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Abstract. In [J. Topol. Anal. 6 (2014), 305–338], we have developed a
homology theory (Morse–Conley–Floer homology) for isolated invariant
sets of arbitrary flows on finite-dimensional manifolds. In this paper, we
investigate functoriality and duality of this homology theory. As a pre-
liminary, we investigate functoriality in Morse homology. Functoriality
for Morse homology of closed manifolds is known, but the proofs use
isomorphisms to other homology theories. We give direct proofs by ana-
lyzing appropriate moduli spaces. The notions of isolated map and flow
map allow the results to generalize to local Morse homology and Morse–
Conley–Floer homology. We prove Poincaré-type duality statements for
local Morse homology and Morse–Conley–Floer homology.
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1. Introduction

In this paper, we address functoriality and duality properties of Morse ho-
mology, local Morse homology and Morse–Conley–Floer homology. The func-
toriality of Morse homology on closed manifolds is known [1, 2, 3, 9, 15],
however no proofs are given through the analysis of moduli spaces. This
analysis is done in Sections 2–4. These sections are of independent interest
from the rest of the paper. In Section 5 we discuss isolation properties of
maps, which are important for the functoriality in local Morse homology and
Morse–Conley–Floer homology. This functoriality is discussed in Sections 6
and 7. In Section 8 we discuss Poincaré duality in these homology theories.
Finally, in Appendix A we prove that the transverse maps that are crucial for
defining the induced maps in Morse homology are generic. Below is a detailed
description of the results in this paper.
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1.1. Morse homology and local Morse homology

A Morse datum is a quadruple Qα = (Mα, fα, gα, oα), where Mα is a choice
of closed manifold and (fα, gα, oα) is a Morse–Smale triple on Mα. Thus fα

is a Morse function on Mα, and gα is a metric such that the stable and
unstable manifolds of fα intersect transversely. Finally, oα denotes a choice
of orientations of the unstable manifolds. The Morse homology HM∗(Qα) is
defined as the homology of the chain complex of C∗(Qα) which is freely gen-
erated by the critical points of fα and graded by their index, with boundary
operator ∂∗(Qα) counting connecting orbits of critical points with Morse in-
dex difference of 1 appropriately with sign; cf. [5, 15, 16]. If Qβ is another
choice of Morse datum with Mβ = Mα, there is a canonical isomorphism

Φβα
∗ : HM∗(Qα) → HM∗

(
Qβ

)
.

The canonical isomorphism is induced by continuation, i.e., a homotopy be-
tween the Morse data Qα and Qβ ; see, for example, [7, 16]. The Morse ho-
mology of the manifold M = Mα is defined by

HM∗(M) = lim←−HM∗(Qα), (1.1)

where the inverse limit is taken over all Morse data with the canonical iso-
morphisms.1 The Morse homology HM∗(M) is isomorphic to the singular
homology H∗(M

α).
Important in what follows is that this construction can also be carried

out locally.2 Recall the following definitions from Conley theory. A subset
Sα ⊂ Mα is called invariant for a flow φα if

φα(t, Sα) = Sα for all t ∈ R.
A compact neighborhood Nα ⊂ Mα is an isolating neighborhood for φα if

Inv(Nα, φα) ⊂ int(Nα),

where

Inv
(
Nα, φα

)
= {x ∈ Nα | φα(t, x) ∈ Nα for all t ∈ R},

is called the maximal invariant set in Nα. An invariant set Sα for which
there exists an isolating neighborhood Nα with Sα = Inv(Nα, φα), is called
an isolated invariant set. A homotopy of flows is isolated if Nα is an isolating
neighborhood for each flow in the homotopy. Now suppose that (fα, gα) is
a Morse–Smale pair on Nα; cf. [14, Definition 3.5]. Thus Nα is an isolating
neighborhood of the gradient flow ψα of (fα, gα) such that all critical points
of fα are nondegenerate on Nα and the local stable and unstable manifolds
intersect transversely. Then

Pα = (Mα, fα, gα, Nα, oα),

with oα a choice of orientation of the local unstable manifolds, is a local Morse
datum. The local Morse homology HM∗(Pα) is defined by a similar counting

1Here and below we use the inverse limits to capture the full isomorphism class of the
isomorphic structures HM∗(Qα).
2Here we do not need to assume that Mα is closed anymore.
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procedure as Morse homology. However, now only critical points and con-
necting orbits that are contained in Nα are counted. If the gradient flows
associated with two local Morse data Pα and Pβ are isolated homotopic,3

then there exist canonical isomorphisms Φβα
∗ : HM∗(Pα) → HM∗(Pβ) in-

duced by the continuation map.

Local Morse homology is not a topological invariant for Nα. It measures
dynamical information of the gradient flow of (fα, gα). There is still stability
under continuation. Given any function f and a metric g such that N is an
isolating neighborhood of the gradient flow, which we do not assume to be
Morse–Smale, we define the local Morse homology of such a triple via

HM∗(f, g,N) = lim←−HM∗(Pα).

The inverse limit is taken over all local Morse data Pα on Nα = N whose gra-
dient flow is isolated homotopic to the gradient flow ψ of (f, g) on N .

IfM is a compact manifold, and we takeN = M , the local Morse homol-
ogy does not depend on the function and the metric anymore, as all gradient
flows are isolated homotopic to each other. In this case the local Morse homol-
ogy recovers the Morse homology defined in equation (1.1).

Results on Morse homology on compact manifolds with boundary fall in
this framework. Let M be a compact manifold with boundary. Assuming that
the gradient of a Morse function f is not tangent to the boundary, we can en-

dow the boundary components with collars to obtain a manifold M̃ without

boundary. The function and metric extend to M̃ . ThenM ⊂ M̃ is an isolating
neighborhood of the gradient flow. One can compute this Morse homology in
terms of the singular homology of M as

HM∗(f, g,M) ∼= H∗(M,∂M−),

where ∂M− is the union of the boundary components where the gradient of f
points outwards. For more details we refer the reader to [14, Section 1.1].

1.2. Morse–Conley–Floer homology

We recall the definition of Morse–Conley–Floer homology, cf. [14], from a
slightly different viewpoint. Let φ be a flow on M and S an isolated invariant
set of the flow. A Lyapunov function fα

φ for (S, φ) is a function that is constant
on S and satisfies

d

dt

∣∣∣∣
t=0

fα
φ

(
φ(t, p)

)
< 0

on Nα\S, where Nα is an isolating neighborhood for Sα. Lyapunov functions
always exist for a given isolated invariant set; cf. [14, Proposition 2.6]. We can
compute the local Morse homology of a Lyapunov function with respect to the
choice of a metric eα and Nα.

3We use here the fact that two gradient flows are isolated homotopic through gradient
flows if and only if they are isolated homotopic through arbitrary flows; see [14, Proof of
Proposition 5.3].
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Given another Lyapunov function fβ
φ which satisfies the Lyapunov prop-

erty on Nβ and the metric eβ , there is a canonical isomorphism

Φβα
∗ : HM∗(f

α
φ , e

α, Nα) → HM∗
(
fβ
φ , e

β , Nβ
)
,

induced by continuation; cf. [14, Theorems 4.7 and 4.8]. The Morse–Conley–
Floer homology of (S, φ) is then defined as the inverse limit over all such local
Morse homologies

HI∗(S, φ) = lim←−HM∗(f
α
φ , e

α, Nα).

Morse–Conley–Floer homology is the local Morse homology of the Lyapunov
functions. This definition is equivalent to

HI∗(S, φ) = lim←−HM∗(Rα),

which runs over all Morse–Conley–Floer data

Rα = (M, fα, gα, Nα, oα),

where (fα, gα, oα) is a Morse–Smale triple on Nα whose gradient flow is iso-
lated homotopic to the gradient flow of a Lyapunov function fα

φ on Nα for
some metric eα, with respect to canonical isomorphisms

Φβα : HM∗(Rα) → HM∗
(
Rβ

)
.

This was the viewpoint of [14].

1.3. Functoriality in Morse homology

In Sections 2–4 we study functoriality in Morse homology on closed manifolds.
Induced maps between Morse homologies are defined by counting appropriate
intersections for transverse maps.

Definition 1.1. Let hβα : Mα → Mβ be a smooth map. We say that hβα is
transverse (with respect to Morse data Qα and Qβ) if for all x ∈ Crit fα and
y ∈ Crit fβ , we have

hβα
∣∣
Wu(x)

� W s(y).

The set of transverse maps is denoted by T (Qα,Qβ). We write

Whβα(x, y) = Wu(x) ∩
(
hβα

)−1(
W s(y)

)

for the moduli spaces.

Given Qα and Qβ , the set of transverse maps T (Qα,Qβ) is generic;
cf. Theorem A.1. The index of a critical point x ∈ Crit fα is denoted by |x|.
The transversality assumption ensures that Whβα(x, y) is an oriented man-
ifold of dimension |x| − |y|; cf. Proposition 2.1. Hence, for |x| = |y| we can
compute the oriented intersection number nhβα(x, y) and define an induced
map

hβα
∗ : C∗(Qα) → C∗

(
Qβ

)

by

hβα
∗ (x) =

∑
|y|=|x|

nhβα(x, y) y.
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In Sections 2–4 we show that this defines a chain map, that homotopic maps
induce chain homotopic maps, and that the composition of the induced maps
is chain homotopic to the induced map of the composition. This implies that

the induced map hβα
∗ descends to a map

hβα
∗ : HM∗(M

α) → HM∗
(
Mβ

)

between the Morse homologies via counting, which is functorial and which
does not depend on the homotopy class of the map hβα. The homotopy
invariance and density of transverse maps allow for an extension to all smooth
maps.

Theorem 1.2. Morse homology is a functor HM∗ : Man → GrAb between the
category of smooth manifolds to the category of graded abelian groups. The
functor sends homotopic maps to the same map between the homology groups.

1.4. Isolation properties of maps

To study functoriality in local Morse homology and Morse–Conley–Floer ho-
mology, isolation properties of maps are crucial. We identify the notion of iso-
lated map and isolated homotopy in Definition 5.1. Isolated maps are open
in the compact-open topology, cf. Proposition 5.2, but are not necessarily
functorial: the composition of two isolated maps need not be isolated. An
important class of maps that are isolated and form a category is flow maps.
Flow maps were introduced by McCord [10] to study functoriality in Conley
index theory.

Definition 1.3. A smooth map hβα : Mα → Mβ between manifolds equipped
with flows φα and φβ , is a flow map if it is proper and equivariant. Thus preim-
ages of compact sets are compact and

hβα
(
φα(t, p)

)
= φβ

(
t, hβα(p)

)
for all t ∈ R and p ∈ Mα.

The isolation properties of flow maps are given in Proposition 5.4. If
hβα is a flow map and Nβ is an isolating neighborhood, then

Nα = (hβα)−1
(
Nβ

)

is an isolating neighborhood. Moreover, hβα is isolated with respect to these
isolating neighborhoods. Similar statements hold for compositions of flow
maps.

1.5. Functoriality in local Morse homology

In Section 6 we define induced maps in local Morse homology. Due to the local
nature of the homology, not all maps are admissible and the notion of iso-
lated map becomes crucial. The maps are computed by the same counting
procedure, but now done locally. We sum up the functorial properties of local
Morse homology from Propositions 6.1 and 6.3.

(i) An isolated transverse map induces a chain map, hence descends to a
map between the local Morse homologies.

(ii) An isolated homotopy between transverse maps induces a chain homo-
topic map.
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(iii) If hγβ , hβα and hγβ ◦ hβα are transverse maps such that hγβ ◦ψβ
R ◦ hβα

is an isolated map for all R > 0, then (hγβ ◦hβα)∗ and hγβ
∗ hβα

∗ are chain
homotopic.

Consider the following category of isolated invariant sets of gradient
flows.

Definition 1.4. The category of isolated invariant sets of gradient flows, de-
noted by GISet, has as objects the quadruples (M, f, g,N) consisting of
smooth functions f on M and metrics g such that the sets N are isolat-
ing neighborhoods for the associated gradient flows. A morphism

hβα : (Mα, fα, gα, Nα) →
(
Mβ , fβ , gβ , Nβ

)

is a map that is isolated homotopic to a flow map h̃βα with

Nα =
(
h̃βα

)−1(
Nβ

)
.

These morphisms are then perturbed to transverse maps, from which the
induced map can be computed; cf. Propositions 6.2 and 6.4.

Theorem 1.5. Local Morse homology is a covariant functor

HM∗ : GISet → GrAb

which is constant on isolated homotopy classes of maps.

The local Morse homology functor generalizes the Morse homology func-
tor. Any map hβα : Mα → Mβ between closed manifolds equipped with flows
is isolated homotopic to a flow map with

Mα = Nα =
(
hβα

)−1(
Nβ

)
=

(
hβα

)−1(
Mβ

)
,

since the flows on both manifolds are isolated homotopic to the constant flow,
and any map is equivariant with respect to constant flows.

1.6. Functoriality in Morse–Conley–Floer homology

Functoriality in Morse–Conley–Floer homology now follows from the results
on local Morse homology, cf. Theorem 7.1, by establishing appropriate iso-
lated homotopies.

Definition 1.6. The category of isolated invariant sets ISet has as objects
triples (M,φ, S) of a manifold M , a flow φ and an isolated set S. A morphism

hβα : (Mα, φα, Sα) →
(
Mβ , φβ , Sβ

)

is a map that is isolated homotopic for some choice of isolating neighborhoods

Nα, Nβ to a flow map h̃βα such that Nα = (h̃βα)−1(Nβ).

Theorem 1.7. Morse–Conley–Floer homology is a covariant functor

HI∗ : ISet → GrAb

which is constant on the isolated homotopy classes of maps and flows.
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1.7. Duality in Morse–Conley–Floer homology

In Section 8 we prove a Poincaré-type duality theorem for Morse–Conley–
Floer (co)homology. The theorem expresses a duality between the Morse–
Conley–Floer homology of an orientable isolated invariant set S of a flow and
the Morse–Conley–Floer cohomology of S seen as an isolated invariant set
of the reverse flow defined by φ−1(t, x) = φ(−t, x). The following duality
statement resembles an analogous theorem for the Conley index, due to Mc-
Cord [11].

Theorem 1.8. Let S be an oriented isolated invariant set of a flow φ. Then
there are Poincaré duality isomorphisms

PDk : HIk(S, φ) → HIm−k
(
S, φ−1

)
.

2. Chain maps in Morse homology on closed manifolds

In Sections 2–4, which discuss functoriality for Morse homology, we assume
that the base manifolds are closed.

2.1. The moduli space Whβα(x, y)

For a transverse map, see Definition 1.1, the moduli spaces

Whβα(x, y) = Wu(x) ∩
(
hβα

)−1
(W s(y))

are smooth oriented manifolds.

Proposition 2.1. Let hβα ∈ T (Qα,Qβ). For all x ∈ Crit fα and y ∈ Crit fβ,
the space Whβα(x, y) is an oriented submanifold of dimension |x| − |y|.

Proof. Because hβα restricted to Wu(x) is transverse to W s(y), Theorem 3.3
on [8, page 22] implies that

Whβα(x, y) =
(
hβα

∣∣
Wu(x)

)−1

(W s(y))

is an oriented submanifold of Wu(x). The orientation is induced by the exact
sequence of vector bundles4

0 −→ TWhβα(x, y) −→ TWu(x)
dhβα

−−−→ NW s(y) −→ 0,

where the latter is the normal bundle of W s(y). The normal bundle of W s(y)
is oriented, because W s(y) is contractible, and NyW

s(y) ∼= TyW
u(y) is ori-

ented by the choice oβ . The codimension of Whβα(x, y) in Wu(x) equals the
codimension of W s(y) in Mβ . Thus

|x| − dimWhβα(x, y) = codimW s(y) = |y|,

from which the proposition follows. �

4We employ the fiber first convention in the orientation of exact sequences of vector bun-
dles; cf. [8, 9].
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If |x| = |y|, the space Whβα(x, y) is zero dimensional and consists of
a finite number of points carrying orientation signs ±1. Set nhβα(x, y) as

the sum of these orientation signs. We define the degree zero map hβα
∗ :

C∗(Qα) → C∗(Qβ) by the formula

hβα
∗ (x) =

∑
|y|=|x|

nhβα(x, y) y.

Through compactness and gluing analysis of the moduli spaceWhβα(x, y) and
related moduli spaces, we prove the following properties of induced maps.

(i) The induced map of the identity is the identity on chain level.

(ii) We show that hβα
∗ is a chain map; i.e.,

hβα
k−1∂

α
k = ∂β

kh
βα
k for all k.

(iii) In Section 3 we study homotopy invariance. Suppose thatQγ andQδ are
other Morse data on Mα = Mγ and Mβ = Mδ. Suppose that

hδγ ∈ T
(
Qγ ,Qδ

)

is homotopic to hβα ∈ T (Qα,Qβ), then hδγ
∗ Φγα

∗ and Φδβ
∗ hβα

∗ are chain
homotopic. That is, there exists a degree +1 map

P δα
∗ : C∗(Qα) → C∗

(
Qδ

)

such that

Φδβ
k hβα

k − hδγ
k Φγα

k = −∂δ
k+1P

δα
k − P δα

k−1∂
α
k for all k.

Here Φβα
∗ denotes the isomorphism induced by continuation.

(iv) In Section 4 we study compositions. If hγβ ∈ T (Qβ ,Qγ) is such that

hγβ ◦ hβα ∈ T
(
Qα,Qγ

)
,

then hγβ
∗ hβα

∗ and (hγβ ◦ hβα)∗ are chain homotopic; i.e., there exists a
degree +1 map P γα

∗ : C∗(Qα) → C∗(Qγ) such that

hγβ
k hβα

k −
(
hγβ ◦ hβα

)
k
= P γα

k−1∂
α
k + ∂γ

k+1P
γα
k for all k.

2.2. Compactness of Whβα(x, y′) with |x| = |y′|+ 1

The chain map property (ii) holds by the compactness properties of the mod-
uli space Whβα(x, y′) with |x| = |y′| + 1. This space is a one-dimensional
manifold, but it is not necessarily compact. The noncompactness is due to
breaking of orbits in the domain and in the codomain, which is the content of
Proposition 2.2. In Figure 1 we depicted this breaking process in the domain.
Recall that we denote by

W (x, y) = Wu(x) ∩W s(y)

the space of parameterized orbits, and by

M(x, y) = W (x, y)/R
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x

y

y′

pk

p ∈ Whβα (y, y′)

u1

u2

u3

ul
Whβα (x, y′)

Figure 1. One of the possible compactness failures of
Whβα(x, y′) with |x| = |y′|+ 1. The orbits through pk break
to (u1, . . . , ul) with u1 ∈ M(x, y).

the space of unparameterized orbits. The points where breaking can occur in
the domain are counted by

M(x, y)×Whβα(y, y′),

with |y| = |y′|, and the points where breaking occurs in the codomain are
counted by

Whβα(x, x′)×M(x′, y′),

with |x| = |x′|. The space Whβα(x, y′) can be compactified by gluing in these
broken orbits; cf. Proposition 2.4. Proposition 2.6 then states that the result-
ing object is a one-dimensional compact manifold with boundary. By counting
the boundary components appropriately with sign, the chain map property
is obtained; cf. Proposition 2.7.

Since Mα is assumed to be compact, and

Whβα(x, y′) ⊂ Mα,

any sequence pk ∈ Whβα(x, y′) has a subsequence converging to some point
p ∈ Mα. In the next proposition, see also Figure 1, it is stated to which
points such sequences converge.

Proposition 2.2 (Compactness). Let hβα ∈ T (Qα,Qβ), x ∈ Crit fα and y′ ∈
Crit fβ with |x| = |y′| + 1. Let pk ∈ Whβα(x, y′) be a sequence such that
pk → p in Mα. Then either one of the following is true:

(i) p ∈ Whβα(x, y′);
(ii) there exists y ∈ Crit fα, with |y|= |y′| such that p ∈ Whβα(y, y′). The or-

bits through pk break to orbits (u1, . . . , ul) as k → ∞ with u1 ∈ M(x, y);
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(iii) there exists x′ ∈ Crit fβ, with |x′| = |x| such that p ∈ Whβα(x, x′). The
orbits through hβα(pk) break to the orbits (u′

1, . . . , u
′
l) as k → ∞ with

u′
l ∈ M(x′, y′).

Proof. The spaces Whβα(x, y′), Whβα(y, y′) and Whβα(x, x′) are disjoint, and
hence the three possibilities cannot occur at the same time. We choose a sub-
sequence such that pk ∈ W (x, b) for some fixed b ∈ Crit fα, which is possible
by the fact that there are only a finite number of such spaces by compact-
ness. The broken orbit lemma, see for example [4, Lemma 2.5], states that
p ∈ W (y, a) for some y, a ∈ Crit fα with |y| ≤ |x|, and equality if and only if
x = y. Similarly, choosing a subsubsequence if necessary, we also assume that
hβα(pk) ∈ W (a′, y′) for some fixed a′ ∈ Crit fβ . Then hβα(p) ∈ W (b′, x′) for
some b′, x′ ∈ Crit fβ with |x′| ≥ |y′|, with equality if and only if x′ = y′.

Now if p �∈ Wu(x) and hβα(p) �∈ W s(y′), then we have the impossibility
that p ∈ Whβα(y, x′), with |y| < |x| and |x′| > |y′|. Since by transversality,

dimWhβα(y, x′) = |y| − |x′| ≤ (|x| − 1)− (|y′| − 1) ≤ −1.

Assuming that p �∈ Whβα(x, y′), only two possibilities remain. If

p ∈ Whβα(x, x′),

with |x′| > |y| = |x| − 1, then from dimWhβα(x, x′) ≥ 0 it follows that
|x′| = |x|. If hβα(p) ∈ Whβα(y, y′), with |y| < |x|, then dimWhβα(y, y′) ≥ 0
gives that |y′| = |y|; see also Figure 1. The claim about the breaking orbits
is the content of the broken orbit lemma. �

The proposition generalizes to higher index difference moduli spaces. We
do not need this, and this would clutter the notation without a significant
gain.

2.3. Gluing the ends of Whβα(x, y′), with |x| = |y′|+ 1

We compactify Whβα(x, y′) by gluing in the broken orbits described in Propo-
sition 2.2. The following lemma is the technical heart of the standard gluing
construction in Morse homology; see also Figure 2. We single this out because
we have to construct several gluing maps, which all use this lemma. For a pair
(f, g) of a function and a metric we denote by ψ its negative gradient flow.

Lemma 2.3 (Gluing). Let f : M → R be a Morse function, g a metric, and
y ∈ Crit f . Write m = dimM . Suppose that D|y| and Em−|y| are embedded
discs of dimension |y| and m− |y| with

D|y| � W s(y) and Em−|y| � Wu(y).

Assume that each intersection only consists of a single point, and write

u ∈ D|y| ∩W s(y) and v ∈ Em−|y| ∩Wu(y).

Then there exist an R0 > 0 and an injective map ρ : [R0,∞) → M , such that

g

(
d

dR
ρ(R),−∇gf

)
�= 0,
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W s(y)

Wu(u)

D|y|

Em−|y|

u

v

ρ(R)

ψ(R, ρ(R))

ψ(−R, ρ(R))

ψ(−R,Em−|y|)

ψ(R,D|y|)

y

Figure 2. The content of Lemma 2.3 is depicted. Discs that
are transverse to the stable and unstable manifolds must
intersect if they are flowed in forwards and backwards time.
This intersection point is used to define the gluing map.

and ψ(−R, ρ(R)) ∈ D|y|, and ψ(R, ρ(R)) ∈ Em−|y|. We have the limits

lim
R→∞

ρ(R) = y, lim
R→∞

ψ
(
−R, ρ(R)

)
= u, lim

R→∞
ψ
(
R, ρ(R)

)
= v.

Finally there exist smaller discs D′ ⊂ D|y| and E′ ⊂ Em−|y| such that no or-
bit through D′ \

⋃
R∈[R0,∞) ψ(−R, ρ(R)) intersects E′.

Proof. We only sketch the proof; see also Figure 2. More details can be found
in the proof of [16, Theorem 3.9]. Let Bu ⊂ Wu(y) and Bs ⊂ W s(y) be closed
balls containing y. Write

D
|y|
R = ψ

(
R,D|y|

)
and E

m−|y|
−R = ψ

(
−R,Em−|y|

)
.

Since the discs are transverse to the stable and unstable manifolds of y, the λ-
Lemma (cf. [12, Chapter 2, Lemma 7.2]) gives that for all t large, smaller discs

D′
R ⊂ D

|y|
R and E′

−R ⊂ E
m−|y|
−R are ε−C1 close to Bu and Bs, respectively. It

follows, through an application of the Banach Fixed Point Theorem, that
there exists an R0 > 0 such that D′

R and E′
−R intersect in a single point for

each R > R0 sufficiently large. Set

ρ(R) = D′
R ∩ E′

−R.

The properties of ρ follow from the construction. �

To prove that ∂2 = 0 in Morse homology, gluing maps are needed
to compactify appropriate moduli spaces and these are constructed using
the Morse–Smale condition and the previous lemma as follows. Let x, y and
z be critical points with |x| = |y| − 1 = |z| − 2 and assume that M(x, y) and
M(y, z) are nonempty. Then the Morse–Smale condition gives that there ex-
ists a disc D|y| in Wu(x) that is transverse to an orbit in M(x, y). Because of
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transversality, one can also choose a disc Em−|y| in W s(z) that is transverse
to an orbit in M(y, z). The gluing map

# : M(x, y)× [R0,∞)×M(y, z) → M(x, z)

is given by mapping R to the orbit through ρ(R) as in Figure 2. We now use
similar ideas to compactify Whβα(x, y′) with |x| = |y′|+ 1.

Proposition 2.4. Assume that hβα ∈ T (Qα,Qβ). Then for critical points
x, y ∈ Crit fα and x′, y′ ∈ Crit fβ, with |x| = |x′| = |y| + 1 = |y′| + 1, there
exist R0 > 0 and gluing embeddings

#1 : M(x, y)× [R0,∞)×Whβα(y, y′) → Whβα(x, y′),

#2 : Whβα(x, x′)× [R0,∞)×M(x′, y′) → Whβα(x, y′).

Moreover, if pk ∈ Whβα(x, y′) converges to p ∈ Whβα(y, y′), and the orbits
through pk break as (u1, . . . , ul) with u1 ∈ M(x, y), then pk is in the image
of #1 for k sufficiently large. Analogously, if pk ∈ Whβα(x, y′) converges to
p ∈ Whβα(x, x′), and the orbits through hβα(pk) break to (u1, . . . , ul) with
u′
l ∈ M(x′, y), then pk is in the image of #2 for k sufficiently large.

Proof. Let u ∈ W (x, y) and v ∈ Whβα(y, y′). Since (fα, gα) is a Morse–Smale
pair, we can choose a disc D|y| in Wu(x) through u and transverse to W s(y).
Analogously, because hβα is transverse, we can find a disc Emα−|y| in Mα

through v, and transverse toWu(y), with hβα(Emα−|y|)⊂W s(y′). Lemma 2.3
provides us with a map

ρ : [R0,∞) → Mα.

Denote by γu ∈ M(x, y) the orbit through u, and set

γu#
1
Rv = ψα

(
R, ρ(R)

)
.

Then

γu#
1
Rv ∈ Emα−|y| and ψα

(
− 2R, γu#

1
Rv

)
∈ D|y| ⊂ Wu(x),

hence γu#
1
Rv ∈ Whβα(x, y′). The properties of the map ρ in Lemma 2.3 di-

rectly give the properties of #1.

The construction of #2 is similar. Let u ∈ Whβα(x, x′) and v ∈ W (x′, y′).

By transversality of hαβ we can choose a disc D|x′|⊂Wu(x) which hβα maps

bijectively to hβα(D|x′|), and whose image hβα(D) is transverse to W s(x′).

Choose a disc Emβ−|x′| ⊂ W s(y′) with v ∈ Emβ−|x′| which is transverse to
Wu(x′). Now Lemma 2.3 provides us with a map

ρ : [R0,∞) → Mβ .

Set

u#2
Rγv = (hβα)−1

(
ψβ

(
−R, ρ(R)

))
,

which is well defined since hβα|D|x′| is a diffeomorphism onto hβα(D|x′|). The
properties of #2 follow. �
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2.4. Orientations

After a choice of orientations of the unstable manifolds, the moduli spaces
Whβα(x, y′), W (x, y) and M(x, y) carry induced orientations; cf. Proposi-
tion 2.1 and [16, Proposition 3.10]. We show that the gluing map #1 is
compatible with the induced orientations, while #2 reverses the orientations.

Consider the notation of the proof of Proposition 2.4. By W (x, y)|u de-
note the connected component of W (x, y) containing u ∈ W (x, y), with simi-
lar notation for other moduli spaces. If |x| = |y|+1, the moduli space W (x, y)
is one dimensional and can be oriented by the negative gradient vector field.
For u ∈ W (x, y) write [u̇] for this induced orientation of W (x, y)|u. The ori-
entation of W (x, y)|u induced by the choice of oα is denoted by a[u̇], with
a = ±1. Then the orientation of Whβα(y, y′) induced by oα and oβ is denoted
by b, with b = ±1. The gluing map #1 induces a map of orientations

σ1 : Or
(
W (x, y)

∣∣
u

)
×Or

(
Whβα(y, y′)

∣∣
v

)
→ Or

(
Whβα(x, y′)

∣∣
γu#1

R0
v

)

given by

σ1
(
a[u̇], b

)
= ab

[
d

dR

∣∣∣
R=R0

γu#
1
Rv

]
.

Similarly, the gluing map #2 induces a map of orientations

σ1 : Or
(
Whβα(x, x′)

∣∣
u

)
×Or

(
W (x′, y′)

∣∣
v

)
→ Or

(
Whβα(x, y′)

∣∣
u#2

R0
γv

)

given by

σ2
(
c, d[v̇]

)
= cd

[
d

dR

∣∣∣
R=R0

u#2
Rγv

]
with c, d = ±1.

Proposition 2.5. Let the notation be as above. Then σ1 preserves the orien-
tation, and σ2 reverses the orientation induced by oα and oβ.

Proof. We first treat the gluing map σ1. By the transversality assumptions we
have the following exact sequences of oriented vector spaces:

0 → TuW (x, y) → TuW
u(x) → NuW

s(y) → 0, (2.1)

0 → TvWhβα(y, y′) → TvW
u(y)

dhβα

−−−−→ Nhβα(v)W
s(y′) → 0, (2.2)

0 → Tγu#1
R0

vWhβα(x, y′) → Tγu#1
R0

vW
u(x)

dhβα

−−−→ Nhβα(γu#1
R0

v)W
s(y′) → 0.

(2.3)

The following isomorphisms of oriented vector spaces are induced by parallel
transport and the fact that the stable and unstable manifolds are contractible:

TuW
u(x) ∼= Tγu#1

R0
vW

u(x), (2.4)

Nhβα(v)W
s(y′) ∼= Nhβα(γu#1

R0
v)W

s(y′) ∼= Ny′W s(y′) ∼= Ty′Wu(y′), (2.5)

NuW
s(y) ∼= NyW

s(y) ∼= TyW
u(y) ∼= TvW

u(y), (2.6)



450 T. O. Rot and R. C. A. M. Vandervorst JFPTA14 T. O. Rot and R. C. A. M. Vandervorst

along with the identification of the normal bundle of the stable manifold with
the tangent bundle of the unstable manifold. From the exact sequences (2.1)
and (2.2) and isomorphisms (2.5) and (2.6) it now follows that, as oriented
vector spaces,

TuW
u(x) ∼= TuW (x, y)⊕NuW

s(y)

∼= TuW (x, y)⊕ TvWhβα(y, y′)⊕Nhβα(v)W
s(y′)

∼= TuW (x, y)⊕ TvWhβα(y, y′)⊕ Ty′Wu(y′).

Analogously, from (2.3), (2.4) and (2.5) we get

TuW
u(x) ∼= Tγu#1

R0
vW

u(x)

∼= Tγu#1
R0

vWhβα(x, y′)⊕Nhβα(γu#1
R0

v)W
s(y′)

∼= Tγu#1
R0

vWhβα(x, y′)⊕ Ty′Wu(y′).

Combining the last two formulas, we see that

Tγu#1
R0

vWhβα(x, y′) ∼= TuW (x, y)⊕ TvWhβα(y, y′).

The orientation on the right-hand side is ab[u̇]. The tangent vector to the orbit
γu through u has a well-defined limit as t → ∞, which we denote by [u̇(∞)],
and similarly the tangent vector to γv has a well-defined limit as t → −∞,
which we denote by [v̇(−∞)]; cf. [16, Theorem 3.11] and [15, Lemma B.5].
We want to compare the orientation [u̇] to

[
d

dR

∣∣∣
R=R0

γu#
1
Rv

]
,

and we are able to do this as follows. We can flow Whβα(x, y′)|γu#1
R0

v with

the gradient flow, cf. Figure 3, which we denote by

Whβα(x, y′)
∣∣
γu#1

R0
v
× R.

Note that y is in the closure of this space. Then the orientations

[
u̇(∞), v̇(−∞)

]
and

[
d

dR

∣∣∣
R=R0

γu#
1
Rv,−∇fα

]

agree on this space (here we extend the manifold to its closure). Quotient-
ing out the R action, we see that the orientation [u̇] = [u̇(∞)] agrees with[

d
dRρ(R)

]
which agrees with

[
d

dR

∣∣∣
R=R0

γu#
1
Rv

]
.

The orientation map σ1 preserves the orientation. The proof that σ2 is orien-
tation reversing is analogous. Again we use the notation of Proposition 2.4,
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u

v̇(−∞)

u̇(∞)

x

y
d
dR

ρ(R) −∇fα v

y′

Figure 3. Orientation issues due to breaking in the domain.
The orientations [u̇(∞), v̇(−∞)] and

[
d
dRρ(R),−∇fα

]
agree,

from which it follows that the map σ1 is orientation preserv-
ing.

with u ∈ Whβα(x, x′) and v ∈ W (x′, y′). We have the following exact se-
quences of oriented vector spaces:

0 → TvW (x′, y′) → TvW
u(x′) → NvW

s(y′) → 0, (2.7)

0 → TuWhβα(x, x′) → TuW
u(x)

dhβα

−−−→ Nhβα(u)W
s(x′) → 0, (2.8)

0 → Tu#2
R0

γv
Whβα(x, y′) → Tu#2

R0
γv
Wu(x)

dhβα

−−−→ Nhβα(u#2
R0

γv)W
s(y′) → 0.

(2.9)

By isomorphisms induced by parallel transport, analogous to the isomor-
phisms (2.4), (2.5), and (2.6), and from (2.8) and (2.7) we get that

TuW
u(x) ∼= TuWhβα(x, x′)⊕Nhβα(u)W

s(x′)

∼= TuWhβα(x, x′)⊕ TvW (x′, y′)⊕ Ty′Wu(y′).

Similarly, from (2.9) and the isomorphisms induced by parallel transport we
get

TuW
u(x) ∼= Tu#2γv

Whβα(x, y′)⊕ Ty′Wu(y′),

which gives

Tu#2γv
Whβα(x, y′) ∼= TuWhβα(x, x′)⊕ Thβα(u)W (x′, y′).

The orientation on the right-hand side is ab[v̇]. Locally around u, hβα is in-
jective when restricted toWhβα(x, y′)|u. We can therefore take this image and
flow with ψβ , which we denote by hβα(Whβα(x, y′)|u)×R. The point x′ lies in
the closure, again the limits of tangent vectors of the orbits through hβα(u)
and v are well defined for t → ±∞, and the orientations [hβα(u)(∞), v(−∞)]
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x

u

d
dR

ρ(R)

˙hβα(u)(∞)

v̇(−∞)

y′x′

−∇fβ
v

Figure 4. Orientation issues due to breaking in the

codomain. The orientations [ ˙hβα(u)(∞), v̇(−∞)] and[
d
dRρ(R),−∇fβ

]
agree, from which it follows that the map

σ2 is orientation reversing.

and [
d

dR
ρ(R),−∇fβ

]
= −

[
−∇fβ ,

d

dR
ρ(R)

]

agree. By quotienting out the flow, it follows that

[v̇] =
[
v̇(−∞)

]
= −

[
d

dR
ρ(R)

]
= −

[
d

dR

∣∣∣
R=R0

u#2
Rγv

]
.

The map σ2 is orientation reversing; cf. Figure 4. �

2.5. The induced map hβα
∗ is a chain map

Propositions 2.2 and 2.4, along with the considerations of the previous section
directly give the following theorem.

Theorem 2.6. Let hβα be transverse with respect to Qα and Qβ. For each x ∈
Crit fα and y′ ∈ Crit fβ with |x| = |y′|+ 1, the space

Ŵhβα(x, y′) = Whβα(x, y′) ∪
⋃

|y|=|y′|

M(x, y)×Whβα(y, y′)

∪
⋃

|x′|=|x|

−
(
Whβα(x, x′)×M(x′, y′)

)

has a natural structure as a compact oriented manifold with boundary given
by the gluing maps.

Note that this proposition does not state that exactly one half of the
boundary components correspond to M(x, y)×Whβα(y, y′) and the other half

to Whβα(x, x′)×M(x′, y′). Still it does follow that hβα
∗ is a chain map.
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Proposition 2.7. Let hβα be a transverse map with respect to Qα and Qβ.
Then the induced map

hβα
∗ : C∗(Qα) → C∗

(
Qβ

)

is a chain map.

Proof. Let x ∈ Crit fα. Using Proposition 2.6 we compute
(
hβα
k−1∂

α
k − ∂β

kh
βα
k

)
(x)

=
∑

|y′|=|x|−1


 ∑

|y|=|x|−1

nhβα(y, y′)n(x, y)−
∑

|x′|=|x|

n(x′, y′)nhβα(x, x′)


 y′

=
∑

|y′|=|x|−1

∂Ŵhβα(x, y′)y′ = 0.

Because the oriented count of the boundary components of a compact ori-

ented one-dimensional manifold is zero, hβα
∗ is a chain map. �

3. Homotopy-induced chain homotopies

The main technical work, showing that hβα
∗ is a chain map, is done. To show

that homotopic maps induce the same maps in Morse homology, we could
again define an appropriate moduli space and analyze its compactness fail-
ures. However, a simpler method is to construct a dynamical model of the
homological cone. This trick is used in Morse homology to show that Morse
homology does not depend on the choice of function, metric and orientation.
Using the homotopy we build a higher-dimensional system—the dynamical
cone—where we use the fact that an induced map is a chain map to prove
homotopy invariance.

Proposition 3.1 (Homotopy invariance). Let Qα, Qβ, Qγ and Qδ be Morse
data with Mα = Mγ and Mβ = Mδ. Let

hβα ∈ T
(
Qα,Qβ

)
and hδγ ∈ T

(
Qγ ,Qδ

)
,

and assume the maps are homotopic. Then hδγ
∗ Φγα

∗ and Φδβ
∗ hβα

∗ are chain ho-
motopic. That is, there exists a degree +1 map P δα

∗ : C∗(Qα) → C∗(Qδ) such
that

Φδβ
k hβα

k − hδγ
k Φγα

k = −∂δ
k+1P

δα
k − P δα

k−1∂
α
k for all k.

Proof. Let hλ : Mα → Mβ be a smooth homotopy between hβα and hδγ . Let

gγαλ be a smooth homotopy between gα and gγ , and let gδβλ be a smooth ho-

motopy between gβ and gδ. Similarly, let fγα
λ be a smooth homotopy between

fα and fγ , and let fδβ
λ be a smooth homotopy between fβ and fδ. Choose

0 < ε < 1/4 and let ω : R → [0, 1] be a smooth, even and 2-periodic function
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with the following properties:

ω(µ) =

{
0, −ε < λ < ε,

1, −1 ≤ λ < −1 + ε and 1− ε < λ ≤ 1,

and

ω′(µ) < 0 for µ ∈ (−1 + ε,−ε),

ω′(µ) > 0 for µ ∈ (ε, 1− ε).

We identify S1 with R/2Z. Under the identification of S1 with R/2Z, the func-
tion ω descends to a smooth function S1 → [0, 1], which is also denoted by ω.
Let r > 0. We define the functions Fα on Mα × S1 and F β on Mβ × S1 by

Fα(x, µ) = fγα
ω(µ)(x) + r

(
1 + cos(πµ)

)
,

F β(x, µ) = fδβ
ω(µ)(x) + r

(
1 + cos(πµ)

)
.

For r sufficiently large, the functions Fα, F β are Morse, cf. [14, Lemma 4.5],
and the critical points can be identified by

Ck(F
α) ∼= Ck−1(f

α)⊕ Ck(f
γ),

Ck

(
F β

) ∼= Ck−1

(
fβ

)
⊕ Ck

(
fδ

)
.

(3.1)

We define H : Mα × S1 → Mβ × S1 by

H(x, µ) =
(
hω(µ)(x), µ

)
.

The connections of the gradient flow at µ = 0 and µ = 1 are transverse, and
the map H restricted to the neighborhoods at µ = 0 and µ = 1 also satisfies
the required transversality properties. Hence we can perturb H while keeping
it fixed in the neighborhoods of µ = 0 and µ = 1, as well as the metrics

Gα = gγαω(µ)(x)⊕ dµ2 and Gβ = gδβω(µ)(x)⊕ dµ2

outside −ε < µ < ε and 1 − ε < µ < 1 + ε to obtain Morse–Smale flows on
Mα × S1 and Mβ × S1, such that the map H is transverse everywhere. We
orient the unstable manifolds in Mα × S1 by

Oα = (∂µ⊕ oα) ∪ oγ ,

and the unstable manifolds in Mβ × S1 by

Oβ =
(
∂µ⊕ oβ

)
∪ oδ.

Let (x, 0) ∈ Ck(F
α), thus x ∈ Ck−1(f

α). Then

Wu((x, 0)) ⊂ Mα × S1 \ {1},
Wu((x, 0)) ∩Mα × {0} = Wu(x)× {0}.

For (x, 1) ∈ Ck(F
α), i.e., x ∈ Ck(f

γ), we have

Wu((x, 1)) = Wu(x)× {1}.
Similarly for (y, 0) ∈ Ck(F

β), i.e., y ∈ Ck−1(f
β), we have

W s((y, 0)) = W s(y)× {0}.
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Finally for (y, 1) ∈ Ck(F
β), i.e., y ∈ Ck(f

δ), we have

W s((y, 1)) ⊂ Mβ ×
(
S1 \ {0}

)
,

W s((y, 1)) ∩
(
Mβ × {1}

)
= W s(y)× {1}.

By Propositions 2.2 and 2.4 and the construction of H it is clear5 that
we can restrict the count of the induced map H∗ to WH(x, y) ∩Mα × [0, 1];
see also Proposition 6.1. Note that

H−1
(
Mβ ×

(
S1 \ {0}

))
⊂ Mα ×

(
S1 \ {0}

)
.

Let |(x, 0)| = |(y, 0)|, then

WH

(
(x, 0), (y, 0)

)
=

(
Wu(x) ∩

(
hβα

)−1
(W s(y))

)
× {0},

so nH((x, 0), (y, 0)) = nhβα(x, y) as oriented intersection numbers. Similarly
for |(x, 1)| = |(y, 1)|, we find that

WH

(
(x, 1), (y, 1)

)
=

(
Wu(x) ∩

(
hδγ

)−1
(W s(y))

)
× {1},

which gives

nH

(
(x, 1), (y, 1)

)
= nhδγ (x, y).

For |(x, 1)| = |(y, 0)| we compute that nH((x, 1), (y, 0)) = 0. Finally, we define
a map P δα

k : Ck(f
α) → Ck+1(f

δ) by counting the intersections of Wu((x, 0))
and H−1(W s((y, 1))) with sign. Thus

P δα(x) =
∑

|(x,0)|=|(y,1)|

nH

(
(x, 0), (y, 1)

)
y.

With respect to the splittings in (3.1), the induced map H∗ equals

Hk =

(
hβα
k−1 0

P δα
k−1 hδγ

k

)
.

By [14, equation (2.11)] the boundary maps ∆α
k on Mα× [0, 1] and ∆β

k × [0, 1]

on Mβ have the following forms:

∆α
k =

(
−∂α

k−1 0

Φγα
k−1 ∂γ

k

)
, ∆β

k =

(
−∂β

k−1 0

Φδβ
k−1 ∂δ

k

)
,

where the Φ’s are the maps that induce isomorphisms in Morse homology. We
know that Hk is a chain map, i.e., Hk−1∆

α
k = ∆δ

kHk. This implies that
(

−hβα
k−2∂

α
k−1 0

−P δα
k−2∂

α
k−1 + hδγ

k−1Φ
γα
k−1 hδγ

k−1∂
γ
k

)
=

(
−∂β

k−1h
βα
k−1 0

Φδβ
k−1h

βα
k−1 + ∂δ

kP
δα
k−1 ∂δ

kh
δγ
k

)
.

The lower left corner of this matrix equation gives the desired identity. �

5The map is isolated; cf. Definition 5.1.
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4. Composition-induced chain homotopies

To show that the compositions of a map induce the same map as the com-
positions of the induced maps in Morse homology, we take in spirit also a
homotopy between hγβ and hβα and hγβ ◦ hβα. This is not directly possible
as the maps have different domains and codomains, but we have an approx-
imating homotopy, which is sufficient.

For a flow φ : R×M → M on a manifold M we write φR : M → M for
the time-R map φR(x) = φ(R, x). Let

hβα ∈ T
(
Qα,Qβ

)
and hγβ ∈ T

(
Qβ ,Qγ

)
.

We assume, up to possibly a perturbation of hγβ , that the map

H : Mα × (0,∞) → Mβ ,

defined by

H(p,R) = hγβ ◦ ψβ
R ◦ hβα(p),

is transverse in the sense that

H
∣∣
Wu(x)×(0,∞)

� W s(z)

for all x ∈ Crit fα and z ∈ Crit fγ . We then have the moduli spaces

Whγβ ,hβα(x, z) =
{
(p,R) ∈ Mα × (0,∞) | p ∈ Wu(x),

hγβ ◦ ψR ◦ hβα(p) ∈ W s(z)
}

of dimension |x| − |z| + 1. The compactness issues if R → ∞ are due to the
breaking of orbits in Mβ , which is described in the following proposition.

Proposition 4.1 (Compactness). Assume the above situation, with |x| = |z|.
Let (pk, Rk) ∈ Whγβ ,hβα(x, z) be a sequence with Rk → ∞ as k → ∞. Then

there exist y ∈ Crit fβ, with |x| = |y| = |z|, and a subsequence (pk, Rk) such

that pk → p ∈ Whβα(x, y), and ψβ
Rk

◦ hβα(pk) → q ∈ Whγβ (y, z).

Proof. By compactness of Mα we can choose a subsequence of (pk, Rk) such
that pk → p, and choose a subsubsequence such that also

qk = ψβ
Rk

◦ hβα(pk) → q.

By similar arguments as in Proposition 2.2, using the transversality, p ∈
Whβα(x′, y), with |x| ≥ |x′| ≥ |y|, and q ∈ Whγβ (y′, z′), with |y′| ≥ |z′| ≥ |z|,
where the equality holds if and only if x = x′, z′ = z. Moreover, since qk and
hβα(pk) are on the same orbit, we must have that |y′| ≥ |y| with equality if
and only if y′ = y. Since |x| = |z|, it follows that x′ = x and z′ = z, and
therefore also y′ = y. �

Proposition 4.2 (Gluing). Assume the above situation. Let x ∈ Crit fα, y ∈
Crit fβ and z ∈ Crit fγ , with |x| = |y| = |z|. Then there exist an R0 > 0 and
a gluing embedding

#3 : Whβα(x, y)× [R0,∞)×Whγβ (y, z) → Whγβ ,hβα(x, z).
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hβα(D)

hβα(u)

v

E

ψβ(−R, ρ(R))

y

Figure 5. The moduli space Whγβ ,hβα(x, z) has noncom-
pact ends if R → ∞. These ends can be compactified by
gluing in Whβα(x, y) × Whγβ (y, z), for all y ∈ Crit fβ , with
|x| = |y| = |z| as in Proposition 4.2.

Moreover, if (pk, Rk) ∈ Whγβ ,hβα(x, z) with

pk → p ∈ Whβα(x, y) and ψβ
(
Rk, h

βα(pk)
)
→ q ∈ Whγβ (y, z),

then the sequence (pk, Rk) lies in the image of the embedding for k sufficiently
large.

Proof. Let u ∈ Whβα(x, y) and v ∈ Whγβ (y, z). By transversality of hβα,
we choose a disc D|y| ⊂ Wu(x) such that hβα|D|y| is injective and the im-
age hβα(D|y|) intersects W s(y) transversely in hβα(u). We also choose a disc

Emβ−|y| ⊂ Mβ , intersecting Wu(y) transversely in v, whose image is con-
tained in W s(z); cf. Figure 5. By Lemma 2.3, we get an R′

0 > 0 and a map
ρ : [R′

0,∞) → Mβ . Set R0 = R′
0/2 and define

#3(u,R, v) =
((

hβα
)−1 (

ψ(−R, ρ(R))
)
, 2R

)
.

Here we use the fact that hβα
∣∣
D|y| is bijective to hβα(D|y|). The properties

stated follow from Lemma 2.3. �

Proposition 4.3. Consider the above situation. Then there exists an R > 0

such that hγβ ◦ ψβ
R ◦ hβα ∈ T (Qα,Qγ), and the moduli space

Whγβ ,hβα(x, z,R) := Whγβ ,hβα(x, z) ∩Mα × (R,∞)

has a compactification as a smooth oriented manifold with boundary

Ŵhγβ ,hβα(x, z,R) = Whγβ ,hβα(x, z,R) ∪ −Whγβ◦ψβ
R◦hβα(x, z)

∪
⋃

|y|=|x|

Whβα(x, y)×Whγβ (y, z).
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Proof. Proposition 4.1 shows that all sequences (pk, Rk) in the moduli space
with Rk → ∞ have that the limits

pk → p and hγβ ◦ ψβ
Rk

◦ hβα(pk) → q

converge in the interior of Wu(x) and W s(z). By compactness of the domain,
this implies that there is an R > 0 such that Whγβ ,hβα(x, z,R) has no limit

points outsideWu(x), and similarly that hγβ◦ψβ
R◦hβα(pk) cannot converge to

a point outsideW s(z). By parametric transversality [8, Theorem 2.7, page 79]
we can assume that

hγβ ◦ ψβ
R ◦ hβα ∈ T

(
Qα,Qγ

)
.

The space only has two noncompact ends. One is counted by⋃
|y|=|x|

Whβα(x, y)×Whγβ (y, z)

for which we have constructed a gluing map. The other noncompact end is
counted by Whγβ◦ψβ

R◦hβα(x, z) where the gluing map is given by sending

p ∈ Whγβ◦ψβ
R◦hαβ (x, z) and R′ ∈ (1,∞)

to (
p,R+

1

R′

)
∈ Whγβ ,hβα(x, z,R). �

Proposition 4.4. Suppose that

hβα ∈ T
(
Qα,Qβ

)
, hγβ ∈ T

(
Qβ ,Qγ

)
, hγβ ◦ hβα ∈ T

(
Qα,Qγ

)
.

Then hγβ
∗ ◦hβα

∗ and (hγβ◦hβα)∗ are chain homotopic, i.e., there is a degree +1
map P γα

∗ : C∗(Qα) → C∗(Qγ) such that

hγβ
k hβα

k −
(
hγβ ◦ hβα

)
k
= P γα

k−1∂
α
k + ∂γ

k+1P
γα
k for all k.

Proof. By Proposition 4.3 we have((
hγβ ◦ ψβ

R ◦ hβα
)
∗
− hγβ

∗ hβα
∗

)
(x)

=
∑

|z|=|x|

(
nhγβ◦ψβ

R◦hβα(x, z)−
∑

|y|=|x|

nhγβ (y, z)nhβα(x, y)

)
z

=
∑

|z|=|x|

∂Ŵ (x, z,R)z = 0.

The homotopy between

hγβ ◦ hβα and hγβ ◦ ψβ
R ◦ hβα,

sending λ ∈ [0, 1] to hγβ ◦ ψβ
λR ◦ hβα, induces a chain homotopy by Proposi-

tion 3.1. That is, there is a degree +1 map P∗ such that(
hγβ ◦ ψβ

R ◦ hβα
)
k
−
(
hγβ ◦ hβα

)
k
= −∂γ

k+1P
γα
k − P γα

k−1∂
α
k for all k.

Combining the last two equations gives the chain homotopy. �
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5. Isolation properties of maps

For the remainder of this paper, we do not assume that the base manifolds
are necessarily closed. We localize the discussion on functoriality in Morse
homology on closed manifolds, and we study functoriality for local Morse
homology, as well as functoriality for Morse–Conley–Floer homology. For this,
we need the isolation properties of maps.

For a manifold equipped with a flow φ, denote the forwards and back-
wards orbits as follows:

O+(p) :=
{
φ(t, p) | t ≥ 0

}
, O−(p) :=

{
φ(t, p) | t ≤ 0

}
.

Definition 5.1. Let Mα,Mβ be manifolds, equipped with flows φα, φβ . Let
Nα, Nβ be isolating neighborhoods. A map hβα : Mα → Mβ is an isolated
map (with respect to Nα, Nβ) if the set

Shβα :=
{
p ∈ Nα | O−(p) ⊂ Nα,O+

(
hβα(p)

)
⊂ Nβ

}
(5.1)

satisfies the property that for all p ∈ Shβα , we have

O−(p) ⊂ intNα, O+

(
hβα(p)

)
⊂ intNβ .

Compositions of isolated maps need not be isolated, however the condi-
tion is open in the compact-open topology.

Proposition 5.2. The condition of isolated maps is open: Let Mα, Mβ be man-
ifolds, equipped with flows φα, φβ. Let Nα, Nβ be isolating neighborhoods and
hβα : Mα → Mβ an isolated map. Then there exists an open neighborhood A
of (φα, hβα, φβ) in

C =
{(

φ̃α, h̃βα, φ̃β
)
∈ C∞(R×Mα,Mα)× C∞(

Mα,Mβ
)

× C∞(
R×Mβ ,Mβ

)
| Nα, Nβ are isolating

neighborhoods of flows φ̃α, φ̃β
}

equipped with the compact-open topology6 such that h̃βα is isolated with respect
to Nα, Nβ and flows φ̃α, φ̃β.

Proof. Define the sets

Sα
− := {p ∈ Nα | O−(p) ⊂ Nα} =

⋂
T≤0

φα([T, 0], Nα),

Sα
+ := {p ∈ Nα | O+(p) ⊂ Nα} =

⋂
T≥0

φα([0, T ], Nα),

which are compact. Then

Shβα = Sα
− ∩

(
hβα

)−1(
Sβ
+

)
.

6The space C itself is open in the space of triples (φ̃α, h̃βα, φ̃β) with flows φ̃α and φ̃β ;
cf. [14, Proposition 3.8].
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Note that a map being isolated is equivalent to the following two properties
of points on the boundary of the isolating neighborhoods in the domain and
the codomain.

(D) For all p ∈ ∂Nα either
(ai) there exists a t < 0 such that φα(t, p) ∈ Mα \Nα, or
(aii) O−(p) ⊂ Nα, and

T = sup{t ∈ R≥0 | φα([0, t], p) ⊂ Nα}
is finite,7 and for all q ∈ φα([0, T ], p) there exists s ≥ 0 such that
φβ(s, hβα(q)) ∈ Mβ \Nβ .

(CD) For all p ∈ ∂Nβ either
(bi) there exists a t > 0 such that φβ(t, p) ∈ Mβ \Nβ , or
(bii) O+(p) ⊂ Nβ , and

T = inf
{
t ∈ R≤0 | φβ([t, 0], p) ⊂ Nβ

}

is finite and hβα(Sα
−) ∩ φβ([T, 0], p) = ∅.

In each of these cases we construct open sets

Uα/β
p ⊂ Mα/β and Aα/β

p ⊂ C

such that, for all q ∈ Up and (φ̃α, h̃βα, φ̃β) ∈ A
α/β
p , these properties remain

true for points on the boundary of the isolating neighborhoods. By compact-

ness of Nα, Nβ we can choose a finite number of U
α/β
p that still cover ∂Nα/β .

Then

A =

(⋂
j

Aα
pj

)
∩

(⋂
j

Aβ
pj

)

is the required open set.
Let p ∈ ∂Nα and assume that property (ai) holds. Then there exists a

t < 0 such that φα(t, p) ∈ Mα\Nα. By continuity there exists an open neigh-
borhood Up � p such that φα(t, Up) ⊂ Mα \Nα. Define

Aα
p =

{(
φ̃α, h̃βα, φ̃β

)
∈ C | φ̃α

(
t, Up

)
⊂ Mα \Nα

}
.

This is by definition open in the compact-open topology. Then for all q ∈ Up

and all (φ̃α, h̃βα, φ̃β) ∈ Aα
p there exists a t < 0 such that φ̃α(t, q) ∈ Mα \Nα.

Now let p ∈ ∂Nα and assume that property (aii) holds. Choose t ∈ [0, T ]
and s > 0 such that

φβ
(
s, hβα(φα(t, p))

)
∈ Mβ \Nβ .

By continuity of φβ there exists a neighborhood V β
t,p � hβα(φα(t, p)) such that

φβ
(
s, V β

t,p

)
⊂ Mβ \Nβ .

7Note that it cannot be the case that O+(p) is also contained in Nα since Nα is an isolating
neighborhood of the flow φα and the orbit through a boundary point must leave the iso-
lating neighborhood at some time.
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Again by continuity there exists a neighborhood V α
t,p � φα(t, p) such that

hβα
(
V α
t,p

)
⊂ V β

t,p.

Since φα([0, T ], p) is compact and covered by the sets V α
t,p, we can choose a

finite number of tj such that the sets V α
tj ,p cover φ

α([0, T ], p). Now there exists
an ε > 0 small and a neighborhood Vp � p such that

φα
(
T + ε, V α

p

)
∈ (Mα \Nα) ∩

(⋃
j

V α
tj ,p

)

and
φα

(
[0, T + ε], V α

p

)
⊂

⋃
j

V α
tj ,p.

Set

Uα
p =

(⋂
j

φα(−tj , V
α
tj ,p)

)
∩ Vp,

Aα
p =

{(
φ̃α, h̃βα, φ̃β

)
∈ C | φ̃α

(
t+ ε, V α

p

)
⊂ (Mα \Nα) ∩

(⋃
j

V α
tj ,p

)
,

φ̃α
(
[0, T + ε], V α

p

)
⊂

⋃
j

V α
tj ,p, h̃

βα
(
V α
tj ,p

)
⊂ V β

tj ,p,

φ̃β
(
sj , V

β
tj ,p

)
⊂ Mβ \Nβ

}
.

Note that, for all q ∈ Uα
p , all (φ̃

α, h̃βα, φ̃β) ∈ Aα
p and all t ≥ 0 such that

φ̃α([0, t], q) ∈ Nα,

there exists an s ≥ 0 such that

φ̃β
(
s, h̃βα(t, q)

)
∈ Mβ \Nβ .

It is not necessarily true that O−(q) ⊂ Nα, but this does not matter. Now, by
compactness there exist a finite number of pi ∈ ∂Nα such that the corre-
sponding Upi

cover ∂Nα. Then

Aα =
⋂
i

Aα
pi

is open, and for all p ∈ ∂Nα either property (ai) or (aii) holds with respect to

each (φ̃α, h̃βα, φ̃β) ∈ Aα.
Now we study the codomain. Let p ∈ ∂Nβ and assume that property (bi)

holds. Then completely analogously to the situation of property (ai) there
exist a t > 0 and an open Uβ

p such that

φβ
(
t, Uβ

p

)
⊂ Mβ \Nβ .

Define

Aβ
p =

{(
φ̃α, h̃βα, φ̃β

)
∈ C | φ̃β

(
t, Uβ

p

)
⊂ Mβ \Nβ

}
.
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Then for all q ∈ Uβ
p and all (φ̃α, h̃βα, φ̃β) ∈ Aβ

p there exists a t > 0 such that

φ̃β(t, q) ∈ Nβ .
Finally, let p ∈ ∂Nβ and assume that property (bii) holds. Thus

O+(p) ⊂ Nβ ,

T = inf
{
t ∈ R≤0 |φβ([T, 0], p) ⊂ Nβ

}
> −∞,

hβα(S−) ∩ φβ([T, 0], p) = ∅.
Since both sets are compact, there exists an open set

V ⊃ φβ([T, 0], p)

such that hβα(S−) ∩ V = ∅. This implies that for all q ∈
(
hβα

)−1
(V ) ∩ Nα

there exists an s < 0 such that φα(s, q) ∈ Mα \Nα. But then there exists an
open set V α

q � q such that

φα
(
s, V α

q

)
⊂ Mα \Nα.

The set (
hβα

)−1
(V ) ∩Nα

is compact, hence it is covered by V α
qi for a finite number of qi. Note that, for

all flows φ̃α with

φ̃α
(
si, V α

qi

)
⊂ Mα \Nα,

we have that

S̃α
− =

{
p ∈ Nα | φ̃α(t, p) ∈ Nα for all t ≤ 0

}

is contained in Nα \
⋃

i V
α

qi . Let us return to the codomain. By continuity of
the flow and the choice of T there exists an ε > 0 such that

φβ(T − ε, p) ⊂ (Mα \Nα) ∩ V

with φβ([T − ε, 0], p) ⊂ V . Fix a neighborhood V β
p � p such that

φβ
(
T − ε, V β

p

)
⊂

(
Mβ \Nβ

)
∩ V.

Now for t ∈ [T, 0] the sets φβ(t, V β
p )∩V cover φβ([T, 0], p). Using compactness,

choose a finite number of times tj such that

φβ
(
tj , V

β
p

)
∩ V.

For all q ∈
⋂

j φ
(
− tj , φ

β(tj , V
β
p ) ∩ V

)
we have that

Tq = inf
{
t ∈ R≤0 | φβ([t, 0], q)

}
≥ T − ε,

and for all t ∈ Tq we have φβ(t, q) ⊂ V . Define

Aβ
p =

{(
φ̃α, h̃βα, φβ

)
| φ̃

(
si, V α

qi

)
⊂ Mα \Nα,

h̃βα
(
Nα \

⋃
V α
qi

)
⊂ Mβ \ V , φ̃β

(
[T − ε]× Uβ

p

)
⊂ V

}
.
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Then for all q ∈ Uβ
p and all (φ̃α, h̃βα, φ̃β) ∈ Aβ

p ,

h̃βα(S̃α
−) ∩ φ̃β([Tq, 0], q) = ∅.

The sets Uβ
p cover ∂Nβ . Hence we can choose a finite number of pj such that

for all p ∈ ∂Nβ and all (φ̃α, h̃βα, φβ) ∈ Aβ =
⋂

j A
β
pj

either property (bi) or

(bii) holds.
Set A = Aα∩Aβ . Then, by construction of the set A, properties (ai) and

(aii) hold for all (φ̃α, h̃βα, φ̃β) ∈ A and all p ∈ Nα. Similarly, properties (bi)

and (bii) hold for all p ∈ ∂Nβ . Thus h̃βα is isolated with respect to the flows

φ̃α, φ̃β , and the isolating neighborhoods Nα, Nβ . �

Definition 5.3. A homotopy hλ is isolated with respect to isolated homotopies

of flows φα
λ and φβ

λ if each hλ is an isolated map with respect to φα
λ and φβ

λ.
The maps h0 and h1 are said to be isolated homotopic to each other.

We remark that isolated homotopies are also open in the compact-open
topology. An isolated homotopy hλ can be viewed as an isolated map

H : Mα × [0, 1] → Mβ × [0, 1],

with H(x, λ) = (hλ(x), λ) and with flows Φα = (φα
λ , λ). Thus the set of iso-

lated homotopies is open in the compact-open topology by Proposition 5.2.
Flow maps, cf. Definition 1.3, are isolated with respect to well-chosen isolat-
ing neighborhoods.

Proposition 5.4. Let hβα : Mα → Mβ be a flow map. Then for each isolating
neighborhood Nβ of φβ, Nα = (hβα)−1(Nβ) is an isolating neighborhood, and

Sα = Inv(Nα, φα) =
(
hβα

)−1(
Inv

(
Nβ , φβ

))
=

(
hβα

)−1(
Sβ

)
.

Moreover, hβα is isolated with respect to Nα and Nβ. If hγβ is another flow

map, and Nγ is an isolating neighborhood, then hγβ ◦φβ
R ◦hβα is isolated for

all R with respect to Nα = (hγβ ◦ hβα)−1(Nγ).

Proof. We follow McCord [10]. Since hβα is proper, Nα is compact. If p ∈
Inv(Nα), then φα(t, p) ∈ Nα for all t ∈ R. By equivariance,

φβ
(
t, hβα(p)

)
∈ Nβ for all t,

and since Nβ is an isolating neighborhood, hβα(p) ∈ int(Nβ). Thus

p ∈
(
hβα

)−1(
intNβ

)
⊂ intNα.

If p ∈ Sα, then for all t we have that φα(t, p) ∈ Nα, and thus

hβα
(
φα(t, p)

)
∈ Nβ .

By equivariance it follows that φβ(t, hβα(p)) ∈ Nβ for all t. Hence hβα(p) ∈
Sβ . Analogously, if p ∈ (hβα(p))−1(Sβ), then φβ(t, hβα) ∈ Sβ for all t. By
equivariance it follows that hβα(φα(t, p)) ∈ Sβ , and this implies that

φ(t, p) ∈
(
hβα

)−1(
Nβ

)
for all t.
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We finally show that hβα is isolated. If p ∈ Shβα , then φα(t, p) ∈ Nα for all
t < 0, and φβ(t, hβα(p)) ∈ Nβ for all t > 0. By equivariance,

hβα
(
φα(t, p)

)
∈ Nβ for all t > 0,

and thus φα(t, p) ∈ Nα for all t. Thus p ∈ Sα andO−(p) ⊂ Sα ⊂ intNα. Sim-
ilarly, hβα(p) ∈ Sβ , thus

O+

(
hβα(p)

)
⊂ Sβ ⊂ intNβ .

The proof of the latter statement follows along the same lines. �

The previous proposition states that we can pull back isolated invariant
sets and neighborhoods along flow maps. The same is true for Lyapunov
functions.

Proposition 5.5. Let hβα : Mα → Mβ be a flow map with respect to φα and φβ.
Let Sβ ⊂ Mβ be an isolated invariant set and let fβ : Mβ → R be a Lya-
punov function satisfying the Lyapunov property with respect to an isolating
neighborhood Nβ. Then

fα := fβ ◦ hβα

is a Lyapunov function for Sα := (hβα)−1(Sβ) satisfying the Lyapunov prop-
erty on Nα=(hβα)−1(Nβ). Moreover, for any metrics eα, eβ the map hβα is
isolated with respect to the gradient flows ψα and ψβ of (fα, eα) and (fβ , eβ).

Proof. Since hβα(Sα) ⊂ Sβ and fβ |Sβ ≡ c is constant, it follows that

fα|Sα ≡ c

is constant. If p ∈ Nα \ Sα, then there exists a t ∈ R such that

φα(t, p) ⊂ Mα \Nα.

Then

hβα
(
φα(t, p)

)
∈ Mβ \Nβ

and by equivariance φβ(t, hβα(p)) ∈ Mβ \Nβ . Therefore, hβα(p) ∈ Nβ \ Sβ .
Again by equivariance,

d

dt

∣∣∣∣
t=0

fα
(
φα(t, p)

)
=

d

dt

∣∣∣∣
t=0

fβ
(
hβα(φα(t, p))

)

=
d

dt

∣∣∣∣
t=0

fβ
(
φβ

(
t, hβα(p)

))
< 0.

Thus fα is a Lyapunov function. We now prove that hβα is an isolated map
with respect to the isolating neighborhoods Nα and Nβ for the gradient flows
ψα and ψβ . The neighborhoods are isolating for the gradient flows by [14,
Lemma 3.3]. Let Phβα be the set of equation (5.1) for the gradient flows. By
the arguments of [14, Lemma 3.3] we have that, for p ∈ Phβα ,

α(p) =
{

lim
n→∞

ψα(tn, p) | lim
n→∞

tn = −∞
}
⊂ Crit fα ∩Nα
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and

ω
(
hβα(p)

)
=

{
lim

n→∞
ψβ

(
tn, h

βα(p)
)
| lim
n→∞

tn = ∞
}
⊂ Crit fβ ∩Nβ .

Consider bp : R → R with

bp(t) =

{
fα

(
ψα(t, p)

)
for t ≤ 0,

fβ
(
ψβ

(
t, hβα

))
for t > 0.

The function bp is continuous, smooth outside zero and by the Lyapunov
property

d

dt
bp(t) ≤ 0.

By [14, Lemma 3.1] we know that Crit fα∩Nα ⊂ Sα and Crit fβ ∩Nβ ⊂ Sβ .
Moreover,

fα
∣∣
Sα ≡ fα

∣∣
Sα ≡ c,

hence limt→−∞ bp(t) = limt→∞ bp(t) = c. Hence bp is constant and it follows
that p ∈ Sα. Thus the full orbit through p is contained in intNα and the
full orbit through hβα(p) is contained in intNβ . Thus hβα is isolated with
respect to the gradient flows. �

6. Functoriality in local Morse homology

We are interested in the functorial behavior of local Morse homology. Let us
recall the definition of local Morse homology more in depth. Suppose that Nα

is an isolating neighborhood of the gradient flow of fα and gα. The local stable
and unstable manifolds of critical points inside Nα are defined by

Wu
loc(x;N

α) :=
{
p ∈ Nα | ψα(t, p) ∈ Nα for all t < 0, lim

t→−∞
ψα(t, p) = x

}
,

W s
loc(x;N

α) :=
{
p ∈ Nα | ψα(t, p) ∈ Nα for all t > 0, lim

t→∞
ψα(t, p) = x

}
.

We write

WNα(x, y) = Wu
loc(x, y;N

α) ∩W s
loc(y;N

α),

MNα(x, y) = WNα(x, y)/R.

We say that the gradient flow is Morse–Smale on Nα, cf. [14, Definition 3.5],
if the critical points of fα inside Nα are nondegenerate, and for each p ∈
WNα(x, y), we have that TpW

u(x) + TpW
s(y) = TpM

α. The intersection is
said to be transverse and we write

Wu
loc(x;N

α) � W s
loc(y;N

α).

Denote by Pα = (Mα, fα, gα, Nα, oα) a choice of a manifold (not necessarily
closed), a function, a metric and an isolating neighborhood of the gradient
flow, such that (fα, gα) is Morse–Smale on Nα, and a choice of orientations
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of the local unstable manifolds. For such a local Morse datum Pα, we define
the local Morse complex

Ck(Pα) := Critk f
α ∩Nα, ∂(Pα)(x) :=

∑
|y|=|x|−1

nNα, loc(x, y) y,

where nNα, loc(x, y) denotes the oriented count of points in MNα(x, y). The
differential satisfies ∂2(Pα) = 0, hence we can define local Morse homology.
This is not an invariant for Nα but crucially depends on the gradient flow.
Compare for example the gradient flows of fα(x) = x2 or fβ(x) = −x2 on R
with isolating neighborhoods N = [−1, 1]. The homology is invariant under
homotopies (fλ, gλ), as long as the gradient flows preserve isolation. The
canonical isomorphisms, induced by continuation are denoted by Φβα. The
local Morse homology recovers the Conley index of the gradient flow.

If hβα is isolated with respect to Pα and Pβ , we say that it is transverse
(with respect to Pα and Pβ), if for all

p ∈ Wu
loc(x;N

α) ∩
(
hβα

)−1(
W s

loc

(
y,Nβ

))
,

we have

dhβαTpW
u(x) + Thβα(p)W

s(y) = Th(p)M
β .

We write

Whβα, loc(x, y) = Wu
loc(x;N

α) ∩W s
loc

(
y;Nβ

)
.

The oriented intersection number is denoted by nhβα, loc(x, y).

Proposition 6.1. Let hβα ∈ T (Pα,Pβ) and suppose that hβα is isolated with

respect to Rα and Rβ. Then hβα
∗ (x) :=

∑
|x|=|y| nhβα, loc(x, y)y is a chain map.

Suppose that Pγ and Pδ are different local Morse data with

Mα = Mγ , Nα = Nγ , Mβ = Mδ, Nβ = N δ,

such that the gradient flow of Pα is isolated homotopic to the gradient flow
of Pγ , the gradient flow of Pβ is isolated homotopic to the gradient flow of Pδ,
and hβα ∈ T (Pα,Pβ) and hδ,γ ∈ T (Pγ ,Pδ) are isolated homotopic through

these isolated homotopies. Then Φδβ
∗ hβα

∗ and hδγ
∗ Φγα are chain homotopic.

Proof. We argue that the gluing maps constructed in Proposition 2.4 restrict
to the local gluing maps

#1 : MNα(x, y)× [R0,∞)×Whβα, loc(y, y
′) → Whβα,loc(x, y

′),

#2 : Whβα, loc(x, x
′)× [R0,∞)×MNβ (x′, y′) → Whβα, loc(x, y

′).

Consider #1, let γu ∈ MNα(x, y) and v ∈ Whβα, loc(y, y
′). Geometric conver-

gence implies that the backwards orbit O−(γu#
1
Rv) lies arbitrary close, for R

sufficiently large, to the images of O(u) and O−(v). The latter are contained
in intNα, hence

O−
(
γu#

1
Rv

)
⊂ intNα.

Similarly,

O+

(
hβα

(
u#1

Rv
))

⊂ intNβ
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for R sufficiently large since it must converge to O+(h
βα(v)). Thus for R0

possibly larger than that in Proposition 2.4 there is a well-defined restriction
of the gluing map #1. The situation for #2 is analogous.

For the compactness issues, observe that

Shβα = Sα
− ∩

(
hβα

)−1(
Sβ
+

)

is hence compact. But it also equals the set⋃
x,y

Whβα, loc(x, y).

Therefore, if pk ∈ Whβα, loc(x, y), then it has a convergent subsequence pk → p

with p ∈ Whβα, loc(x
′, y′). Since O−(pk) ⊂ intNα and O+(h

βα(pk)) ⊂ intNβ ,
it follows that the compactness issues are those described in Proposition 2.2,
but then for the local moduli spaces.

Now consider the isolated homotopy. Isolation implies that we can fol-
low the argument of Proposition 3.1 to construct isolating neighborhoods on
Mα × [0, 1] and Mβ × [0, 1] and a map Hβδ that is isolated with respect to
these neighborhoods. Then the observation that Hβδ is a chain map implies
that there exists a chain homotopy. �

Recall that the local Morse homology of the isolating neighborhood of
any pair (f, g), which is not necessarily Morse–Smale, is defined by

HM∗(f, g,N) := lim←−HM∗(Pα),

where the inverse limit runs over all local Morse data Pα whose gradient flows
are isolated homotopic to the gradient flows of (f, g) on N , with respect to
the canonical isomorphisms.

Proposition 6.2. Let (fα, gα) and (fβ , gβ) be pairs of functions of metrics
on Mα and Mβ, which are not assumed to be Morse–Smale. Suppose that the
map hβα : Mα → Mβ is isolated with respect to the isolating neighborhoods
Nα and Nβ. Then hβα induces a map of local Morse homologies

hβα
∗ : HM∗(f

α, gα, Nα) → HM∗
(
fβ , gβ , Nβ

)
.

Suppose that hδγ is isolated homotopic to hβα through isolated homotopies
of gradient flows between (fα, gα, Nα) and (fγ , gγ , Nγ) and (fβ , gβ , Nβ) and
(fδ, gδ, Nδ). Then the following diagram commutes:

HM∗(f
α, gα, Nα)

hβα
∗ ��

Φγα
∗

��

HM∗
(
fβ , gβ , Nβ

)

Φδβ
∗

��

HM∗
(
fγ , gγ , Nγ

) hδγ
∗ �� HM∗

(
fδ, gδ, Nδ

)
.

Proof. Let Pγ = (Mα, fγ , gγ , Nα, oγ) and Pδ = (Mβ , fδ, gδ, Nβ , oδ) be local
Morse data such that(

fγ , gγ
)
∈ IMS(f

α, gα, Nα),
(
fδ, gδ

)
∈ IMS

(
fβ , gβ , Nβ

)
,
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Figure 6. All isolated maps induce chain maps in local
Morse homology, but they are not necessarily functorial, as
they do not capture the dynamical content. The gradient
flows of fα(x) = x2, fβ = (x−3)2 and fγ(x) = x2 on R, with
isolating neighborhoods N = [−1, 1] are depicted. The iden-

tity maps are isolated. We compute that idβα∗ = 0, idγβ∗ = 0,

but idγα∗ is the identity. The problem is that idγβ ◦ψβ
R ◦ idβα

is not isolated for all R > 0.

and hβα is isolated for the isolated homotopies connecting (fα, gα) with
(fγ , gγ) and (fβ , gβ) with (fδ, gδ), where hβα ∈ T (Pγ ,Pδ). This is possi-
ble by Proposition 5.2, and [14, Corollary 3.12]. By the density of transverse
maps (Theorem A.1), there exists a small perturbation hδγ which is isolated
homotopic to hβα by this homotopy. By Proposition 6.1 we get a map

hδγ
∗ : HM∗

(
Pγ

)
→ HM∗

(
Pδ

)
.

Moreover, given different local Morse data Pε and Pζ as above, we can con-
struct an isolated map hζε which is isolated homotopic to hβα and hence also
to hδβ by concatenation. From Proposition 6.1 it follows that the following
diagram commutes:

HM∗
(
Pγ

)

Φεγ
∗

��

hδγ
∗ �� HM∗

(
Pδ

)

Φζδ
∗

��

HM∗
(
Pε

)
hζε
∗

�� HM∗
(
Pζ

)
.

Which means that we have an induced map

hβα
∗ : HM∗(f

α, gα, Nα) → HM∗
(
fβ , gβ , Nβ

)

between the inverse limits. The arguments for the homotopy of the maps is
analogous. �

The chain maps defined above are not necessarily functorial. Consider,
for example, Figure 6. The problem is that, in the proof of functoriality for

Morse homology, we need the fact that hγβ ◦ψβ
R ◦hβα is isolated for all R ≥ 0

to establish functoriality. If we require this almost homotopy to be isolated,
the proof of functoriality follows mutatis mutandis.

Proposition 6.3. Let hβα and hγβ be transverse and isolated. Assume hγβ◦hβα

is transverse and isolated, and hγβ ◦ψβ
R ◦hβα is an isolated homotopy for R ∈

[0, R′] for each R′ > 0. Then hγβ
∗ hβα

∗ and (hγβ ◦hβα)∗ are chain homotopic.

Proposition 6.4. Let (fα, gα), (fβ , gβ) and (fγ , gγ) be pairs of functions and
metrics on manifolds Mα, Mβ, Mγ , and suppose that hγβ and hβα are flow
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maps with respect to the gradient flows. Let Nγ be an isolating neighborhood
of the gradient flow of (fγ , gγ). Set

Nβ :=
(
hγβ

)−1(
Nγ

)
, Nα =

(
hβα

)−1
(Nα).

Then these are isolating neighborhoods, the maps hγβ, hβα and hγβ ◦hβα are
isolated and the following diagram commutes:

HM∗(f
α, gα, Nα)

(hγβ◦hβα)∗ ��

hβα
∗ �� HM∗

(
fβ , gβ , Nβ

)

hγβ
∗

��

HM∗
(
fγ , gγ , Nγ

)
.

Proof. The proposition follows by combining Propositions 5.4, 6.2 and 6.3.
�

Theorem 1.5 now follows from the fact that isolated homotopic maps
induce the same maps in local Morse homology.

7. Functoriality in Morse–Conley–Floer homology

We use the induced maps of local Morse homology to define induced maps for
flow maps in Morse–Conley–Floer homology.

Theorem 7.1. Let hβα : Mα → Mβ be a flow map. Let Sβ ⊂ Mβ be an iso-
lated invariant set. Then Sα = (hβα)−1(Sβ) is an isolated invariant set and
there exists an induced map

hβα
∗ : HI∗(S

α, φα) → HI∗
(
Sβ , φβ

)
,

which is functorial: The identity is mapped to the identity and the following
diagram commutes:

HI∗
((
hγβ ◦ hβα

)−1
(Sγ), φα

) hβα
∗ ��

(hγβ◦hβα)∗ ��

HI∗
((
hγβ

)−1
(Sγ), φβ

)

hγβ
∗

��

HI∗
(
Sγ , φγ

)
.

Proof. The induced map is defined as follows. Let fβ be a Lyapunov function8

with respect to the isolating neighborhood Nβ of (Sβ , φβ). Then

Nα :=
(
hβα

)−1(
Nβ

)

is an isolating neighborhood of Sα = (hβα)−1(Sβ), and

fα := fβ ◦ hβα

8We previously denoted this by fφβ but this notation is too unwieldy here.
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is a Lyapunov function by Proposition 5.5. Moreover, hβα is isolated with
respect to the gradient flows for any two metrics gα and gβ . By Proposition 6.2
we have an induced map

hβα
∗ : HM∗(f

α, gα, Nα) → HM∗
(
fβ , gβ , Nβ

)

computed by perturbing everything to a transverse situation, preserving iso-
lation, and counting as in Proposition 6.1.

We now want to prove that the induced map passes to the inverse limit.
If fδ is another Lyapunov function with respect to an isolating neighborhood
N δ of (Sβ , φβ), and

Nγ =
(
hβα

)−1(
N δ

)
, fγ = fδ ◦ hβα,

then we cannot directly compare the local Morse homologies. However, as in
[14, Theorem 4.7], the sets

Nβ ∩N δ and Nα ∩Nγ

are isolating neighborhoods, and hβα is isolated with respect to these since
Shβα ⊂ Sα and hβα(Shβα) ⊂ Sβ .

The claim is that the following diagram in local Morse homology com-
mutes:

HM∗(f
α, gα, Nα)

hβα
∗ ��

��

HM∗
(
fβ , gβ , Nβ

)

��

HM∗
(
fα, gα, Nα ∩Nγ

) hβα
∗ ��

Φγα
∗

��

HM∗
(
fβ , gβ , Nβ ∩N δ

)

Φδβ
∗

��

HM∗
(
fγ , gγ , Nα ∩Nγ

) hβα
∗ ��

��

HM∗
(
fδ, gδ, Nβ ∩N δ

)

��

HM∗
(
fγ , gγ , Nγ

) hβα
∗ �� HM∗

(
fδ, gδ, Nδ

)
,

where the vertical maps are all isomorphisms. This proves that we have a
well-defined map in Morse–Conley–Floer homology.

The commutativity of the middle square is induced by continuation as
in Proposition 6.2. Gradient flows of different Lyapunov functions on the
same isolating neighborhood are isolated homotopic by the proof of [14, The-
orem 4.4]. Moreover, since the set Shβα of equation (5.1) is contained in Sα

and hβα(Sβ) ⊂ Sβ for any choice of Lyapunov function, the isolated homo-
topies of the gradient flows preserve the isolation of hβα.

The upper square in the diagram commutes because the set Shβα of equa-
tion (5.1) is contained in Sα and hβα(Sα)⊂Sβ . It is possible to perturb the
function fα to a Morse–Smale function preserving the isolation in Nα ∩Nγ

and similarly for fβ , while also preserving isolation of hβα. We use the open-
ness of isolated maps, cf. Proposition 5.2 and genericity of transverse maps,
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Theorem A.1. Then the counts with respect to Nα and Nα∩Nγ and Nβ and
Nβ ∩N δ are the same for such perturbations, from which it follows that the
diagram commutes. The situation for the lower square is completely analo-
gous.

We have a well-defined map in Morse–Conley–Floer homology. Functo-
riality might not be clear at this point, however if hγβ : Mβ → Mγ is another
flow map and fγ is a Lyapunov function for φγ , then

fβ = fγ ◦ hγβ and fα = fγ ◦ hγβ ◦ hβα

are Lyapunov functions, for the obvious isolated invariant sets and neighbor-
hoods. Choose auxiliary metrics gα, gβ , gγ , and denote the gradient flows of
the Lyapunov functions by ψα, ψβ , ψγ . For R ≥ 0 and p ∈ Shγβ◦ψβ

R◦hβα define

the map bp,R : R → R by

bp,R(t) =




fα
(
ψα(t, p)

)
for t < 0,

fβ
(
ψβ

(
t, hβα(p)

))
for 0 < t < R,

fγ
(
ψγ

(
t, hγβ ◦ ψβ

R ◦ hβα(p)
))

for t > R.

The map bp,R is continuous and smooth outside t = 0, R, and outside t = 0, R
we see that

d

dt
bp,R ≤ 0.

As in Proposition 5.5 we have limits limt→±∞ bp,R(t) = c, where c is the
constant with fγ |Sγ ≡ c. It follows that

Shγβ◦ψβ
R◦hβα ⊂ Sα

and hence that the orbits through

p ∈ Shγβ◦ψβ
R◦hβα

are contained in intNα and the orbits through hγβ◦ψβ
R◦hβα(p) are contained

in intNγ for all R. Thus hγβ ◦ ψβ
R ◦ hβα is isolated for all R ≥ 0. Perturbing

everything to a transverse situation as before preserving isolation, we get
from Proposition 6.3 functoriality in Morse–Conley–Floer homology. �

8. Duality

Given a chain complex (C∗, ∂∗), the dual complex is defined by

Ck := Hom(Ck,Z)

with boundary operator δk : Ck → Ck+1 which is the pullback of the bound-
ary operator ∂k+1 : Ck+1 → Ck. Thus for η ∈ Ck we have

δkη = η ◦ ∂k+1 : Ck+1 → Z.

The homology of the dual complex C∗ is the cohomology of C∗ and is denoted
by Hk(C∗) := ker δk/ im δk−1.
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8.1. Morse cohomology and Poincaré duality

If A,B are oriented and cooriented submanifolds of a manifold M that inter-
sect transversely, the intersection A∩B is an oriented submanifold. If the am-
bient manifold M is oriented, the exact sequence 0 → TA → TM → NA → 0
coorients A, and similarly orients B. The orientation on B ∩ A, seen as an
oriented submanifold, is related to the orientation of A ∩B by the formula

Or(B ∩A) = (−1)dimA∩B+dimA dimB Or(A ∩B). (8.1)

Now letQα = {Mα, fα, gα, oα} be a Morse datum on an oriented closed man-
ifold Mα. We have the following exact sequence of vector spaces:

0 −→ TxW
u(x) −→ TxM −→ NxW

u(x) −→ 0.

Because TxW
u(x) is oriented by oα and TxM is also oriented, this sequence

orients NxW
u(x) ∼= TxW

s(x). The stable manifolds are therefore also ori-
ented. The stable manifolds of (fα, gα) are precisely the unstable manifolds
of (−fα, gα) which we orient by the above exact sequence. We denote this
choice of orientation of the unstable manifolds of (−fα, gα) by ôα

Definition 8.1. Let Qα be a Morse datum on an oriented manifold. The dual
Morse datum Q̂α is defined by

Q̂α =
{
Mα,−fα, gα, ôα

}
.

Under our compactness assumptions the Morse complex is finitely gen-
erated. Hence the dual complex is finitely generated. A basis of C∗(Qα) is the
dual basis given, for x ∈ Crit fα, by

ηx(y) =

{
1, x = y,

0, x �= y.

Note that a critical point of fα of index |x| is a critical point of −fα of index

mα − |x|. Define the Poincaré duality map PDk : Ck(Qα) → Cmα−k(Q̂α) by

PDk(x) = ηx.

As sets, W (x, y;Qα) equals W (y, x; Ôα). Using equation (8.1) we see that

Or
(
W (x, y;Qα)

)
= (−1)Or

(
W

(
y, x; Ôα

))
.

The negative gradient flow of Qα is minus the negative gradient flow of Q̂α.
Quotienting out the induced R actions, we see that the minus sign disappears

and that n(x, y;Qα) = n(y, x; Q̂α). Then

δn−k PDk(x) = ηx∂n−k+1

=
∑

|y;Q̂α|=|x;Q̂α|+1

n
(
y, x; Q̂α

)
ηy

=
∑

|x;Qα|=|y;Qα|+1

n(x, y;Qα) ηy = PDk−1 ∂kx.
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Theorem 8.2. Let Qα be a Morse datum on an oriented closed manifold. The
Poincaré duality map is a chain map, hence induces a map

PDk : HMk(Qα) → HMmα−k
(
Q̂α

)
.

The duality map is an isomorphism and commutes with the canonical iso-
morphisms in the following way. If

Φβα
∗ : HM∗(Qα) → HM∗

(
Qβ

)

and (
Φ̂βα

)∗
: HM∗(Q̂β

)
→ HM∗(Q̂α

)

are canonical isomorphisms, then

PDk Φ
βα
k =

(
Φ̂βα

)n−k
PDk .

Since the duality map commutes with the canonical isomorphisms, and

the gradient flows of Qα and Q̂α are isolated homotopic, this gives duality of
the Morse complex of the manifold; i.e., there exists a Poincaré duality map
PDk : HMk(M

α) → HMmα−k(Mα).

8.2. Duality in local Morse homology

Recall that a closed subset C of a manifold M is orientable if there exists a
continuous section in the orientation bundle over M ; cf. [6, Chapter VI.7].
Let Pα be a local Morse datum. The local Morse datum is orientable if

Sα = Inv(Nα, ψα)

is orientable. A choice of a section of the orientation bundle is an orientation
of Pα. If Mα is an oriented manifold, all closed subsets are oriented, thus on
an orientable manifold all local Morse data are orientable.

If a local Morse datum Pα is oriented, we can define the dual local
Morse datum

P̂α =
{
Mα,−fα, gα, Nα, ôα

}

as before. Again we have Poincaré duality isomorphisms

PDk : HMk(Pα) → HMmα−k
(
P̂α

)
.

A crucial difference is now that the gradient flow of Pα is in general not iso-
lated homotopic to the gradient flow of Pα, thus

HMmα−k
(
Q̂α

)
�∼= HMmα−k(Qα).

Theorem 8.3. Let (f, g,N) be a triple of a function, a metric and an isolating
neighborhood of the gradient flow. Assume that S = Inv(N,ψ) is oriented.
Then there exist Poincaré duality isomorphisms

PDk : HMk(f, g,N) → HMmα−k(−f, g,N).
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8.3. Duality in Morse–Conley–Floer homology

If φ is a flow, then the reverse flow φ−1 defined by φ−1(t, x) = φ(−t, x) is
also a flow. The following duality statement is analogous to a theorem for the
Conley index due to McCord [11].

Theorem 8.4. Let S be an oriented isolated invariant set of a flow φ. Then
there exist Poincaré duality isomorphisms

PDk : HIk(S, φ) → HIm−k
(
S, φ−1

)
.

Proof. If fφ is a Lyapunov function for (S, φ), then −fφ is a Lyapunov func-
tion for (S, φ−1). LetN be an isolating neighborhood. Choosing a metric g, we
get by Theorem 8.3 an isomorphism HMk(fφ, g,N) → HMn−k(−fφ, g,N).
The Poincaré isomorphisms commute with the continuation isomorphisms
hence combine to a Poincaré duality isomorphism as in the theorem. �

Remark 8.5. There exist various algebraic structures on Morse–Conley–Floer
homology. A Morse homological interpretation of the cross product in coho-
mology, along with functoriality, allows one to define cup products. Functori-
ality and duality allows one to define shriek maps which give rise to intersec-
tion products. Details are available in [13]. Cap products are more intricate.
There do not exist cap products

�: HIk(S, φ)⊗HIl(S, φ) → HIk−l(S, φ).

However, we can define the cap products

�: HIk(S, φ)⊗HMl(f, g,N) → HIk−l

(
S, φ−1

)
,

where (f, g) satisfies the following properties. N is an isolating neighborhood
of S as well as the gradient flow of f . Moreover, f > 0 on N and f

∣∣
∂N

= 0.

Appendix A. Transverse maps are generic

Theorem A.1. Let Qα and Qβ be Morse–Smale triples. The set T (Qα,Qβ) is
residual in the compact-open topology; i.e., it contains a countable intersection
of open and dense sets.

Proof. Let x ∈ Crit fα and y ∈ Crit fβ . We show that

T (x, y) =
{
h ∈ C∞(

Mα,Mβ
)
| h

∣∣
Wu(x)

� W s(y)
}

is residual, from which it follows that the set of transverse maps is residual.
We first show density of T (x, y). The set

�
(
Wu(x),Mβ ;W s(y)

)
=

{
h ∈ C∞(

Wu(x),Mβ
)
| h � W s(y)

}

is residual, cf. [8, Theorem 2.1(a)], and by Baire’s category theorem it is dense.
We show that

hβα ∈�
(
Mα,Mβ ;W s(y)

)
can be approximated in the compact-open topology by maps in T (x, y). Be-
cause all maps in C∞(Mα,Mβ) can be approximated by such maps hβα, we
get the required density.
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The unstable manifold Wu(x) is contractible, thus its normal bundle is
contractible. We identify a neighborhood of Wu(x) in Mα with

Wu(x)× Rn−|x|.

By parametric transversality [8, Theorem 2.7, page 79], the set of v ∈ Rn−|x|,
such that

hβα
∣∣
Wu(x)×{v} � W s(y),

is dense. For a given v it is now possible to construct a flow whose time-1 map
φv locally translates Wu(x)×{0} to W s(x)×{v}. Then hβα can be approx-
imated by hβα ◦ φvk with vk → 0. Thus T (x, y) is dense in C∞(Mα,Mβ).

We now argue that T (x, y) contains a countable intersection of open
sets, from which it follows that this set is residual. Consider the restriction
mapping

ρWu : C∞(
Mα,Mβ

)
→ C∞(

Wu(x),Mβ
)
,

which is continuous in both the weak and strong topologies. Again the trans-
versality theorem gives that the set of transverse maps � (Wu(x),Mβ ;W s(y))
is residual; that is,

�
(
Wu(x),Mβ ;W s(y)

)
⊃

⋂
k∈N

Uk

with Uk open and dense. Note that

T (x, y) = ρ−1
Wu(x)

(
�
(
Wu(x),Mβ ;W s(y)

))
⊃

⋂
k∈N

ρ−1
Wu(x)(Uk)

hence contains a countable intersection of open sets. By the previous reason-
ing T (x, y) is dense, hence the open sets must be dense as well, and T (x, y)
is residual.

Since there are only a countable number of critical points of fα and fβ ,
it follows that

T
(
Qα,Qβ

)
=

⋂
x∈Crit fα,y∈Crit fβ

T (x, y)

is residual. �
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[16] J. Weber, The Morse-Witten complex via dynamical systems. Expo. Math. 24
(2006), 127–159.

T. O. Rot
Universität zu Köln
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