xk+ – xk

〉
≥ αk

〈
F
(
yk

)
,xk – yk

〉
+

∥∥xk+ – xk + αkF
(
yk

)∥∥ – α
k
∥∥F(

yk
)∥∥

≥ αk
〈
F
(
yk

)
,xk – yk

〉
– α

k
∥∥F(

yk
)∥∥

=
〈F(yk),xk – yk〉

‖F(yk)‖ ,

which shows that the sequence {‖xk+ – x*‖} is nonincreasing, and hence is a convergent
sequence. Therefore, {xk} is bounded and

lim
k→∞

〈F(yk),xk – yk〉
‖F(yk)‖ = . (.)

From Lemma . and the continuity of F , we have that {F(yk)} is bounded; that is, there
exists a positive constantM such that

∥∥F(
yk

)∥∥ ≤ M, for all k.

http://www.journalofinequalitiesandapplications.com/content/2012/1/180
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By (.) and the choices of σk and λ, we have

〈F(yk),xk – yk〉
‖F(yk)‖ =

tk 〈F(yk),dk〉
‖F(yk)‖

≥ tkλ
( – σk)μ

k‖dk‖
M

≥ λ( – κ)tkμ

k‖dk‖

M .

This, together with inequality (.), we deduce that

lim
k→∞

tkμk
∥∥dk∥∥ = .

Now, we consider the following two possible cases:
Suppose first that lim supk→∞ tk > . Then we must have

lim inf
k→∞

μk =  or lim inf
k→∞

∥∥dk∥∥ = .

From the definition of μk , the choice of dk and supk ‖Gk‖ < ∞, each case of them follows
that

lim inf
k→∞

∥∥F(
xk

)∥∥ = .

Since F is continuous and {xk} is bounded, which implies that the sequence {xk} has some
accumulation point x̂ such that

F(x̂) = .

This shows that x̂ is a solution of problem (.). Replacing x* by x̂ in the preceding argu-
ment, we obtain that the sequence {‖xk – x̂‖} is nonincreasing, and hence converges. Since
x̂ is an accumulation point of {xk}, some subsequence of {‖xk– x̂‖} converges to zero, which
implies that the whole sequence {‖xk – x̂‖} converges to zero, and hence limk→∞ xk = x̂.
Suppose now that limk→∞ tk = . Let x̄ be any accumulation point of {xk} and {xkj} be

the corresponding subsequence converging to x̄. By the choice of tk , (.) implies that

–
〈
F
(
xkj + tkjβ

–dkj
)
,dkj

〉
< λ( – σkj )μkj

∥∥dkj
∥∥, for all j.

Since F is continuous, we obtain by letting j → ∞ that

–
〈
F
(
xkj

)
,dkj

〉 ≤ λ( – σkj )μkj
∥∥dkj

∥∥. (.)

From (.) and (.), we conclude that λ ≥ , which contradicts λ ∈ (, ). Hence, the case
of limk→∞ tk =  is not possible. This completes the proof. �

Remark . Compared to the conditions of the global convergence used in literatures [,
], our conditions are weaker.

http://www.journalofinequalitiesandapplications.com/content/2012/1/180
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4 Convergence rate
In this section, we provide a result on the convergence rate of the iterative sequence gen-
erated by Algorithm .. To establish this result, we need the following conditions (.)
and (.).
For x* ∈ S, there are positive constants δ, c, and c such that

c dist(x,S)≤
∥∥F(x)∥∥, ∀x ∈ N

(
x*, δ

)
, (.)

and

∥∥F(x) – F(y) –Gk(x – y)
∥∥ ≤ c‖x – y‖, ∀x, y ∈N

(
x*, δ

)
, (.)

where dist(x,S) denotes the distance from x to solution set S, and

N
(
x*, δ

)
=

{
x ∈ Rn|∥∥x – x*

∥∥ ≤ δ
}
.

If F is differentiable and ∇F(·) is locally Lipschitz continuous with modulus θ > , then
there exists a constant L >  such that

∥∥F(y) – F(x) –∇F(x)(y – x)
∥∥ ≤ L‖y – x‖, ∀x, y ∈N

(
x*, δ

)
. (.)

In fact, by the mean value theorem of vector valued function, we have

∥∥F(y) – F(x) –∇F(x)(y – x)
∥∥

=
∥∥∥∥
∫ 


∇F

(
τy + ( – τ )x

)
(y – x)dτ –

∫ 


∇F(x)(y – x)dτ

∥∥∥∥
≤

∫ 



∥∥∇F
(
τy + ( – τ )x

)
–∇F(x)

∥∥‖y – x‖dτ

≤ θ‖y – x‖
∫ 


τ dτ

= L‖y – x‖,

where L = θ/. Under assumptions (.) or (.), it is readily shown that there exists a
constant L >  such that

∥∥F(y) – F(x)
∥∥ ≤ L‖y – x‖, ∀x, y ∈N

(
x*, δ

)
. (.)

In , the literature [] showed that their proposed method converged superlinearly
when the underlying function F is monotone, differentiable with ∇F(x*) being nonsingu-
lar, and∇F is locally Lipschitz continuous. It is known that the local error bound condition
given in (.) is weaker than the nonsingular. Recently, under conditions (.), (.), and
the underlying function F being monotone and continuous, the literature [] obtained
the locally superlinear rate of convergence of the proposed method.
Next, we analyze the superlinear convergence rate of the iterative sequence under a

weaker condition. In the rest of section, we assume that xk → x*, k → ∞, where x* ∈ S.

http://www.journalofinequalitiesandapplications.com/content/2012/1/180
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Lemma . Let G ∈ Rn×n be a positive semidefinite matrix and μ > . Then
() ‖(G +μI)–‖ ≤ 

μ
;

() ‖(G +μI)–G‖ ≤ .

Proof See []. �

Lemma . Suppose that F is continuous and satisfies conditions (.), (.), and (.). If
there exists a positive constant N such that ‖Gk‖ ≤ N for all k, then for all k sufficiently
large,
() c‖dk‖ ≤ ‖F(xk)‖ ≤ c‖dk‖;
() ‖F(xk) +Gkdk‖ ≤ c‖dk‖/, where c, c and c are all positive constants.

Proof For (), let xk ∈N(x*, δ) and x̂k ∈ S be the closest solution to xk . We have

∥∥x̂k – x*
∥∥ ≤ ∥∥x̂k – xk

∥∥ +
∥∥xk – x*

∥∥ ≤ δ,

i.e., x̂k ∈N(x*, δ). Thus, by (.), (.), (.), and Lemma ., we have

∥∥dk∥∥ ≤ ∥∥(Gk +μkI)–F
(
xk

)∥∥ +
∥∥(Gk +μkI)–rk

∥∥
≤ ∥∥(Gk +μkI)–

[
F
(
x̂k

)
– F

(
xk

)
–Gk

(
x̂k – xk

)]∥∥
+

∥∥(Gk +μkI)–Gk
(
x̂k – xk

)∥∥ +


μk

∥∥rk∥∥
≤ c

μk

∥∥x̂k – xk
∥∥ + 

∥∥x̂k – xk
∥∥ + σk

∥∥dk∥∥.
By ‖xk – x̂k‖ = dist(xk ,S) and σk ≤ κ, it follows that

( – κ)
∥∥dk∥∥ ≤

(
c
μk

dist
(
xk ,S

)
+ 

)
dist

(
xk ,S

)
.

From (.) and the choice of μk , it holds that

c
μk

dist
(
xk ,S

) ≤ c– c‖F(xk)‖
γ‖F(xk)‖/

=
c

γc
‖F(

xk
)‖/.

From the boundedness of {‖F(xk)‖}, there exists a positive constantM such that

∥∥F(
xk

)∥∥/ ≤ M.

Therefore,

∥∥dk∥∥ ≤ cM + γc
cγ( – κ)

dist
(
xk ,S

)

≤ cM + γc
cγ( – κ)

∥∥F(
xk

)∥∥. (.)

We obtain that the left-hand side of () by setting c :=
cγ(–κ)
cM+γc

.

http://www.journalofinequalitiesandapplications.com/content/2012/1/180
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For the right-hand side part, it follows from (.) and (.) that

∥∥F(
xk

)∥∥ ≤ ‖Gk +μkI‖
∥∥dk∥∥ +

∥∥rk∥∥
≤ (‖Gk +μkI‖ + σkμk

)∥∥dk∥∥
≤ (N + γM + κγM)

∥∥dk∥∥.
We obtain the right-hand side part by setting c :=N + γM + κγM.
For (), using (.) and (.), we have

∥∥F(
xk

)
+Gkdk∥∥ ≤ μk

∥∥dk∥∥ +
∥∥rk∥∥

≤ ( + σk)μk
∥∥dk∥∥

≤ ( + κ)γ
∥∥F(

xk
)∥∥/∥∥dk∥∥

≤ ( + κ)γc/
∥∥dk∥∥/.

By setting c := ( + κ)γc/ , we obtain the desired result. �

Lemma . Suppose that the assumptions in Lemma . hold. Then for all k sufficiently
large, it holds that

yk = xk + dk .

Proof By limk→∞ xk = x* and the continuity of F , we have

lim
k→∞

F
(
xk

)
= F

(
x*

)
= .

By Lemma .(), we obtain that

lim
k→∞

∥∥dk∥∥ = ,

which means that xk + dk ∈ N(x*, δ) for all k sufficiently large. Hence, it follows from (.)
that

F
(
xk + dk) = F

(
xk

)
+Gkdk + Rk , (.)

where ‖Rk‖ ≤ c‖dk‖. Using (.) and (.), (.) can be written as

F
(
xk + dk) = –μkdk + rk + Rk . (.)

Hence,

–
〈
F
(
xk + dk),dk 〉 = 〈

μkdk ,dk 〉 – rkdk – Rkdk

≥ μk
∥∥dk∥∥ – σkμk

∥∥dk∥∥ – c
∥∥dk∥∥

=
(
 –

c‖dk‖
μk( – σk)

)
μk( – σk)

∥∥dk∥∥.

http://www.journalofinequalitiesandapplications.com/content/2012/1/180
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By Lemma .() and the choices of μk and σk , for k sufficiently large, we obtain

 ≥  –
c‖dk‖

μk( – σk)

≥  –
cc– ‖F(xk)‖

( – κ)γ‖F(xk)‖/

=  –
cc– ‖F(xk)‖/

( – κ)γ
≥ λ,

where the last inequality follows from limk→∞ F(xk) = .
Therefore,

–
〈
F
(
xk + dk),dk 〉 ≥ λμk( – σk)

∥∥dk∥∥,

which implies that (.) holds with tk =  for all k sufficiently large, i.e., yk = xk + dk . This
completes the proof. �

From now on, we assume that k is large enough so that yk = xk + dk .

Lemma . Suppose that the assumptions in Lemma . hold. Set x̃k := xk –αkF(yk). Then
for all k sufficiently large, there exists a positive constant c such that

∥∥x̃k – yk
∥∥ ≤ c

∥∥dk∥∥/
.

Proof Set

H
k =

{
x ∈ Rn|〈F(

yk
)
,x – yk

〉
= 

}
.

Then x̃k = �H
k
(xk) and yk ∈H

k . Hence, the vectors xk – x̃k and yk – x̃k are orthogonal. That
is,

∥∥yk – x̃k
∥∥ =

∥∥yk – xk
∥∥ sin θk =

∥∥dk∥∥ sin θk , (.)

where θk is the angle between x̃k – xk and yk – xk . Because x̃k – xk = –αkF(yk) and yk – xk =
dk , the angle between F(yk) and –μkdk is also θk . By (.), we obtain

F
(
yk

)
–

(
–μkdk) = Rk + rk ,

which implies that the vectors F(yk), –μkdk and Rk + rk constitute a triangle. Since
limk→∞ μk = limk→∞ γ‖F(xk)‖/ =  and limk→∞ αk = . So for all k sufficiently large,
we have

sin θk ≤ ‖rk + Rk‖
μk‖dk‖

≤ σk +
c‖dk‖

μk

http://www.journalofinequalitiesandapplications.com/content/2012/1/180
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≤ γ
∥∥F(

xk
)∥∥/ +

c‖F(xk)‖
cγ‖F(xk)‖/

=
(

γ +
c
cγ

)∥∥F(
xk

)∥∥/,

which, together with (.) and Lemma .(), we obtain

∥∥yk – x̃k
∥∥ ≤

(
γ +

c
cγ

)∥∥F(
xk

)∥∥/∥∥dk∥∥
≤ c

∥∥dk∥∥/,

where c = c/ (γ + c
cγ

). This completes the proof. �

Now, we turn our attention to local rate of convergence analysis.

Theorem . Suppose that the assumptions in Lemma . hold. Then the sequence
{dist(xk ,S)} Q-superlinearly converges to .

Proof By the definition of x̃k , Lemma .() and (.), for sufficiently large k, we have

∥∥x̃k – x*
∥∥ ≤ ∥∥xk – αkF

(
yk

)
– x*

∥∥
≤ ∥∥xk – x*

∥∥ +
∥∥∥∥ 〈F(yk),xk – yk〉

‖F(yk)‖ F
(
yk

)∥∥∥∥
≤ ∥∥xk – x*

∥∥ +
∥∥dk∥∥

≤ ∥∥xk – x*
∥∥ + c–

∥∥F(
xk

)∥∥
=

∥∥xk – x*
∥∥ + c–

∥∥F(
xk

)
– F

(
x*

)∥∥
≤ (

 + Lc–
)∥∥xk – x*

∥∥,
which implies that limk→∞ ‖x̃k – x*‖ =  because limk→∞ ‖xk – x*‖ = . Thus, x̃k ∈ N(x*, δ)
for k sufficiently large, which, together with (.), Lemma ., Lemma ., and the defini-
tion of x̃k , we obtain

∥∥F(
x̃k

)∥∥ ≤ ∥∥F(
xk

)
+Gk

(
x̃k – xk

)∥∥ + c
∥∥x̃k – xk

∥∥

≤ ∥∥F(
xk

)
+Gk

(
yk – xk

)∥∥ + ‖Gk‖
∥∥x̃k – yk

∥∥ + c
∥∥x̃k – xk

∥∥

≤ c
∥∥dk∥∥/ +Nc

∥∥dk∥∥/ + c
∥∥αkF

(
yk

)∥∥

≤ (c +Nc)
∥∥dk∥∥/ + c

∥∥dk∥∥

=
(
c +Nc + c

∥∥dk∥∥/)∥∥dk∥∥/

≤ (
c +Nc + cc–/

∥∥F(
xk

)∥∥/)∥∥dk∥∥/.

Because {‖F(xk)‖} is bounded, there exists a positive constant c such that

∥∥F(
x̃k

)∥∥ ≤ c
∥∥dk∥∥/. (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/180
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On the other hand, from Lemma ., we know that

S ⊆ C ∩Hk ,

where S is the solution set of problem (.). Since xk+ = �C∩Hk (x̃
k), it follows from

Lemma . that

∥∥xk+ – x*
∥∥ ≤ ∥∥x̃k – x*

∥∥ –
∥∥xk+ – x̃k

∥∥, ∀x* ∈ S,

which implies that

∥∥xk+ – x*
∥∥ ≤ ∥∥x̃k – x*

∥∥.
Therefore, together with inequalities (.), (.), and (.), we have

dist
(
xk+,S

) ≤ dist
(
x̃k ,S

) ≤ 
c

∥∥F(
x̃k

)∥∥
≤ c

c

∥∥dk∥∥/ ≤ c
c

(
cM + γc
cγ( – κ)

)/

dist/
(
xk ,S

)
,

which implies that the order of superlinear convergence is at least .. This completes the
proof. �

Remark. Comparedwith the proof of the locally superlinear convergence in literatures
[, ], our conditions are weaker.

5 Numerical experiments
In this section, we present some numerical experiments results to show the efficiency of
our method. The MATLAB codes are run on a notebook computer with CPU.GHZ
under MATLAB Version .. Just as done in [], we take Gk = F ′(xk) and use the left divi-
sion operation in MATLAB to solve the system of linear equations (.) at each iteration.
We choose b = , λ = ., κ = , β = ., and γ = . ‘Iter.’ denotes the number of itera-
tion and ‘CPU’ denotes the CPU time in seconds. We choose ‖F(xk)‖ ≤ – as the stop
criterion. The example is tested in [].

Example Let

F(x) =

⎛
⎜⎜⎜⎝
   
  – 
   
   

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
x
x
x
x

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

x
x
x
x

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝
–

–


⎞
⎟⎟⎟⎠

and the constraint set C be taken as

C =

{
x ∈R


∣∣∣∣

∑
i=

xi ≤ ,xi ≥ , i = , , , 

}
.
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Table 1 Numerical results of Example with a = 10–15

Initial point Iter. CPU ‖F(x*)‖
(3,0,0,0) 11 0.10 1.07× 10–8

(1,1,0,0) 13 0.09 1.62× 10–9

(0,1,0,1) 15 0.04 2.46× 10–9

(0,0,0,1) 21 0.18 9.92× 10–10

(1,0,0,2) 16 0.54 5.66× 10–10

Table 2 Numerical results of Example with a = 0

Initial point Iter. CPU ‖F(x*)‖
(3,0,0,0) 11 0.10 1.07× 10–8

(1,1,0,0) 13 0.12 1.62× 10–9

(0,1,0,1) 19 0.14 1.17× 10–9

(0,0,0,1) 18 0.18 1.44× 10–9

(1,0,0,2) 15 0.21 7.88× 10–9

FromTables -, we can see that our algorithm is efficient if parameters are chosen prop-
erly. We can also observe that the algorithm’s operation results change with the value of a.
When we take a = , the operation results are not best, that is to say, the direction F(yk) is
not an optimal one.
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